

Mathematical Sciences

Vol. 3, No. 3 (2009) 231-240

More On The Commuting Regularity Of Algebraic Structures

M. Azadi¹, L. Pourfaraj

^aDepartment of Mathematics, Islamic Azad University, Central Tehran Branch, Tehran, IRAN.

Abstract

In this paper, we study some main properties of the commuting regular ideals and we give a necessary and sufficient condition that a ring (or semigroups) is commuting regular. Some significant results of this investigation will be used for the commutative rings and group rings.

Keywords: commuting regular rings, commutative rings, group rings, loop rings. © 2009 Published by Islamic Azad University-Karaj Branch.

1 Introduction

In this paper, R, G, and S denote a ring, a group, and a semigroup, respectively. Also, we use Z(R), N(R), and J(R), to denote the center, the nilradical, and jacobson radical of the ring R, respectively. A non-empty subset of a ring R (or semigroup with zero) is called nilpotent if there exists a positive integer n such that $I^n = 0$. An element s of semigroup S is called cancellable if for every r and t, sr = st implies r = t. The semigroup S is called cancellative, if all elements of S are cancellable.

A quasigroup is a set Q with a binary operation, here denoted by " · ", with the property that for all $a,b\in Q$ there are unique elements $x,y\in Q$ such that $x\cdot a=b$ and $a\cdot y=b$. A quasigroup with an identity element is called a loop.

¹Corresponding Author. E-mail Address: mehrdad.azadi@yahoo.com

An element a of a ring R is called regular if there exists an element x in R such that axa = a. A ring R is called Von Neumen (or regular) if all its elements are regular ([5]). A ring R is called commuting regular ([8]) if and only if for each $x, y \in R$ there exists an element a of R such that xy = yxayx. The commuting regular semigroups have been defined in a similar way in [3]. Also, a two-sided (left, right) ideal I of a ring (or semigroup) is said to be commuting regular two-sided (left, right) ideal if for every $a, b \in I$ there exists an element $c \in I$ such that ab = bacba. (see [3])

Let R[G] be the set of all linear combinations of the form $a = \sum_{g \in G} \alpha(g)g$ where $\alpha(g) \in R$ and $\alpha(g) = 0$ except a finite number of coefficient. The sum and product of elements of R[G] are defined by:

$$(\sum_{g \in G} \alpha(g)g) + (\sum_{g \in G} \beta(g)g) = \sum_{g \in G} (\alpha(g) + \beta(g)g),$$

$$(\sum_{g \in G} \alpha(g)g)(\sum_{h \in G} \beta(h)h) = \sum_{g,h \in G} \alpha(g)\beta(h)gh.$$

It is easy to verify that R[G] is a ring, which is called the group ring of G over R.

If we replace the group G in the above definition by a semigroup S (or loop L), we get R[S] (or R[L]) the semigroup ring (or loop ring).

Following [7], let $L_n(m) = \{e, 1, 2, ..., n\}$ be a set where n > 3 is an odd integer and m is a positive integer such that (m, n) = 1 and (m - 1, n) = 1 with m < n. Define on $L_n(m)$, a binary operation "." as follows:

- (1) $e \cdot i = i \cdot e = i$ for all $i \in L_n(m)$,
- (2) $i^2 = e$ for all $i \in L_n(m)$,
- (3) $i \cdot j = t$ where $t \equiv (mj (m-1)i) \pmod{n}$ for all $i, j \in L_n(m), i \neq e$ and $j \neq e$.

Then $L_n(m)$ is a loop.

2 Some main results on commuting regular rings

Some new results of the commuting regular rings are as follows. We omit the proofs where they are easy.

Proposition 2.1 Let R be a commuting regular ring, then for every $a \in R$, aR = Ra.

Proposition 2.2 Let R is a commuting regular ring, then every left ideal Ra^2 is generated by an idempotent.

Proof. Let $a \in R$, there exists $b \in R$ such that $a^2 = a^2ba^2$. So, $ba^2 = ba^2ba^2$ and therefore, $e = ba^2$ is an idempotent. We show that $Ra^2 = Re$. Let $y \in Ra^2$, there exists $r \in R$ such that $y = ra^2$ and so, $y = ra^2 = ra^2ba^2 = ra^2e$. Therefore, $Ra^2 \subseteq Re$. Also $e = ba^2 \in Ra^2$ and $Re \subseteq Ra^2$.

