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Abstract

In this paper, we study some main properties of the commuting regular ideals

and we give a necessary and sufficient condition that a ring (or semigroups ) is

commuting regular. Some significant results of this investigation will be used for

the commutative rings and group rings.
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1 Introduction

In this paper, R, G, and S denote a ring, a group, and a semigroup, respectively. Also,

we use Z(R), N(R), and J(R), to denote the center, the nilradical, and jacobson radical

of the ring R, respectively. A non-empty subset of a ring R (or semigroup with zero)

is called nilpotent if there exists a positive integer n such that In = 0. An element s

of semigroup S is called cancellable if for every r and t, sr = st implies r = t. The

semigroup S is called cancellative, if all elements of S are cancellable.

A quasigroup is a set Q with a binary operation, here denoted by ” · ” , with the

property that for all a, b ∈ Q there are unique elements x, y ∈ Q such that x ·a = b and

a · y = b. A quasigroup with an identity element is called a loop.
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An element a of a ring R is called regular if there exists an element x in R such

that axa = a. A ring R is called Von Neumen (or regular) if all its elements are regular

([5]). A ring R is called commuting regular ([8]) if and only if for each x, y ∈ R there

exists an element a of R such that xy = yxayx. The commuting regular semigroups

have been defined in a similar way in [3]. Also, a two-sided (left, right) ideal I of a ring

(or semigroup) is said to be commuting regular two-sided (left, right) ideal if for every

a, b ∈ I there exists an element c ∈ I such that ab = bacba. (see [3])

Let R[G] be the set of all linear combinations of the form a =
∑

g∈G α(g)g where

α(g) ∈ R and α(g) = 0 except a finite number of coefficient. The sum and product of

elements of R[G] are defined by:

(
∑
g∈G

α(g)g) + (
∑
g∈G

β(g)g) =
∑
g∈G

(α(g) + β(g)g),

(
∑
g∈G

α(g)g)(
∑
h∈G

β(h)h) =
∑

g,h∈G

α(g)β(h)gh.

It is easy to verify that R[G] is a ring, which is called the group ring of G over R.

If we replace the group G in the above definition by a semigroup S (or loop L), we

get R[S] (or R[L]) the semigroup ring (or loop ring).

Following [7], let Ln(m) = {e, 1, 2, . . . , n} be a set where n > 3 is an odd integer

and m is a positive integer such that (m,n) = 1 and (m−1, n) = 1 with m < n. Define

on Ln(m), a binary operation ”.” as follows:

(1) e · i = i · e = i for all i ∈ Ln(m),

(2) i2 = e for all i ∈ Ln(m),

(3) i · j = t where t ≡ (mj − (m− 1)i) (mod n) for all i, j ∈ Ln(m), i 6= e and j 6= e.

Then Ln(m) is a loop.
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2 Some main results on commuting regular rings

Some new results of the commuting regular rings are as follows. We omit the proofs

where they are easy.

Proposition 2.1 Let R be a commuting regular ring, then for every a ∈ R, aR = Ra.

Proposition 2.2 Let R is a commuting regular ring, then every left ideal Ra2 is gen-

erated by an idempotent.

Proof. Let a ∈ R, there exists b ∈ R such that a2 = a2ba2. So, ba2 = ba2ba2 and

therefore, e = ba2 is an idempotent. We show that Ra2 = Re. Let y ∈ Ra2, there

exists r ∈ R such that y = ra2 and so, y = ra2 = ra2ba2 = ra2e. Therefore, Ra2 ⊆ Re.

Also e = ba2 ∈ Ra2 and Re ⊆ Ra2.

Proposition 2.3 Let R be a commuting regular ring and I be an ideal of R, then R/I

is a commuting regular ring.

Proof. Suppose that a+ I, b+ I ∈ R/I where a, b ∈ R. By the hypothesis there exists

x ∈ R such that ab = baxba. So, (a + I)(b + I) = (b + I)(a + I)(x + I)(b + I)(a + I).

Note that if α : R → S is a homomorphism of rings and R is a commuting regular

ring, then R/Ker(α) and α(S)−1 are commuting regular.

Proposition 2.4 If R is a commuting regular ring, then each homomorphic image of

R is a commuting regular ring.

Proof. Let R′ be a ring, α : R → R′ be an epimorphism, and a, b ∈ R′, then there

exist r, s ∈ R such that a = α(r) and b = α(s). Since R is a commuting regular ring,

there exists t such that rs = srtsr and

ab = α(r)α(s) = α(rs) = α(srtsr) = α(s)α(r)α(t)α(s)α(r) = bacba,

where c = α(t).
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Lemma 2.5 The center of a commuting regular ring R is a commuting regular ideal.

