

## Mathematical Sciences

Vol. 3, No. 3 (2009) 273-280

# A Generalization of The Banach Contraction Principle of Presic Type For Three Maps

K.P.R. Rao<sup>1</sup>, G.N.V. Kishore and Md. Mustaq Ali

Department of Applied Mathematics, Acharya Nagarjuna University-Dr.M.R. Appa Row Campus, Nuzvid-521201, A.P., India

#### Abstract

In this paper we obtain a Presic type unique common fixed point theorem for three maps and obtain the main theorem of Ciric and Presic as corollary.

Keywords: Weakly compatible pair, complete metric space, unique point.

© 2009 Published by Islamic Azad University-Karaj Branch.

#### 1 Introduction

In 1932, Banach [1] proved the following theorem

**Theorem 1.1** Let (X,d) be a complete metric space and  $T: X \longrightarrow X$  be satisfying  $d(Tx,Ty) \leq \alpha \ d(x,y)$  for all  $x,y \in X$ , where  $0 \leq \alpha < 1$ . Then T has a unique fixed point in X.

Consider the k-th order nonlinear difference equation

(A) 
$$x_{n+k} = f(x_n, ..., x_{n+k-1}), n \in \mathbb{N}$$

with the initial values  $x_0, x_1, ..., x_k \in X$ , where (X, d) is a metric space,  $k \in N, k \ge 1$  and  $f: X^k \longrightarrow X$ .

Equation (A) can be studied by means of a fixed point theory in view of the fact that  $x^* \in X$  is a solution of (A) if and only if  $x^*$  is a fixed point of f, that is,  $x^* = f(x^*, ..., x^*)$ .

<sup>&</sup>lt;sup>1</sup>Corresponding Author. E-mail Address: kprrao2004@yahoo.com

274

One of the most important results on this direction has been obtained by S.B.Presic in [3] by generalizing the Banach contraction mapping principle.

**Theorem 1.2** ([3]). Let (X, d) be a complete metric space, k a positive integer and  $T: X^k \longrightarrow X$  a mapping satisfying the following contractive type condition

$$(1.2.1)d(T(x_1, x_2, ..., x_k), T(x_2, x_3, ..., x_{k+1}))$$

$$\leq q_1 d(x_1, x_2) + q_2 d(x_2, x_3) + ... + q_k d(x_k, x_{k+1})$$

for every  $x_1, x_2, x_3, ..., x_k, x_{k+1}$  in X, where  $q_1, q_2, ..., q_k$  are non-negative constants such that  $q_1 + q_2 + ... + q_k < 1$ .

Then there exists a unique point x in X such that T(x, x, ..., x) = x.

Moreover, if  $x_1, x_2, ..., x_k$  are arbitrary points in X and for  $n \in N$ ,

 $x_{n+k} = T(x_n, x_{n+1}, ..., x_{n+k-1})$  then the sequence  $\{x_n\}$  is convergent and  $limx_n = T(limx_n, limx_n, ..., limx_n)$ .

Ciric and Presic [2] generalized Theorem 1.2 as follows:

**Theorem 1.3** Let (X,d) be a complete metric space, k a positive integer and  $T: X^k \longrightarrow X$  a mapping satisfying the following contractive type condition

$$(1.3.1)d(T(x_1, x_2, ..., x_k), T(x_2, x_3, ..., x_{k+1}))$$

$$\leq \lambda \max\{d(x_i, x_{i+1})/1 \leq i \leq k\}$$

for every  $x_1, x_2, x_3, ..., x_k, x_{k+1}$  in X, where  $\lambda \in (0,1)$  is constant.

Then there exists a point x in X such that T(x, x, x, ..., x) = x.