Proposition 2.3 Let R be a commuting regular ring and I be an ideal of R, then R/I is a commuting regular ring.

Proof. Suppose that a+I, $b+I \in R/I$ where $a,b \in R$. By the hypothesis there exists $x \in R$ such that ab = baxba. So, (a+I)(b+I) = (b+I)(a+I)(x+I)(b+I)(a+I).

Note that if $\alpha: R \to S$ is a homomorphism of rings and R is a commuting regular ring, then $R/Ker(\alpha)$ and $\alpha(S)^{-1}$ are commuting regular.

Proposition 2.4 If R is a commuting regular ring, then each homomorphic image of R is a commuting regular ring.

Proof. Let R' be a ring, $\alpha: R \to R'$ be an epimorphism, and $a, b \in R'$, then there exist $r, s \in R$ such that $a = \alpha(r)$ and $b = \alpha(s)$. Since R is a commuting regular ring, there exists t such that rs = srtsr and

$$ab = \alpha(r)\alpha(s) = \alpha(rs) = \alpha(srtsr) = \alpha(s)\alpha(r)\alpha(t)\alpha(s)\alpha(r) = bacba,$$

where $c = \alpha(t)$.

Lemma 2.5 The center of a commuting regular ring R is a commuting regular ideal.

Proof. Let $a, b \in Z(R)$, there exists $x \in R$ such that $ab = baxba = (ba)^2x = x(ba)^2$. So, $abx = (ba)^2x^2 = x^2(ba)^2$. Therefore, $ab = baxba = (ba)^2x^2ba = ba(bax^2)ba$. We show that $bax^2 \in Z(R)$. Note that $bax \in Z(R)$ because if $y \in R$, then

$$(bax)y = ba(xy) = (xy)ba = xy(baxba) = (xba)y(xba) = x(ba)^2yx = bayx = y(bax)$$

and so, $bax^2y = (bax)(xy) = xy(bax) = (xba)yx = y(xba)x = y(bax^2)$. If we consider $bax^2 = t$, then $ab = ba(bax^2)ba = batba$ and Z(R) is a commuting regular ideal.

Lemma 2.6 If R is a commuting regular ring such that $R = R^2$, then every maximal ideal M in R is prime.

Proof. Suppose $ab \in M$ but $a \notin M$ and $b \notin M$. Then each of the ideals M + (a) and M + (b) properly contains M. By maximality, M + (a) = R = M + (b). Since R is commuting regular and $a, b \in R$, so, $(a)(b) \subseteq (ab) \subseteq M$. Therefore,

$$R = R^2 = (M + (a))(M + (b)) \subseteq M^2 + (a)M + M(b) + (a)(b) \subseteq M.$$

This contradicts the fact that $M \neq R$. Therefore, $a \in M$ or $b \in M$.

Proposition 2.7 If R is a commuting regular ring, then J(R) is a nilpotent ideal.

Proof. The proof is easy by combining the assertions (5) and (6) of the Theorem I of [8].

Not that $I^n=0$ means that $a_1a_2...a_n=0$ for any set elements $a_1,a_2,...,a_n\in I$. This condition is much stronger than I being nil. For instance, in the commutative ring $R=Z[x_1,x_2,...]/(x_1^2,x_2^3,...)$ the ideal I generated by $\bar{x}_1,\bar{x}_2,...$ is nil, where $\bar{x}_i=x_i+(x_1^2,x_2^2,...)$, but easily shown to be not nilpotent.

Proposition 2.8 If I is a nil ideal of commuting regular ring R, then I is a nilpotent ideal.

Proof. The nil ideal I is contained in J(R) by the Lemma 1.2.2 of [4]. By the Proposition 2.7, we conclude that the ideal I is a nilpotent ideal.

Theorem 2.9 Let R be a commuting regular ring and $I \neq (0)$ is a non nilpotent ideal of R, then there exists nonzero idempotent e such that $e \in I$.

