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Abstract

The purpose of this research is to examine the effect of polarization for the prob-

lem of pure azimuthal shear of an elastic dielectric material. The present problem

is investigated in context of finite deformation theory. In this paper, the author

studied the effect of polarization on the stresses for Neoprene rubber and compare

the results with elastic material (Mooney-Rivlin material) graphically. Twisting of

a rigid cylinder in an infinite elastic medium is considered as a special case in this

research.
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1 Introduction

A dielectric material is a substance that is a poor conductor of electricity, but an effi-

cient supporter of electrostatic fields. If the flow of current between opposite electric

charge poles is kept to a minimum while the electrostatic lines of flux are not impeded

or interrupted, an electrostatic field can store energy. Due to this property dielectric

materials are vital component of capacitors, electronic devices which can store charge.
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Eringen [1] gave modified form of Toupin’s theory [2] of elastic dielectric and obtained

specific forms of the basic field equations, the boundary conditions and the constitutive

equations that must satisfies the stress, electrical and polarization fields by using a vari-

ational principle in electroelastostatics. Recently authors [3-5] and Singh and Verma

[19] have investigated some basic problems of practical interest for circular cylinders

composed of isotropic hyperelastic incompressible materials by using this theory. The

problem of circular shearing (azimuthal shear) of a compressible hyperelastic cylinder

has been studied by Ertepinar [6], Haughton [11], Jiang and Ogden [12], Polgnone

and Horgan [9], Simmonds and Warne [7], Tao et al. [8], Wineman and Waldron [10],

Dorfmann and Ogden [20-21]. Shear problems in circular cylinders for incompress-

ible materials with limiting chain extensibility have been investigated by Horgan and

Saccomandi [13-14]. The present research is related to examine the effect of polariza-

tion to the problem of azimuthal shear of a hollow circular dielectric cylindrical tube.

The inner surface of the tube is bonded to a rigid cylinder and uniformly distributed

azimuthal shear traction is applied to the outer surface of the tube with zero radial

traction maintained at the same surface. The formulation of the problem is based on

the theory of finite elastic deformations [15-18]. We show the effect of polarization

on the normal stresses and compare the results with elastic material (neo-Hookean)

material graphically.

2 Fundamental Equations

The basic equations of an incompressible, homogeneous, isotropic, hyperelastic dielec-

tric can be classified in the following three groups:

(a). Field Equations.

tkl;k + ρ fl = 0, (1)

LEk − φ,k = 0, (2)

ε0∇2φ− div−→P = −qf , in Vd, (3)
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where tkl is the Cauchy stress tensor, ρ is the volume density, fl is the body force

per unit mass, LEk is the local electrostatic field, ε0 is the material constant, φ is the

electrostatics potential, −→P is the polarization vector, qf is the volume free charge, Vd is

the volume that the dielectric occupies. Semicolon and comma indicate the covariant

and partial derivatives respectively.

(b). Boundary Conditions.

‖tkl ‖nk = 0, (4)

‖ε0φk
, −

−→
P k‖nk + ωf = 0, on Sd, (5)

where nk is the exterior normal to Sd, Sd is the surface enclosing the dielectric volume,

ωf is the free surface charge, the double bracket stands for discontinuity across the

surface .The Cauchy stress tensor tkl is defined as

tkl ≡L t
k
l +M tkl , (6)

M t
k
l ≡ ε0(φk

, φ,l − 1/2φm
, φ,mδ

k
l ), (7)

where M t
k
l is the Maxwell stress tensor.

(c). Constitutive Equations.

Lt
k
l = −pδk

l + 2[−1ckl (
∂Σ
∂I1

+ I1
∂Σ
∂I2

)−−2 ckl
∂Σ
∂I2

+−1 ckmP
mPl

∂Σ
∂I4

+−2ckmP
mPl

∂Σ
∂I5

+ (−1ckm)(−1cln)PmPl
∂Σ
∂I5

], (8)

LE
k = 2[−1ckl

∂Σ
∂I4

+−2 ckl
∂Σ
∂I5

+ δk
l

∂Σ
∂I6

]P l, (9)

where p is the arbitrary hydrostatic pressure, δk
l is a Kronecker delta, Σ = Σ(I1, I2, I4, I5, I6)

and I ′s are the invariants based on Finger’s strain measure −1c and polarization
−→
P .These are given by

I = I1 = δk
l
−1ckl , II = I2 =

1
2
δkm
ln

−1clk
−1cnm, III = I3 =

1
6
δkmp
lnq

−1clk
−1cnm

−1cqp,
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I4 =−1 ckl P
lPk, I5 =−1 ckm

−1cml P
lPk, I6 = P 2. (10)

The deformation tensors ckl and −1ckl are given by

−1ckl = fmlG
KMxk

,Kx
m
,M ,

ckl = fkmGMLX
M
,mX

L
,l . (11)

Where Gij , fij are the metric tensor, Xi and xi are the co-ordinates in the undeformed

and deformed states respectively.

