

Vol. 3, No. 3 (2009) 273-280

A Generalization of The Banach Contraction Principle of Presic Type For Three Maps

K.P.R. Rao¹, G.N.V. Kishore and Md. Mustaq Ali

Department of Applied Mathematics, Acharya Nagarjuna University-Dr.M.R.Appa Row Campus, Nuzvid-521201, A.P., India

Abstract

In this paper we obtain a Presic type unique common fixed point theorem for three maps and obtain the main theorem of Ciric and Presic as corollary.
Keywords: Weakly compatible pair,complete metric space,unique point.
(c) 2009 Published by Islamic Azad University-Karaj Branch.

1 Introduction

In 1932, Banach [1] proved the following theorem

Theorem 1.1 Let (X, d) be a complete metric space and $T : X \longrightarrow X$ be satisfying $d(Tx, Ty) \leq \alpha \ d(x, y)$ for all $x, y \in X$, where $0 \leq \alpha < 1$. Then T has a unique fixed point in X.

Consider the k-th order nonlinear difference equation

(A) $x_{n+k} = f(x_n, ..., x_{n+k-1}), n \in N$

with the initial values $x_0, x_1, ..., x_k \in X$, where (X, d) is a metric space, $k \in N, k \ge 1$ and $f: X^k \longrightarrow X$.

Equation (A) can be studied by means of a fixed point theory in view of the fact that $x^* \in X$ is a solution of (A) if and only if x^* is a fixed point of f, that is, $x^* = f(x^*, ..., x^*)$.

¹Corresponding Author. E-mail Address: kprrao2004@yahoo.com

274

One of the most important results on this direction has been obtained by S.B.Presic in [3] by generalizing the Banach contraction mapping principle.

Theorem 1.2 ([3]). Let (X, d) be a complete metric space, k a positive integer and $T: X^k \longrightarrow X$ a mapping satisfying the following contractive type condition

$$(1.2.1)d(T(x_1, x_2, \dots, x_k), T(x_2, x_3, \dots, x_{k+1}))$$

$$\leq q_1 d(x_1, x_2) + q_2 d(x_2, x_3) + \dots + q_k d(x_k, x_{k+1})$$

for every $x_1, x_2, x_3, ..., x_k, x_{k+1}$ in X, where $q_1, q_2, ..., q_k$ are non -negative constants such that $q_1 + q_2 + ... + q_k < 1$.

Then there exists a unique point x in X such that T(x, x, ..., x) = x.

Moreover, if $x_1, x_2, ..., x_k$ are arbitrary points in X and for $n \in N$,

 $x_{n+k} = T(x_n, x_{n+1}, ..., x_{n+k-1})$ then the sequence $\{x_n\}$ is convergent and $limx_n = T(limx_n, limx_n, ..., limx_n)$.

Ciric and Presic [2] generalized Theorem 1.2 as follows:

Theorem 1.3 Let (X, d) be a complete metric space, k a positive integer and T: $X^k \longrightarrow X$ a mapping satisfying the following contractive type condition

$$(1.3.1)d(T(x_1, x_2, ..., x_k), T(x_2, x_3, ..., x_{k+1}))$$

$$\leq \lambda \ max\{d(x_i, x_{i+1})/1 \leq i \leq k\}$$

for every $x_1, x_2, x_3, ..., x_k, x_{k+1}$ in X, where $\lambda \in (0, 1)$ is constant.

Then there exists a point x in X such that T(x, x, x, ..., x) = x.

Moreover, if $x_1, x_2, ..., x_k$ are arbitrary points in X and for $n \in N$,

 $x_{n+k} = T(x_n, x_{n+1}, ..., x_{n+k-1})$ then the sequence $\{x_n\}$ is convergent and $\lim x_n = T(\lim x_n, \lim x_n, ..., \lim x_n)$.

If in addition, we suppose that on diagonal $\Delta \subset X^k$,

(1.3.2)d(T(u, u, ..., u), T(v, v, ..., v)) < d(u, v) holds for all $u, v \in X$, with $u \neq v$,

then x is the unique point in X with T(x, x, x, ..., x) = x.

K.P.R. Rao et al.