Proof. Let a, b ∈ Z(R), there exists x ∈ R such that ab = baxba = (ba)2x = x(ba)2.

So, abx = (ba)2x2 = x2(ba)2. Therefore, ab = baxba = (ba)2x2ba = ba(bax2)ba. We

show that bax2 ∈ Z(R). Note that bax ∈ Z(R) because if y ∈ R, then

(bax)y = ba(xy) = (xy)ba = xy(baxba) = (xba)y(xba) = x(ba)2yx = bayx = y(bax)

and so, bax2y = (bax)(xy) = xy(bax) = (xba)yx = y(xba)x = y(bax2). If we consider

bax2 = t, then ab = ba(bax2)ba = batba and Z(R) is a commuting regular ideal.

Lemma 2.6 If R is a commuting regular ring such that R = R2, then every maximal

ideal M in R is prime.

Proof. Suppose ab ∈ M but a 6∈ M and b 6∈ M . Then each of the ideals M + (a) and

M + (b) properly contains M . By maximality, M + (a) = R = M + (b). Since R is

commuting regular and a, b ∈ R, so, (a)(b) ⊆ (ab) ⊆ M . Therefore,

R = R2 = (M + (a))(M + (b)) ⊆ M2 + (a)M + M(b) + (a)(b) ⊆ M.

This contradicts the fact that M 6= R. Therefore, a ∈ M or b ∈ M .

Proposition 2.7 If R is a commuting regular ring, then J(R) is a nilpotent ideal.

Proof. The proof is easy by combining the assertions (5) and (6) of the Theorem I of

[8].

Not that In = 0 means that a1a2...an = 0 for any set elements a1, a2, ..., an ∈ I.

This condition is much stronger than I being nil. For instance, in the commutative

ring R = Z[x1, x2, ...]/(x2
1, x

3
2, ...) the ideal I generated by x̄1, x̄2, ... is nil, where x̄i =

xi + (x2
1, x

2
2, . . .), but easily shown to be not nilpotent.

Proposition 2.8 If I is a nil ideal of commuting regular ring R, then I is a nilpotent

ideal.
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Proof.The nil ideal I is contained in J(R) by the Lemma 1.2.2 of [4]. By the Propo-

sition 2.7, we conclude that the ideal I is a nilpotent ideal.

Theorem 2.9 Let R be a commuting regular ring and I 6= (0) is a non nilpotent ideal

of R, then there exists nonzero idempotent e such that e ∈ I.

Proof. By the Proposition 2.8, there exists x ∈ I such that xn 6= 0 for all positive

integers n. So, there exists a ∈ R such that x2 = x2ax2 for ax2 6= 0. Therefore,

ax2 = ax2ax2 and e = ax2 is a nonzero idempotent in I.

Lemma 2.10 Suppose that S is a commuting regular ring then:

(i) Every idempotent element is central, i.e., Id(S) ⊆ Z(S).

(ii) For each x, y ∈ S, there exist s, t ∈ S, such that xy = sx = yt.

Proof. See [8].

Theorem 2.11 Let R has a no zero divisor and I be an ideal of R such that non zero

idempotent e belong to I. Then R is a commuting regular ring if and only if I is a

commuting regular.

Proof. Let R be a commuting regular ring and a, b ∈ I, there exists c ∈ R such that

ab = bacba. By the Lemma 2.10, abe = bacebae and so, ab = ba(ce)ba. Therefore, I

is a commuting regular ring. Conversely, let a, b ∈ R, then ae, be ∈ I and there exists

c ∈ R such that aebe = beaecbeae. So, abe = bacbae and ab = bacba. Therefore, R is a

commuting regular ring.

When a prime ideal is a maximal ideal? This is a well-known question answered

in [1] and [7] by considering the Artinian ring. We submit the following result which

proposes a new class of rings with this property.

Proposition 2.12 Let R be a commutative ring with identity. If R is a commuting

regular ring, then every prime ideal of R is a maximal ideal.
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Proof. Let P be a prime ideal of R, then R/P is a commuting regular ring by the

Proposition 2.3. If 0 6= a ∈ R/P , there exists b ∈ R/P such that a2 = a2ba2 and so,

a2(1 − ba2) = 0. Therefore, 1 − ba2 = 0 or ba2 = 1 and ba = a−1. So, R/P is a field

and P is a maximal ideal of R.