Moreover, if  $x_1, x_2, ..., x_k$  are arbitrary points in X and for  $n \in N$ ,

 $x_{n+k} = T(x_n, x_{n+1}, ..., x_{n+k-1})$  then the sequence  $\{x_n\}$  is convergent and  $\lim_{n \to \infty} T(\lim_{n \to \infty} \lim_{n \to \infty} \lim_{n$ 

If in addition, we suppose that on diagonal  $\Delta \subset X^k$ ,

 $(1.3.2)d(T(u, u, ..., u), T(v, v, ..., v)) < d(u, v) \text{ holds for all } u, v \in X, \text{ with } u \neq v,$ 

then x is the unique point in X with T(x, x, x, ..., x) = x.

K.P.R. Rao et al.

Now in this paper we extend and generalize the above theorems for three maps.

**Definition 1.4** Let X be a non empty set and  $T: X^{2k} \longrightarrow X, f: X \longrightarrow X$ . (f,T) is said to be 2k-weakly compatible pair, if f(T(p,p,...,p)) = T(fp,fp,...,fp) whenever  $p \in X$  such that fp = T(p,p,...,p).

## 2 Main Theorem

**Theorem 2.1** Let (X,d) be a metric space, k a positive integer and  $S,T:X^{2k} \longrightarrow X, f:X \longrightarrow X$  be mappings satisfying

$$(2.1.1)d(S(x_1, x_2, ..., x_{2k-1}, x_{2k}), T(x_2, x_3, ..., x_{2k}, x_{2k+1}))$$

$$\leq \lambda \max\{d(fx_i, fx_{i+1})/1 \leq i \leq 2k\}$$

for all  $x_1, x_2, x_3, ..., x_{2k}, x_{2k+1}$  in X,

$$(2.1.2)d(T(y_1, y_2, ..., y_{2k-1}, y_{2k}), S(y_2, y_3, ..., y_{2k}, y_{2k+1}))$$

$$\leq \lambda \max\{d(fy_i, fy_{i+1})/1 \leq i \leq 2k\}$$

for all  $y_1, y_2, y_3, ..., y_{2k}, y_{2k+1}$  in X, where  $0 \le \lambda < 1$ .

$$(2.1.3)$$
  $d(S(u, u, ..., u), T(v, v, ..., v)) < d(fu, fv)  $\forall u, v \in X$  with  $u \neq v$ ,$ 

(2.1.4) Suppose that f(X) is complete and either (f, S) or (f, T) is 2k-weakly compatible pair.

Then there exists a unique point  $p \in X$  such that fp = p = S(p, p, ..., p) = T(p, p, ..., p).

**Proof.** Suppose  $x_1, x_2, ..., x_{2k}$  are arbitrary points in X and for  $n \in N$ , define

$$fx_{2k+2n-1} = S(x_{2n-1}, x_{2n}, x_{2n+1}, ..., x_{2n+2k-2})$$
 and

$$fx_{2k+2n} = T(x_{2n}, x_{2n+1}, x_{2n+2}, ..., x_{2n+2k-1})$$
.

Let 
$$\alpha_n = d(fx_n, fx_{n+1})$$
. Let  $\theta = \lambda^{1/2k}$  and  $K = max\{\alpha_1/\theta^1, \alpha_2/\theta^2, ..., \alpha_{2k}/\theta^{2k}\}$ .

Claim: 
$$\alpha_n \le K\theta^n$$
 for all  $n \in N$  (2.1.5)

276

By selection of K we have  $\alpha_n \leq K\theta^n$  for n = 1, 2, ..., 2k.

$$\begin{aligned} Now & \ \alpha_{2k+1} = d(fx_{2k+1}, fx_{2k+2}) \\ & = d(S(x_1, x_2, ..., x_{2k-1}, x_{2k}), T(x_2, x_3, ..., x_{2k}, x_{2k+1})) \\ & \leq \lambda max \{ d(fx_i, fx_{i+1}) : i = 1, 2, ..., 2k \} \ by(2.1.1) \\ & = \lambda max \{ \alpha_1, \alpha_2, ..., \alpha_{2k-1}, \alpha_{2k} \} \\ & \leq \lambda max \{ K\theta^1, K\theta^2, ..., K\theta^{2k-1}, K\theta^{2k} \} \\ & = \lambda K\theta = \theta^{2k} K\theta \ as \ \theta = \lambda^{1/2k} \\ & = K\theta^{2k+1} \end{aligned}$$

Thus  $\alpha_{2k+1} \leq K\theta^{2k+1}$ .