3 Formulation of The Problem

A thick incompressible circular cylindrical shell, carrying a uniform surface charge at the

inner surface, is elongated uniformly in the axial direction. For the cylindrical tube,with

inner surface bonded to a rigid cylinder and a uniformly distributed azimuthal shear

traction applied to the outer surface, the deformation is that of pure azimuthal shear

(no radial deformation) described by

r = R, θ = Θ + g(R), z = Z, (12)

where the material and spatial cylindrical polar coordinates are denoted by (R,Θ, Z)

and (r, θ, z) respectively, with a ≤ R ≤ b .

Using (11), we can find the deformation tensors as

‖ckl‖ =


1 +R2g′2 −Rg′ 0

−Rg′ 1 0

0 0 1

 ,
∥∥∥−1ckl

∥∥∥ =


1 Rg′ 0

Rg′ 1 +R2g′2 0

0 0 1

 , (13)

with the help of (10) and (13), we calculate the principal invariants

I1 = I2 = 3 +R2g′2, I3 = 1, I4 = P 2, I5 = (1 +R2g′2)P 2, I6 = P 2. (14)
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4 Electrostatic and Maxwell Fields

To determine the electrostatic field, we solve equation (3) with the boundary conditions

(4)and (5). We assume that electric field and polarization field have single component

i.e.,−→E = [E(R), 0, 0],−→P = [P (R), 0, 0].

As a final result [18], we find

φ = α1, for 0 < R < a

ε0φ = −aωf logR+
∫ R

P (R)dR+ β2, for a < R < b

ε0φ = −aωf logR, for R > b. (15)

The unknown constants α1 and β2 are immaterial for electric and stress field. Using

(12), (15)2, (7), we obtain

M t
1
1 = −M t

2
2 = −M t

3
3 =

1
2ε0

(
aωf

R
− P )2. (16)

The equation M
−→
E = −gradφ gives the Maxwell electric field as follows

ME
1 =

1
ε0

(
aωf

R
− P )2, ME

2 = 0, ME
3 = 0. (17)

5 Local Electric and Stress Fields

Using equation (13), we obtain the local electric field from (9)

LE
1 = 2[

∂Σ
∂I4

+ (1 +R2g′2)
∂Σ
∂I5

+
∂Σ
∂I6

]P,

LE
2 = 2[Rg′

∂Σ
∂I4

+ (2Rg′ +R3g′3)
∂Σ
∂I5

]P, LE
3 = 0. (18)

The local stress tensor from (8) for incompressible dielectric is obtained as

Lt
1
1 =L t

11 = −p+ 2[(
∂Σ
∂I1

+ 2
∂Σ
∂I2

) +
∂Σ
∂I4

+ (2 +R2g′2)
∂Σ
∂I5

P 2],
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Lt
2
2 =L t

22 = −p+ 2[(1 +R2g′2)
∂Σ
∂I1

+ (2 +R2g′2)
∂Σ
∂I2

+R2g′2P 2 ∂Σ
∂I5

],

Lt
3
3 =L t

33 = −p+ 2[
∂Σ
∂I1

+ (2 +R2g′2)
∂Σ
∂I2

],

Lt
2
1 =L t

12 = 2[
∂Σ
∂I1

+
∂Σ
∂I2

+R2g′2P 2 ∂Σ
∂I5

], Lt
3
1 = 0, Lt

3
2 = 0. (19)