Proof. By the Proposition 2.8, there exists $x \in I$ such that $x^n \neq 0$ for all positive integers n. So, there exists $a \in R$ such that $x^2 = x^2ax^2$ for $ax^2 \neq 0$. Therefore, $ax^2 = ax^2ax^2$ and $e = ax^2$ is a nonzero idempotent in I.

Lemma 2.10 Suppose that S is a commuting regular ring then:

- (i) Every idempotent element is central, i.e., $Id(S) \subseteq Z(S)$.
- (ii) For each $x, y \in S$, there exist $s, t \in S$, such that xy = sx = yt.

Proof. See [8].

Theorem 2.11 Let R has a no zero divisor and I be an ideal of R such that non zero idempotent e belong to I. Then R is a commuting regular ring if and only if I is a commuting regular.

Proof. Let R be a commuting regular ring and $a, b \in I$, there exists $c \in R$ such that ab = bacba. By the Lemma 2.10, abe = bacebae and so, ab = ba(ce)ba. Therefore, I is a commuting regular ring. Conversely, let $a, b \in R$, then $ae, be \in I$ and there exists $c \in R$ such that aebe = beaecbeae. So, abe = bacbae and ab = bacba. Therefore, R is a commuting regular ring.

When a prime ideal is a maximal ideal? This is a well-known question answered in [1] and [7] by considering the Artinian ring. We submit the following result which proposes a new class of rings with this property.

Proposition 2.12 Let R be a commutative ring with identity. If R is a commuting regular ring, then every prime ideal of R is a maximal ideal.

Proof. Let P be a prime ideal of R, then R/P is a commuting regular ring by the Proposition 2.3. If $0 \neq a \in R/P$, there exists $b \in R/P$ such that $a^2 = a^2ba^2$ and so, $a^2(1-ba^2) = 0$. Therefore, $1 - ba^2 = 0$ or $ba^2 = 1$ and $ba = a^{-1}$. So, R/P is a field and P is a maximal ideal of R.

Corollary 2.13 Let R be a commutative ring with identity. If R is commuting regular, then

- (1) dim R = 0,
- (2) J(R) = N(R),
- (3) If R is a Noetherian ring, then R is an Artinian ring.

Proof. (1) and (2) by the Proposition 2.12. The proof (3) by the Proposition 2.12 and the Proposition 8.38 of [7].

3 Commuting regularity of group rings and group loops

Proposition 3.1 Let R be a ring with identity, then the commuting regular ring R[G] is a Von Neumann ring.

Proof. If $a \in R$, then there exists $b \in R$ such that a = a.1 = (1.a)b(1.a) = aba. So, R is a Von Neuman ring.

Following [6], a group G is called locally finite whenever every finite subset of G generates a finite subgroup.

Corollary 3.2 Let R be a ring with identity. If R[G] is commuting regular ring, then

- (1) G is locally finite,
- (2) the order of every element of G is invertible in R,
- (3) J(R[G]) = 0.

M. Azadi and L. Pourfaraj

Proof. By the Proposition 3.1 and the Theorem III.18 of [6].

Lemma 3.3 If R[G] is a commuting regular ring, then R is a commuting regular ring.

Proof. Let I be the ideal of R[G] generated by $\{e-g|g\in G\}$, where $e\in G$ is the unit element of the group G. Let $\alpha:G\to\{e\}$ is defined by $\alpha(g)=e$ for all $g\in G$, then it may be naturally extended to a ring epimorphism $\tilde{\alpha}:R[G]\to R[e]\cong R$. Therefore, $R\cong R[G]/I$. Using the notations of [6], we have the following properties: If H is a subgroup of G, and $\alpha:R[G]\to R[G/H]$ is defined by $\alpha(g)=gH$ for all $g\in G$, then $Ker(\alpha)=\omega(H)$ where $\omega(H)$ is defined the left ideal of R[G] generated by $\{e-h|g\in H\}$. Therefore, R is a commuting regular ring by the Proposition 2.3.

Referring to lemma 2.5, if R[G] is a commuting regular ring, its center is a commuting regular ideal.

Proposition 3.4 Let F be a field of characteristic zero and G be any finite group. Then the group ring F[G] contains commuting regular elements a and b such that $a \neq b$.