Now in this paper we extend and generalize the above theorems for three maps .

Definition 1.4 Let X be a non empty set and $T: X^{2k} \longrightarrow X, f: X \longrightarrow X$. (f,T) is said to be 2k- weakly compatible pair, if f(T(p, p, ..., p)) = T(fp, fp, ..., fp) whenever $p \in X$ such that fp = T(p, p, ..., p).

2 Main Theorem

Theorem 2.1 Let (X, d) be a metric space, k a positive integer and $S, T : X^{2k} \longrightarrow X, f : X \longrightarrow X$ be mappings satisfying

$$(2.1.1)d(S(x_1, x_2, \dots, x_{2k-1}, x_{2k}), T(x_2, x_3, \dots, x_{2k}, x_{2k+1}))$$

$$\leq \lambda \ max\{d(fx_i, fx_{i+1})/1 \leq i \leq 2k\}$$

for all $x_1, x_2, x_3, ..., x_{2k}, x_{2k+1}$ in X,

$$(2.1.2)d(T(y_1, y_2, \dots, y_{2k-1}, y_{2k}), S(y_2, y_3, \dots, y_{2k}, y_{2k+1}))$$

$$\leq \lambda \ max\{d(fy_i, fy_{i+1})/1 \leq i \leq 2k\}$$

for all $y_1, y_2, y_3, ..., y_{2k}, y_{2k+1}$ in X, where $0 \le \lambda < 1$.

 $(2.1.3) \ d(S(u, u, ..., u), T(v, v, ..., v)) < d(fu, fv) \ \forall u, v \in X \ with \ u \neq v,$

(2.1.4) Suppose that f(X) is complete and either (f, S) or (f, T) is 2k-weakly compatible pair.

Then there exists a unique point $p \in X$ such that fp = p = S(p, p, ..., p) = T(p, p, ..., p).

Proof. Suppose $x_1, x_2, ..., x_{2k}$ are arbitrary points in X and for $n \in N$, define $fx_{2k+2n-1} = S(x_{2n-1}, x_{2n}, x_{2n+1}, ..., x_{2n+2k-2})$ and $fx_{2k+2n} = T(x_{2n}, x_{2n+1}, x_{2n+2}, ..., x_{2n+2k-1})$. Let $\alpha_n = d(fx_n, fx_{n+1})$. Let $\theta = \lambda^{1/2k}$ and $K = max\{\alpha_1/\theta^1, \alpha_2/\theta^2, ..., \alpha_{2k}/\theta^{2k}\}$. Claim: $\alpha_n \leq K\theta^n$ for all $n \in N$ (2.1.5)

Mathematical Sciences Vol. 3, No. 3 (2009)

By selection of K we have $\alpha_n \leq K\theta^n$ for n = 1, 2, ..., 2k.

$$Now \ \alpha_{2k+1} = d(fx_{2k+1}, fx_{2k+2}) \\ = d(S(x_1, x_2, ..., x_{2k-1}, x_{2k}), T(x_2, x_3, ..., x_{2k}, x_{2k+1})) \\ \le \lambda max\{d(fx_i, fx_{i+1}) : i = 1, 2, ..., 2k\} \ by(2.1.1) \\ = \lambda max\{\alpha_1, \alpha_2, ..., \alpha_{2k-1}, \alpha_{2k}\} \\ \le \lambda max\{K\theta^1, K\theta^2, ..., K\theta^{2k-1}, K\theta^{2k}\} \\ = \lambda K\theta = \theta^{2k} K\theta \ as \ \theta = \lambda^{1/2k} \\ = K\theta^{2k+1}$$

Thus $\alpha_{2k+1} \leq K\theta^{2k+1}$. Similarly

$$\begin{aligned} \alpha_{2k+2} &= d(fx_{2k+2}, fx_{2k+3}) \\ &= d(T(x_2, x_3, \dots, x_{2k}, x_{2k+1}), S(x_3, x_4, \dots, x_{2k+1}, x_{2k+2})) \\ &\leq \lambda max\{d(fx_i, fx_{i+1}) : i = 2, 3, \dots, 2k+1\} \ by(2.1.2) \\ &= \lambda max\{\alpha_i : i = 2, 3, \dots, 2k+1\} \\ &\leq \lambda max\{K\theta^2, K\theta^3, \dots, K\theta^{2k}, K\theta^{2k+1}\} \\ &= \lambda K\theta^2 = \theta^{2k}K\theta^2 \ as \ \theta = \lambda^{1/2k} \\ &= K\theta^{2k+2} \end{aligned}$$

Thus $\alpha_{2k+2} \leq K\theta^{2k+2}$.