By using (6),(18)and (19),the components of Cauchy stress tensor can be written in

the form

t11 = t11 = −p+ 2[(
∂Σ
∂I1

+ 2
∂Σ
∂I2

) +
∂Σ
∂I4

+ (2 +R2g′2)
∂Σ
∂I5

P 2]− 1
2ε0

(
aωf

R
− P )2,

t22 = t22 = −p+ 2[(1 +R2g′2)
∂Σ
∂I1

+ (2 +R2g′2)
∂Σ
∂I2

+R2g′2P 2 ∂Σ
∂I5

] +
1

2ε0
(
aωf

R
− P )2,

t33 = t33 = −p+ 2[
∂Σ
∂I1

+ (2 +R2g′2)
∂Σ
∂I2

] +
1

2ε0
(
aωf

R
− P )2,

Lt
1
2 =L t

12 = 2[
∂Σ
∂I1

+
∂Σ
∂I2

+R2g′2P 2 ∂Σ
∂I5

], Lt
3
1 = 0, Lt

3
2 = 0. (20)

The equations of force equilibrium with the vanishing body force are

∂t12
∂R

+
1
R

(t11 − t22) = 0. (21)

∂t11
∂R

+ 2
t12
R

= 0. (22)

From (22), we have
d

dR
(R2t12) = 0. (23)

we find, on integration (23), that

t12 =
b2

R2
T0. (24)
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where T0 is the prescribed azimuthal shear stress on the outer boundary. On using

(20), we obtain a first order differential equation for g(R) , namely

2Rg′[
∂Σ
∂I1

+
∂Σ
∂I2

+R2g′2P 2 ∂Σ
∂I5

] =
b2

R2
T0 (25)

also
∂t11
∂R

− 2
R

[R2g′2(
∂Σ
∂I1

+
∂Σ
∂I2

)− (
∂Σ
∂I4

+ 2
∂Σ
∂I5

)P 2 − 1
2ε0

(
aωf

R
− P )2] = 0 (26)

Obtain g(R) from (25), subject to the boundary condition

g(a) = 0 (27)

Integrating (27) from R to b and use of the boundary condition

t11 = 0 (28)

Yields

t11(R) =
∫ b

R

−2
s

[s2g′2(
∂Σ
∂I1

+
∂Σ
∂I2

)− (
∂Σ
∂I4

+ 2
∂Σ
∂I5

)P 2 − 1
2ε0

(
aωf

s
− P )2]ds. (29)

6 Special Material

We consider a special type of dielectric material characterized by the strain energy

function Σ of the form

Σ = α1(I1 − 3) + α2(I2 − 3) + α4I4 + α5I5 + α6I6, (30)

where α′s are constants. Now (2), (17), (18) gives polarization of the form

P = −K1
aωf

R
, (31)

where

K1 = [2ε0(α6 − α5)− 1]−1. (32)

and

2Rg′[α4 + (2 +R2g′2)α5]P = 0. (33)
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Now as R,P, g′ > 0 , therefore

[α4 + (2 +R2g′2)α5] = 0. (34)

From equation (25), (30) and (31), we have

2K2
1a

2ω2
fα5g

′2 + 2Rg′(α1 + α2)−
b2

R2
T0 = 0. (35)

The quadratic equation (35) for Rg′ yields

Rg′ = −R2M3 +
1
R

√
R4M2

3 +
b2

M2
T0. (36)

where M3 = M1
M2

, M1 = α1 + α2 and M2 = 2K2
1a

2ω2
fα5 .The positive sign is taken

here to ensure that g′ > 0 . On integration of (36) and using the boundary condition

g(a) = 0 , we obtain

g(R) =
bT

1
2
0

2M
1
2
2

[
M1

bT
1
2
0 M

1
2
2

(a2 −R2) +W (R)−W (a)− ln{( a
R

)2(
W (R) + 1
W (a) + 1

)}], (37)

where

W (R) =

√
1 +

M2
1R

4

b2T0M2
(38)

Now we can write (29) by using (30), (31), (32) and (34) in the form

t11(R) = −
∫ b

R
[
b2T0

s2
g′ − (2s2g′3 + 2sg′2)

a2K2
1ω

2
f

s2
α5 +

1
s3ε0

(1 +K1)2a2ω2
f ]ds. (39)

On using (36) in (39) we find that

t11(R) = −
∫ b

R
[
b2T0

s2
(−sM3 +

1
s

√
s4M2

3 +
b2T0

M2
)− {2s2(−sM3 +

1
s

√
s4M2

3 +
b2T0

M2
)3

+2s(−sM3 +
1
s

√
s4M2

3 +
b2T0

M2
)}
a2K2

1ω
2
f

s2
α5 +

1
s3ε0

(1 +K1)2a2ω2
f ]ds, (40)

which on integration gives

t11 = b2T0M3 ln(
b

R
) +

M3

2
ln{(R

b
)2(

J(R) + 1
J(b) + 1

)}+
1
2
{J(b)− J(R)}
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+ξa2K2
1ω