Similarly

$$\begin{array}{lll} \alpha_{2k+2} & = & d(fx_{2k+2},fx_{2k+3}) \\ & = & d(T(x_2,x_3,...,x_{2k},x_{2k+1}),S(x_3,x_4,...,x_{2k+1},x_{2k+2})) \\ & \leq & \lambda max\{d(fx_i,fx_{i+1}):i=2,3,...,2k+1\} \ \ by(2.1.2) \\ & = & \lambda max\{\alpha_i:i=2,3,...,2k+1\} \\ & \leq & \lambda max\{K\theta^2,K\theta^3,...,K\theta^{2k},K\theta^{2k+1}\} \\ & = & \lambda K\theta^2 = \theta^{2k}K\theta^2 \ \ as \ \ \theta = \lambda^{1/2k} \\ & = & K\theta^{2k+2} \end{array}$$

Thus  $\alpha_{2k+2} \le K\theta^{2k+2}$ .

Hence the claim is true.

Now, by claim, for any  $n, p \in N$  we have

$$\begin{split} d(fx_{n},fx_{n+p}) & \leq & d(fx_{n},fx_{n+1}) + d(fx_{n+1},fx_{n+2}) + \ldots + d(fx_{n+p-1},fx_{n+p}) \\ & = & \alpha_{n} + \alpha_{n+1} + \ldots + \alpha_{n+p-1} \\ & \leq & K\theta^{n} + K\theta^{n+1} + \ldots + K\theta^{n+p-1} \\ & \leq & K[\theta^{n} + \theta^{n+1} + \ldots + \theta^{n+p-1} + \ldots] \\ & = & K\theta^{n}/1 - \theta \longrightarrow 0 \quad as \quad n \longrightarrow \infty \end{split}$$

K.P.R. Rao et al. 277

Hence  $\{fx_n\}$  is a Cauchy sequence. Since f(X) is a complete, there exists z in f(X) such that  $z = \lim_{n \to \infty} f(x_n)$ .

There exists  $p \in X$  such that z = fp.

Then for any integer n, using (2.1.1) and (2.1.2), we have

$$\begin{split} &d(S(p,p,...,p),fx_{2n+2k-1})\\ &=d(S(p,p,...,p),S(x_{2n-1},x_{2n},...,x_{2n+2k-2}))\\ &\leq d(S(p,p,...,p),T(p,p,...,x_{2n-1}))+d(T(p,p,...,x_{2n-1}),S(p,p,...,p,x_{2n-1},x_{2n}))\\ &+d(S(p,p,...,x_{2n-1},x_{2n}),T(p,p,...,p,x_{2n-1},x_{2n},x_{2n+1}))\\ &+d(T(p,p,...,p,x_{2n-1},x_{2n},x_{2n+1}),S(p,p,...,p,x_{2n-1},x_{2n},x_{2n+1},x_{2n+2}))\\ &+...+d(S(p,p,x_{2n-1},x_{2n},...,x_{2n+2k-4}),T(p,x_{2n-1},x_{2n},...,x_{2n+2k-4},x_{2n+2k-3}))\\ &+d(T(p,x_{2n-1},x_{2n},...,x_{2n+2k-4},x_{2n+2k-3}),S(x_{2n-1},x_{2n},...,x_{2n+2k-3},x_{2n+2k-2}))\\ &\leq \lambda d(fp,fx_{2n-1})+\lambda max\{d(fp,fx_{2n-1}),d(fx_{2n-1},fx_{2n}),d(fx_{2n-1},fx_{2n})\}\\ &+\lambda max\{d(fp,fx_{2n-1}),d(fx_{2n-1},fx_{2n}),d(fx_{2n},fx_{2n+1}),d(fx_{2n+1},fx_{2n+2})\}\\ &+...\\ &+\lambda max\{d(fp,fx_{2n-1}),d(fx_{2n-1},fx_{2n}),...,d(fx_{2n+2k-4},fx_{2n+2k-3})\}\\ &+\lambda max\{d(fp,fx_{2n-1}),d(fx_{2n-1},fx_{2n}),...,d(fx_{2n+2k-3},fx_{2n+2k-2})\} \end{split}$$