Hence the claim is true .

Now, by claim, for any $n, p \in N$ we have

$$\begin{aligned} d(fx_n, fx_{n+p}) &\leq d(fx_n, fx_{n+1}) + d(fx_{n+1}, fx_{n+2}) + \dots + d(fx_{n+p-1}, fx_{n+p}) \\ &= \alpha_n + \alpha_{n+1} + \dots + \alpha_{n+p-1} \\ &\leq K\theta^n + K\theta^{n+1} + \dots + K\theta^{n+p-1} \\ &\leq K[\theta^n + \theta^{n+1} + \dots + \theta^{n+p-1} + \dots] \\ &= K\theta^n/1 - \theta \longrightarrow 0 \quad as \quad n \longrightarrow \infty \end{aligned}$$

K.P.R. Rao et al.

Hence $\{fx_n\}$ is a Cauchy sequence. Since f(X) is a complete, there exists z in f(X) such that $z = \lim fx_n$.

There exists $p \in X$ such that z = fp.

Then for any integer n, using (2.1.1) and (2.1.2), we have

$$\begin{split} &d(S(p, p, ..., p), fx_{2n+2k-1}) \\ &= d(S(p, p, ..., p), S(x_{2n-1}, x_{2n}, ..., x_{2n+2k-2})) \\ &\leq d(S(p, p, ..., p), T(p, p, ..., x_{2n-1})) + d(T(p, p, ..., x_{2n-1}), S(p, p, ..., p, x_{2n-1}, x_{2n})) \\ &+ d(S(p, p, ..., x_{2n-1}, x_{2n}), T(p, p, ..., p, x_{2n-1}, x_{2n}, x_{2n+1})) \\ &+ d(T(p, p, ..., p, x_{2n-1}, x_{2n}, x_{2n+1}), S(p, p, ..., p, x_{2n-1}, x_{2n}, x_{2n+1}, x_{2n+2})) \\ &+ ... + d(S(p, p, x_{2n-1}, x_{2n}, ..., x_{2n+2k-4}), T(p, x_{2n-1}, x_{2n}, ..., x_{2n+2k-3}, x_{2n+2k-3})) \\ &+ d(T(p, x_{2n-1}, x_{2n}, ..., x_{2n+2k-4}, x_{2n+2k-3}), S(x_{2n-1}, x_{2n}, ..., x_{2n+2k-3}, x_{2n+2k-2})) \\ &\leq \lambda d(fp, fx_{2n-1}) + \lambda max \{ d(fp, fx_{2n-1}), d(fx_{2n-1}, fx_{2n}) \} \\ &+ \lambda max \{ d(fp, fx_{2n-1}), d(fx_{2n-1}, fx_{2n}), d(fx_{2n}, fx_{2n+1}), d(fx_{2n+1}, fx_{2n+2}) \} \\ &+ ... \\ &+ \lambda max \{ d(fp, fx_{2n-1}), d(fx_{2n-1}, fx_{2n}), ..., d(fx_{2n+2k-3}, fx_{2n+2k-3}) \} \\ &+ \lambda max \{ d(fp, fx_{2n-1}), d(fx_{2n-1}, fx_{2n}), ..., d(fx_{2n+2k-3}, fx_{2n+2k-3}) \} \\ &+ \lambda max \{ d(fp, fx_{2n-1}), d(fx_{2n-1}, fx_{2n}), ..., d(fx_{2n+2k-3}, fx_{2n+2k-3}) \} \\ &+ \lambda max \{ d(fp, fx_{2n-1}), d(fx_{2n-1}, fx_{2n}), ..., d(fx_{2n+2k-3}, fx_{2n+2k-3}) \} \\ &+ \lambda max \{ d(fp, fx_{2n-1}), d(fx_{2n-1}, fx_{2n}), ..., d(fx_{2n+2k-3}, fx_{2n+2k-3}) \} \\ &+ \lambda max \{ d(fp, fx_{2n-1}), d(fx_{2n-1}, fx_{2n}), ..., d(fx_{2n+2k-3}, fx_{2n+2k-3}) \} \\ &+ \lambda max \{ d(fp, fx_{2n-1}), d(fx_{2n-1}, fx_{2n}), ..., d(fx_{2n+2k-3}, fx_{2n+2k-2}) \} \\ \end{array}$$