2
fα5 +

1
ε0

(1 +K1)2ω2
f{(

a

b
)2 − (

a

R
)2} (41)

where

ξ =
M3

3

4
(R4 − b4)− 1

2
b2T0M3

M2
[J(b)− J(R)− 2 ln{(R

b
)2(

J(R) + 1
J(b) + 1

}]

−1
2
M2M2

3

b2T0
[J(b)b4 − J(R)R4] +M2

3 (b2 −R2)− b2T0

M2
(

1
b2
− 1
R2

)

+
3
4
b2T0

M2
[
M3M

1
2
2

bT
1
2
0

(b2W (b)−R2W (R)) + cosh−1W (b)− cosh−1W (R)]

+
5
4
bT

1
2
0 M3

M
1
2
2

[
M1

bT
1
2
0 M

1
2
2

(b2 −R2) +W (R)−W (b)− ln{(R
b

)2(
W (R) + 1
W (b) + 1

}], (42)

where

J(R) =

√
1 +

b2T0M2

M2
1R

4
. (43)

The remaining non-zero stresses are

t22 = t11 + b2T0M3(J(R)− 1) +
1
ε0

(1 +K1)2ω2
f (
a

R
)2

+2R2M2
3 [J(R)− 1]2[1−R2M3(J(R)− 1)]a2K2

1ω
2
fα5,

t33 = t11 +R2M2
3 [J(R)− 1]22k2

1a
2ω2

fα5 +
1
ε0

(1 +K1)2ω2
f (
a

R
)2,

t12 =
b2

R2
T0. (44)
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7 Special Case

If ∂Σ
∂I5

= α5 = 0, then from (34) ∂Σ
∂I4

= α4 = 0 By using (30), we an write (25)as

2Rg′[α1 + α2] =
b2

R2
T0 (45)

So that, on integrating (39) and use of the boundary condition g(a) = 0 , we obtain

the well known result

g(R) =
T0

4(α1 + α2)
[(
b

a
)2 − (

b

R
)2]. (46)

Thus, we find the non-zero normal stresses as

t11 =
1
8

T 2
0

(α1 + α2)
[1− (

b

R
)4] +

1
2

1
ε0

(1 +K1)2ω2
f [(
a

b
)2 − (

a

R
)2],

t22 =
1
8

T 2
0

(α1 + α2)
[1− 3(

b

R
)4] +

1
2

1
ε0

(1 +K1)2ω2
f [(
a

b
)2 + (

a

R
)2],

t33 =
1
8

T 2
0

(α1 + α2)
[1− (

b

R
)4] +

1
2

1
ε0

(1 +K1)2ω2
f [(
a

b
)2 + (

a

R
)2], (47)

It is clearly seen from (47) that polarization effects normal stresses. To get numerical

results of the present problem the authors used the numerical for Neoprene rubber

(ε0 = 6.6) with α1 = .4, α2 = .1, α6 = .05, b = 2, a = .9, R = 1 . It is observed

from Figure 7.1 and Figure 7.2, that the radial stress is less compressive and hoop

stress is more tensile in case of dielectric material than elastic material (neo-Hookean

material) but most important is the effect of polarization on axial stress (Figure 7.3),

due to polarization axial stress becomes compressive in the region where azimuthal

shear stress (T0) < .2777 , and tensile for remaining region.

To compare the predictions of the dielectric material, we first consider the dependence

of the relative angle of twist, defined by

ψ = g(b), (48)
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on the prescribed azimuthal shear T0 , we have

ψ =
1
4

T0

(α1 + α2)
[(
b

a
)2 − 1], (49)

which we write in the non-dimensional form

ψ =
T

4
{η2 − 1}, (50)

where

η =
b

a
(> 1), (51)

and

T =
T0

(α1 + α2)
, (52)

Thus, ψ depends on in a linear fashion. The result (52) also hold good for Mooney-

Rivlin material.