Taking the limit as  $n \longrightarrow \infty$ , we get  $d(S(p, p, ..., p), fp) \le 0$  so that

$$S(p, p, ..., p) = fp \tag{i}.$$

Consider 
$$d(fp, T(p, p, ..., p)) = d(S(p, p, ..., p), T(p, p, ..., p)) \le \lambda(0) = 0$$

Thus 
$$T(p, p, ..., p) = fp$$
 (ii).

Now suppose that (f, S) is 2k-weakly compatible pair. Then we have f(S(p, p, ..., p)) = S(fp, fp, ..., fp).

$$f^2p = f(fp) = f(S(p, p, ..., p)) = S(fp, fp, ..., fp).$$

Suppose  $fp \neq p$ . Then from (2.1.3) ,we have

$$d(f^2p, fp) = d(S(fp, fp, ..., fp), T(p, p, ..., p)) < d(f^2p, fp)$$
. It is a contradiction.

Therefore 
$$fp = p$$
. Now from (i) and (ii), we have  $fp = p = S(p, p, ..., p) = T(p, p, ..., p)$ .

Uniqueness of p: Suppose there exists a point  $q \neq p$  in X such that

278

$$fq=q=S(q,q,q,...,q)=T(q,q,q,...,q).$$
 Consider  $d(fp,fq)=d(S(p,p,...,p),d(T(q,q,...,q))< d(fp,fq)$  from (2.1.3)  
It is a contradiction. Therefore  $q=p$ .

When S = T and 2k is replaced by k in Theorem 2.1, we get the following.

Corollary 2.2 Let (X,d) be a metric space, k a positive integer and  $T: X^k \longrightarrow X, f: X \longrightarrow X$  be mappings satisfying

$$(2.2.1)d(T(x_1, x_2, ..., x_k), T(x_2, x_3, ..., x_{k+1}))$$

$$\leq \lambda \max\{d(fx_i, fx_{i+1})/1 \leq i \leq k\}$$

for every  $x_1, x_2, x_3, ..., x_k, x_{k+1}$  in X, where  $\lambda \in (0, 1)$ 

$$(2.2.2) d(T(u,u,...,u),T(v,v,...,v)) < d(fu,fv) \ \forall \ u,v \in X \ \ with \ u \neq v,$$

(2.2.3) Suppose that f(X) is complete and (f,T) is k-weakly compatible pair.

Then there exists a unique point  $p \in X$  such that fp = p = T(p, p, ..., p, p).

Remark: If f = I (Identity map) in Corollary (2.2), we get the main theorem of Ciric and Presic [2].

### 3 Conclusion

In this paper, we can obtain an iterative method for solution of simultaneous nonlinear difference equations f(x) = S(x, x, ..., x) = x and f(x) = T(x, x, ..., x) = x using Theorem 2.1. Also we obtain the main theorem of Ciric and Presic [2] as a corollary.

#### Acknowledgement

The authors are very much thankful to the referees for their valuable suggestions in preparing this manuscript.

### References

[1] Banach S. (1932) "Theoric les operations lineairar Manograic Mathematic Zne," Warsaw.

K.P.R. Rao et al. 279

[2] Ciric L.B., Presic S.B. (2007) "On Presic type generalization of the Banach Contraction mapping principle," Acta Math. Univ. Comenianae, Vol. LXXVI, 2, 143-147.

[3] Presic S.B. (1965) "Sur une classe d'inequations aux differences finite et. sur la convergence de certaines suites," Publ. de L'Inst. Math. Belgrade, 5(19), 75-78.

280 Mathematical Sciences Vol. 3, No. 3 (2009)

.