$$\begin{split} S(p,p,...,p) &= fp & (i).\\ \text{Consider } d(fp,T(p,p,...,p)) &= d(S(p,p,...,p),T(p,p,...,p)) \leq \lambda(0) = 0\\ \text{Thus } T(p,p,...,p) &= fp & (ii). \end{split}$$

Now suppose that (f, S) is 2k-weakly compatible pair. Then we have f(S(p, p, ..., p)) = S(fp, fp, ..., fp). $f^2p = f(fp) = f(S(p, p, ..., p)) = S(fp, fp, ..., fp)$. Suppose $fp \neq p$. Then from (2.1.3) ,we have $d(f^2p, fp) = d(S(fp, fp, ..., fp), T(p, p, ..., p)) < d(f^2p, fp)$. It is a contradiction. Therefore fp = p. Now from (i) and (ii), we have fp = p = S(p, p, ..., p) = T(p, p, ..., p). Uniqueness of p: Suppose there exists a point $q \neq p$ in X such that 278

Mathematical Sciences Vol. 3, No. 3 (2009)

$$fq = q = S(q, q, q, ..., q) = T(q, q, q, ..., q).$$

Consider $d(fp, fq) = d(S(p, p, ..., p), d(T(q, q, ..., q)) < d(fp, fq)$ from (2.1.3)
It is a contradiction. Therefore $q = p$.

When S = T and 2k is replaced by k in Theorem 2.1, we get the following .

Corollary 2.2 Let (X,d) be a metric space, k a positive integer and $T: X^k \longrightarrow X, f: X \longrightarrow X$ be mappings satisfying

$$(2.2.1)d(T(x_1, x_2, ..., x_k), T(x_2, x_3, ..., x_{k+1}))$$

$$\leq \lambda \ max\{d(fx_i, fx_{i+1})/1 \leq i \leq k\}$$

for every $x_1, x_2, x_3, ..., x_k, x_{k+1}$ in X, where $\lambda \in (0, 1)$

 $(2.2.2)d(T(u, u, ..., u), T(v, v, ..., v)) < d(fu, fv) \; \forall \; u, v \in X \; \textit{ with } u \neq v,$

(2.2.3) Suppose that f(X) is complete and (f,T) is k-weakly compatible pair.

Then there exists a unique point $p \in X$ such that fp = p = T(p, p, ..., p, p).

Remark : If f = I (Identity map) in Corollary (2.2), we get the main theorem of Ciric and Presic [2].

3 Conclusion

In this paper, we can obtain an iterative method for solution of simultaneous nonlinear difference equations f(x) = S(x, x, ..., x) = x and f(x) = T(x, x, ..., x) = x using Theorem 2.1. Also we obtain the main theorem of Ciric and Presic [2] as a corollary.

Acknowledgement

The authors are very much thankful to the referees for their valuable suggestions in preparing this manuscript.

References

 Banach S. (1932) "Theoric les operations lineairar Manograic Mathematic Zne," Warsaw. K.P.R. Rao et al.

- [2] Ciric L.B., Presic S.B. (2007) "On Presic type generalization of the Banach Contraction mapping principle," Acta Math. Univ. Comenianae, Vol. LXXVI, 2, 143-147.
- [3] Presic S.B. (1965) "Sur une classe d'inequations aux differences finite et. sur la convergence de certaines suites," Publ. de L'Inst. Math. Belgrade, 5(19), 75-78.

Archive of SID

280

Mathematical Sciences Vol. 3, No. 3 (2009)

•