Proof. Let $p \mid o(G)$ where p is a prime. Let H be a subgroup of G, such that o(H) = p. Let $g \in H$, $a = \frac{1}{p}(1 + g + \ldots + g^{p-1})$ and $b = \frac{-1}{p}(1 + g + \ldots + g^{p-1}) \in F[G]$. Then $a^2 = a$, $b^2 = b$, and ab = ba = b. Therefore, ab = (ba)b(ba).

Example 3.5 Let $F = Z_3$ and $G = \langle g | g^2 = 1 \rangle$. Clearly in the group ring

$$Z_3[G]=\{0,\ 1,\ 2,\ g,\ 1+g,\ 2+g,\ 2g,\ 1+2g,\ 2+2g\},$$

a = 2 + 2g and b = 1 + g are commuting regular elements.

Example 3.6 Let $G = \langle g|g^2 = 1\rangle$ and Q field of rational numbers. In the group ring Q[G], suppose that $a = \frac{1}{2}(1+g)$ and $b = \frac{-1}{2}(1+g)$. So, $ab = ba = -\frac{1}{4}(2+2g) = b$, $a^2 = b^2 = \frac{1}{4}(1+2g+g^2) = \frac{1}{4}(2+2g) = a$, and therefore, ab = (ba)b(ba). Then a and b are commuting regular elements.

Proposition 3.7 Let $F = Z_p$ where p be prime (p > 2). Then the loop ring $F[L_p(m)]$ contain commuting regular elements a and b such that $a \neq b$.

Proof. Assume that $a = (p-1) \cdot e + (p-1) \cdot 1 + \ldots + (p-1) \cdot p$ and $b = 1 \cdot e + 1 \cdot 1 + 1 \cdot 2 + \ldots + 1 \cdot p$ in $F[L_p(m)]$. Then $a^2 = a$, $b^2 = b$ and ab = ba = b. Also, for $a = \frac{p+1}{2} + \frac{p+1}{2} \cdot g$ and $b = \frac{p-1}{2} + \frac{p-1}{2} \cdot g$ in $F[L_p(m)]$ where $g \in L_p(m)$, we have $a^2 = b^2 = a$ and ab = ba = b. Therefore, ab = (ba)b(ba).

Example 3.8 Let $L_5(3)$ be the loop given by the following table:

	e	1	2	3	4	5
e	e	1	2	3	4	5
1	1	e	4	2	5	3
2	2	4	e	5	3	1
3	3	2	5	e	1	4
4	4	5	3	1	e	2
5	5	3	1	4	2	e

Then $Z_5[L_5(3)]$ have commuting regular elements $a = 1 \cdot e + 1 \cdot 1 + 1 \cdot 2 + 1 \cdot 3 + 1 \cdot 4 + 1 \cdot 5$ and $b = 4 \cdot e + 4 \cdot 1 + 4 \cdot 2 + 4 \cdot 3 + 4 \cdot 4 + 4 \cdot 5$. Also, $a = 3 \cdot e + 3 \cdot 1$ and $b = 2 \cdot e + 2 \cdot 1 \in Z_5[L_5(3)]$ are commuting regular elements.

References

- Atiyah M.F. and Macdonald I.G., Introduction to commutative Algebra, Reading, Mass. Addison-Wesely Publishing company, Inc., 1969.
- [2] Azadi M., Doostie H. and Pourfaraj L. (2008) "Certain Rings and Semigroups Examining the Regularity Property," Journal of Mathematics, Statistics and allied fields.
- [3] Doostie H., Pourfaraj L. (2006) "On the minimal ideals of commuting regular rings and semigroups," International J. Appl. Math.
- [4] Herstein I.N. (1968) "Noncommutative rings," The carus mathematical monographs, No. 15, The Mathematical association of America, Washington D.C.

- 239
- [5] Howie J. M., An Introduction to Semigroup Theory, Academic Press, London, 1976.
- [6] Ribenboim P., Rings and modules, Intersience publishers, a division of John Wiley and Sons Inc., 1969.
- [7] Sharp R.Y., Steps in commutative Algebra, 1978.
- [8] Yamini A.H., Safari Sabet Sh.A. (2003) "Commuting regular rings," International J. Appl. Math., 14(4), 3557-3364.