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Abstract

A Banach algebra A is weakly amenable if every continuous derivation from
A into A* is inner. In this paper, we show that the semigroup algebra M,(S) is
weakly amenable for a certain class of locally compact semigroups.
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1 Introduction

Let S be a locally compact topological semigroup, and let M (S) denote the space of
all bounded complex regular measures on S. This space with the convolution product
*, and norm ||u|| = |u|(S) is a Banach algebra. The space of all measures pu € M(S)
for which the mappings x — dz* | 1 | and x —| p | %, from S into M (S) are weakly
continuous is denoted by M,(S) (or L(S) as in [1], where 8, denotes the Dirac measure
at x. Note that the measure algebra M,(S) defines a two-sided closed L-ideal of M (.S)
(see [1]). Recall that M,(S)* can be made into a Banach M,(S)-module, with module

actions defined by

(fwv)y=(fiuxv), (ufiv)y=(fivxp) (Ve MS))

for all f € M,(S)* and u € M,(S).

!Corresponding Author. E-mail Address: a.yousofzade@sci.ui.ac.ir


www.SID.ir

242 Mathematical Sciences Vol. 3, No. 3 (2009)

Recall that a linear map D from My (S) in to M,(S)* is called a derivation if
D(pxv) = D(wv + uD(v) (u,v € My(S)). For example, if f € M,(S)*, then
ady : p — pf — fpis a derivation which is called inner. Mqy(S) is called weakly
amenable if each continuous derivation from M,(S) into My (S)* is inner. It is well-
known result that the group algebra L!(G) is weakly amenable for each locally compact
group G. Let S = (N,+), then S is a commutative discrete semigroup with identity
which is a subsemigroup of group G' = (Z,+). But £!(S) is not weakly amenable.
Indeed; since N> = N + N # N, from Proposition 4.2 of [2] it follows that £(S) is not
weakly amenable.

An element e of semigroup S is called idempotent if e = e. We denote be Eg the
set of idempotents in S. We recall that a semigroup S is called Clifford semigroup if it
is an inverse semigroup for which the element of Eg are central(c.f. [4], 4.2)

In this paper, we show that M,(S) is weakly amenable for a certain class of Clifford

semigroup S.

2 Main Results

Let S be a locally compact semigroup. Denote by L*°(S, M,(S)) the set of all complex-
valued bounded functions g on S that are M,(S)-measurable. We identify functions
in L*°(S, M,(S)) that agree p-almost everywhere for all € M,(S). Note that in the
case where S is discrete (resp. a locally compact group), L>°(S, M,(S)) is equal to
0°(8S) (resp. L*°(S)). Observe that L>°(S, M,(S)) with the complex conjugation as
involution, the pointwise operations and the norm ||.|| is a commutative C*-algebra. A
semigroups S is called a foundation semigroup; if U{supp(u) : p € Mg(S)} is dense in S.
Let S be a foundation semigroup with identity. In view of Proposition 3.6 of [5], there
is an isometric isomorphism of L*(S; M,(S)) onto M,(S)*. Recall that L>(S; M,(S5))

can be made into a Banach M (S)-module, with module actions defined by

(fomv)y=(fiuxv), (uof,v)y=(fivxp) (ve MiS))
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for all f € L>®(S; My(S)) and u € M(S).

Lemma 2.1 Let S be a foundation semigroup with identity and D : My(S) —
L>(S, My(S5)) be a bounded derivation. Then:

(a) D has an extension to a bounded derivation D : M(S) — L>®(S, My(S)).

(b) D(d.) = 0, whenever e is a central idempotent in S.

Proof. (a) In this case, recall Proposition 5.9 of [5] that M,(S) has a bounded
approximate identity. Let u € M(S), v € M,(S), and let (e,) be a bounded approxi-
mate identity of M, (S). By Corollary 5.17 of [6], there exists v, v2 € My (S) such that

V=11 % V9. Now

(Dl ea),v) = (D(pxea) o vr, )
= (D(uxeq*vi,1v0) — (D(v1),vs % % €q)

—  (D(uxv1),v2) = (D(1), v ),
so that the weak™ — lim D(u * e,) exists in L*(S, M,(S)). Define
D(p) = weak™ —lim D(p * eg).

It follows that
D(px11) = po D)+ D(p) o vy,

and similar calculations then show that D is a derivation.

(b) We note that
deo f=fode (f € L*(S, My(S))).

Thus

D(6e) = D(8. % 8.) = 26, 0 D(6,).
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This implies that
be 0 D(8,) = 26, 0 D(5.),

and so D(d,) = 26, o D(8,) = 0.

Theorem 2.2 Let S be a Clifford foundation semigroup with identity. Then the

semigroup algebra My (S) is weakly amenable.

Proof. Let S be a Clifford semigroup. By Theorem 4.2.1 of [4], it follows that S =
U{Ge : e € Eg} where the group G, is the union of the algebraic subgroups of S
having e as their identity element and G..Gy C Gy for all e, f € Eg. Let S be the
collection of all € S for which every neighbourhood X of z the set X 'z nazX ! is
a neighbourhood of e. We note that S is an ideal of S. From Theorem 11.5 of [6], it

follows that for any e € EgN S, G, is a closed subgroup of S and
M,(S) = &1 {LYG.) :e € EsNS}. (%)

Now, let D : M,(S) — L®(S; M,(S)) be a bounded derivation. For e € EgN S define
derivation D, : L'(G.) — L*>(G.) by

De(fe)(ge) = D(]Ee)(ge)a

where f, = (fu)uemsng € ®LY (Ge) with f, = feifu =eand f, = 0if u # e. In
fact, we note that M,(G.) is a subalgebra of M,(S). Since G. is weakly amenable,
then there exist ¥ € L>(G.) such that D, = ady, and ||| < [|[De|| < ||D||. Since
G.NGy=0foralle, f e EgN S, for each z € S there is a unique e € EgNS that z € S
and so we may define ¢ € L>®(S; M,(S)) by ¥(z) = 1e(z). Let D be as in Lemma 2.1.
For any f, € L'(G,) and g, € L'(G,), when u,v € Eg NS we have

(adwgv)(fu) = (g‘vvlb - ¢§v)(fu)
= w(fu*!jv_gv*fU)
= wuv(fu*gv_gv*fu)
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= Yuv(fu * Ou * Ou * o — v * Ou * fu * 6y)
= ady,, (v 0u)(fu * 00)

= Duv(go * 0u)(fu * )

= D(Go * 6u)(fu * 0v)

= [0y 0 D(go * 6)](fu)

= (D(6y * Go * 0u) = D(80) © (g * 0u)) (fu)
= D(go *6u)(fu)

= (D(gv) © 6u + Go 0 D(84))(fu)
= (D(gv) ©6u)(fu)

= D(Gu)(0u* fu) = D(Gu)(fu)-

So we have

D(g,) = ady(gy) (v € EsnS, g, € LYGy)).

Now, linearity of D together with () implies that D = ady and the proof is complete.

Remark. Let T = [0,1]. Then T with the semigroup structure defined by x.y =
max{x,y} is a commutative semigroup with identity. Let G be any locally compact
group. Then S = T x G with the product topology and coordinatewise multiplication
defines a foundation semigroup with identity (see [3], Page 43). Let Gy = {t} x G for
t € T. It is clear that Gy is a subgroup of S with identity (t,eq). It is also clear that
S = UerGy is a Clifford semigroup with Es = {(t,eq) : t € T} and satisfy in the

Theorem 2.2 which is not a subset of any group.
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