Another global stress measure worth comparing is the hoop stress at the outer boundary

τ =
th

α1 + α2
=

t22(b)
α1 + α2

, (53)

For the Mooney-Rivlin material, (47) yields

τ =
1
2

T 2
0

(α1 + α2)
=
T

2

2
, (54)

where the non-dimensional prescribed azimuthal shear stress T was defined in (52). For

dielectric material, we find from (47) that

τ =
1
2

T 2
0

(α1 + α2)
+

1
ε0

(1 +K1)2ω2
f (
a

b
)2 =

T
2

2
+

1
(α1 + α2)

1
ε0

(1 +K1)2ω2
f (
a

b
)2, (55)

Thus (55) shows hoop stress increases in the case of dielectric material due to polar-

ization.
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8 Displacement Boundary Conditions

It is of interest to consider a different boundary value from the preceding where the

traction boundary conditions on the outer surface are replaced by prescribed the angular

displacement. Thus, we now have the boundary conditions

g(a) = 0, g(b) = g0, (56)

where g0 > 0 is the prescribed angular displacement. The governing differential equa-

tion for g(R) is still given by (23), which on integration gives

R2t12 ≡ 2R3g′[α1 + α2] ≡ K, (57)

where K is an unknown constant, to be determined in terms of g0 .

For dielectric material, it follows from (56) and (57) that

g(R) = g0
η2 − ( b

R)2

η2 − 1
. (58)

And the normal stresses are

t11 = −2(α1 + α2)
g2
0

(η2 − 1)2
(
b

R
)4 +

1
2

1
ε0

(1 +K1)2ω2
f (
a

R
)2,

t22 = 2(α1 + α2)
g2
0

(η2 − 1)2
[3(

b

R
)4] +

3
2

1
ε0

(1 +K1)2ω2
f (
a

R
)2,

t33 = −2(α1 + α2)
g2
0

(η2 − 1)2
(
b

R
)4 +

3
2

1
ε0

(1 +K1)2ω2
f (
a

R
)2, (59)

As from (59) only normal stresses depends upon in a quadratic fashion and have an

effect of dielectric and polarization. To get numerical results of the present problem the

authors used the numerical values for Neoprene rubber (ε0 = 6.6) with α1 = .4, α2 =

.1, α6 = .05, b = 2, a = 1, R = 1.5 . From Figure 8.1 and 8.2, shows the similar

results for different values of angle of twist. From Figure 8.3 axial stress is compressive

when the angle of twist (g0) < 19.945 degree and becomes tensile for the remaining
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region.In the absence of polarization, we obtain results similar to the results obtained

by Horgan and Saccomandi [14] for isotropic hyperelastic materials with limiting chain

extensibility. The boundary conditions (56) have been used by Jiang and Ogden [12]

for analysis of compressible materials.

9 Twisting of a Rigid Cylinder in an Infinite Elastic Medium

Another interesting set of boundary conditions, for a hollow tube surrounded by a rigid

casing, is

g(a) = g0, g(b) = 0, (60)

In this case, integration of (57) for dielectric material gives

g(R) =
g0(R

2 − η2)

R
2(η2 − 1)

, (61)

And the normal stresses are

t11 = −2(α1 + α2)
g2
0

(η2 − 1)2
(
η

R
)4 +

1
2

1
ε0

(1 +K1)2ω2
f (

1
R

)2,

t22 = 2(α1 + α2)
g2
0

(η2 − 1)2
[3(

η

R
)4] +

3
2

1
ε0

(1 +K1)2ω2
f (

1
R

)2,

t33 = −2(α1 + α2)
g2
0

(η2 − 1)2
(
b

R
)4 +

3
2

1
ε0

(1 +K1)2ω2
f (

1
R

)2. (62)

These solutions may be simplified on considering the limit as η →∞ i.e. the boundary-

value problem corresponding to the twisting of a rigid cylinder of radius bonded to an

infinite elastic medium. In this case, we have from (61)

g(R) =
g0

R
2 (63)

From (62) and (63), we get

t11 = −2(α1 + α2)g2(R) +
1
2

1
ε0

(1 +K1)2ω2
f (

1
R

)2,
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t22 = 6(α1 + α2)g2(R) +
3
2

1
ε0

(1 +K1)2ω2
f (

1
R

)2,

t33 = −2(α1 + α2)g2(R) +
3
2

1
ε0

(1 +K1)2ω2
f (

1
R

)2. (64)

From (64), shows the dependence of normal stresses on polarization. In the absence

of polarization, we obtain results similar to the results obtained by Horgan and Sac-

comandi [14] for isotropic hyperelastic materials with limiting chain extensibility also

from (64) axial and radial stresses are equal in the absence of radial electric field.
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