Corollary 2.13 Let R be a commutative ring with identity. If R is commuting regular,

then

(1) dimR = 0,

(2) J(R) = N(R),

(3) If R is a Noetherian ring, then R is an Artinian ring .

Proof. (1) and (2) by the Proposition 2.12. The proof (3) by the Proposition 2.12 and

the Proposition 8.38 of [7].

3 Commuting regularity of group rings and group loops

Proposition 3.1 Let R be a ring with identity, then the commuting regular ring R[G]

is a Von Neumann ring.

Proof. If a ∈ R, then there exists b ∈ R such that a = a.1 = (1.a)b(1.a) = aba. So, R

is a Von Neuman ring.

Following [6], a group G is called locally finite whenever every finite subset of G

generates a finite subgroup.

Corollary 3.2 Let R be a ring with identity. If R[G] is commuting regular ring, then

(1) G is locally finite,

(2) the order of every element of G is invertible in R,

(3) J(R[G]) = 0.
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Proof. By the Proposition 3.1 and the Theorem III.18 of [6].

Lemma 3.3 If R[G] is a commuting regular ring, then R is a commuting regular ring.

Proof. Let I be the ideal of R[G] generated by {e− g|g ∈ G}, where e ∈ G is the unit

element of the group G. Let α : G → {e} is defined by α(g) = e for all g ∈ G, then

it may be naturally extended to a ring epimorphism α̃ : R[G] → R[e] ∼= R. Therefore,

R ∼= R[G]/I. Using the notations of [6], we have the following properties: If H is a

subgroup of G, and α : R[G] → R[G/H] is defined by α(g) = gH for all g ∈ G, then

Ker(α) = ω(H) where ω(H) is defined the left ideal of R[G] generated by {e−h|g ∈ H}.

Therefore, R is a commuting regular ring by the Proposition 2.3.

Referring to lemma 2.5, if R[G] is a commuting regular ring, its center is a com-

muting regular ideal.

Proposition 3.4 Let F be a field of characteristic zero and G be any finite group. Then

the group ring F [G] contains commuting regular elements a and b such that a 6= b.

Proof. Let p | o(G) where p is a prime. Let H be a subgroup of G, such that o(H) = p.

Let g ∈ H, a = 1
p(1 + g + . . . + gp−1) and b = −1

p (1 + g + . . . + gp−1) ∈ F [G]. Then

a2 = a, b2 = b, and ab = ba = b. Therefore, ab = (ba)b(ba).

Example 3.5 Let F = Z3 and G = 〈g|g2 = 1〉. Clearly in the group ring

Z3[G] = {0, 1, 2, g, 1 + g, 2 + g, 2g, 1 + 2g, 2 + 2g},

a = 2 + 2g and b = 1 + g are commuting regular elements.

Example 3.6 Let G = 〈g|g2 = 1〉 and Q field of rational numbers. In the group ring

Q[G], suppose that a = 1
2(1 + g) and b = −1

2 (1 + g). So, ab = ba = −1
4(2 + 2g) = b,

a2 = b2 = 1
4(1 + 2g + g2) = 1

4(2 + 2g) = a, and therefore, ab = (ba)b(ba). Then a and b

are commuting regular elements.

Proposition 3.7 Let F = Zp where p be prime (p > 2). Then the loop ring F [Lp(m)]

contain commuting regular elements a and b such that a 6= b.
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Proof. Assume that a = (p − 1) · e + (p − 1) · 1 + . . . + (p − 1) · p and b = 1 · e +

1 · 1 + 1 · 2 + . . . + 1 · p in F [Lp(m)]. Then a2 = a, b2 = b and ab = ba = b. Also,

for a = p+1
2 + p+1

2 · g and b = p−1
2 + p−1

2 · g in F [Lp(m)] where g ∈ Lp(m), we have

a2 = b2 = a and ab = ba = b. Therefore, ab = (ba)b(ba).

Example 3.8 Let L5(3) be the loop given by the following table:

. e 1 2 3 4 5

e e 1 2 3 4 5

1 1 e 4 2 5 3

2 2 4 e 5 3 1

3 3 2 5 e 1 4

4 4 5 3 1 e 2

5 5 3 1 4 2 e

Then Z5[L5(3)] have commuting regular elements a = 1 ·e+1 ·1+1 ·2+1 ·3+1 ·4+1 ·5

and b = 4·e+4·1+4·2+4·3+4·4+4·5. Also, a = 3·e+3·1 and b = 2·e+2·1 ∈ Z5[L5(3)]

are commuting regular elements.
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