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Abstract

Let X be a hemicompact k-space and A be a uniform Fréchet algebra on X. In

this note we first show that if each element of a dense subset of A has square root

in A then A = C(X) under certain condition. Then we show that G(C(X)), the

group of invertible elements of C(X), is dense in C(X) if and only if dim X, the

covering dimension of X, does not exceed 1. Using this result we give a necessary

and sufficient condition under which each continuous function on X is the square

of another.
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1 Introduction

Let X be a compact Hausdorff space. By a uniform (Banach) algebra on X we mean

a complete subalgebra of C(X) which contains the constants and separates the points

of X, where C(X) is endowed with the supremum norm. In 1966 Čirka [6, Theorem

13.15] proved the following theorem.
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Theorem 1.1. Let X be a locally connected, compact Hausdorff space, and let A be

a uniform algebra on X. If the condition (∗) below holds for A then A = C(X).

for each f ∈ A, there exists g ∈ A with g2 = f. (∗)

In fact, it is possible to weaken slightly the hypothesis of the theorem: The theorem

is still true if we assume only that for a dense subset of f ’s in A, f = g2, for some

g ∈ A. This is the content of the next lemma which is again due to Čirka.

Lemma 1.2. [6, Lemma 13.16] Let X be a locally connected compact Hausdorff

space, and let F and G be subsets of C(X). If every f ∈ F is of the form f = g2 for

some g ∈ G, then every f ∈ F is of the form f = g2 for some g ∈ G.

For a locally connected, compact, Hausdorff space, O. Hatori and T. Miura gave a

complete characterization of condition (∗) for C(X):

Theorem 1.3. [3, Theorem 2.2] Let X be a locally connected compact Hausdorff

space. Then the following are equivalent.

(∗) For every f ∈ C(X) there exists a g ∈ C(X) such that f = g2.

(∗∗) The first Čech cohomology group of X with integer coefficients Ȟ1(X, Z) is trivial

and dimX ≤ 1.

In this work we first extend some results of Čirka to uniform Fréchet algebras and

then we characterize those algebras of continuous functions on a hemicompact k-space

X, which have a dense subset of invertible groups. Using this result we give a necessary

and sufficient condition under which each element of C(X) has square root.

We now present some definitions and known results. For further details one can

refer, for example, to [1] or [2]

Definition 1.4. A Hausdorff space X is hemicompact if there exists a sequence (Kn)

of compact subsets of X such that Kn ⊆ Kn+1 for all n ∈ N, and each compact subset
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K of X is contained in some Kn. We call such sequence (Kn) an admissible exhaustion

of X. A Hausdorff space is called a k-space if every subset intersecting each compact

subset in a closed set is itself closed.

Note that a complex-valued function f on a k-space X is continuous if and only if

it is continuous on each compact subset of X.

Definition 1.5. A Fréchet algebra A is an LMC-algebra (locally multiplicatively

convex algebra) which is also a complete metrizable space, so that the topology of a

Fréchet algebra A can be defined by an increasing sequence (pn) of submultiplicative

seminorms. Without loss of generality, we may assume that for each n ∈ N, pn(1) = 1,

if A has unit. A uniform Fréchet algebra (uF-algebra) is a Fréchet algebra A with a

defining sequence (pn) of seminorms such that pn(f2) = (pn(f))2 for all f ∈ A and

n ∈ N [2].

Theorem 1.6. [2, Theorem 4.1.3]

The following statements are equivalent for a unital commutative algebra A:

i) A is a uF-algebra.

ii) A is the projective limit of a dense projective sequence of uniform (Banach) alge-

bras.

iii) There is a hemicompact space X such that A is topologically and algebraically

isomorphic to a point separating and complete subalgebra of C(X) (endowed with

the compact - open topology) which contains the constants.

By the above theorem we can consider each uF-algebra A, as a point separating

and complete subalgebra of C(X) (endowed with the compact - open topology) which

contains the constants, where X is a hemicompact space. Also, if (Xn) is an admissible

exhaustion of X, it is known that A is the projective limit of the dense projective system

{AXn ; rn} of uniform Banach algebras where, for each n ∈ N, AXn is the completion of
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the algebra A|Xn with respect to the norm ‖.‖Xn , and rn : AXn+1 −→ AXn , f 7→ f |Xn

is the restriction mapping. Also it is known that when X is a hemicompact k-space,

C(X) is a Fréchet algebra with respect to the compact - open topology and if (Xn) is

an admissible exhaustion of X then we have C(X) = lim←−C(Xn).

For a topological space X, let exp(C(X)) contain those elements of G(C(X)) which

are of exponential type.

Theorem 1.7. [4, Theorem 2.3] Let X be a hemicompact, k-space with an admis-

sible exhaustion (Xn) such that each Xn has finitely many components. If f ∈ C(X)

and f |Xn ∈ exp(C(Xn)), for all n ∈ N, then f ∈ exp(C(X)).

Let X be a topological space, and let S1 be the unit circle in the plane. The

homotopy classes of maps X −→ S1, which is denoted by π1(X), is called the first

cohomotopy group of X.

Theorem 1.8. [4, Theorem 3.1] Let X be a hemicompact, k-space with an admis-

sible exhaustion (Xn) such that each Xn has finitely many components. Then π1(X) is

isomorphic with H1(C(X)) = G(C(X))/ exp(C(X)).

Definition 1.9. An open covering of a topological space X is a family Σ = {Aλ}λ∈Λ

of open subsets of X such that
⋃

λ∈Λ Aλ = X. An open covering {Bγ}γ∈Γ is said to be

an open refinement of a covering {Aλ}λ∈Λ if for each γ ∈ Γ there exists some λ ∈ Λ

such that Bγ ⊆ Aλ.

Definition 1.10. The covering dimension dim X of a topological space X is the least

integer n such that every finite open covering of X has an open refinement of order not

exceeding n or ∞, if there is no such integer.

The following theorem is a useful criterion for characterizing the covering dimension

of normal spaces.

Theorem 1.11. [5, Theorem 3.2.2] If X is a normal space, then dim X ≤ n if and
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only if for each closed subset A of X, each continuous function f : A −→ Sn has an

extension g : X −→ Sn, where Sn is the n-sphere.

2 Main Results

Theorem 2.1. Let X be a hemicompact k-space with an admissible exhaustion (Xn)

such that for each n ∈ N, Xn is locally connected. If A is a uF-algebra on X such that

A2 = A or in other words, if for each f ∈ A, there is g ∈ A with f = g2, then

A = C(X).

Proof. Let n ∈ N. By hypothesis for each f ∈ A|Xn there exists g ∈ A|Xn such that

f = g2, so by [6, Lemma 13.16], for each f ∈ AXn there is g ∈ AXn such that f = g2.

Now [6, Theorem 13.15], shows that AXn = C(Xn) and so we have

A = lim←−AXn = lim←−C(Xn) = C(X).

Now we show that the above theorem is still valid if we assume only that for a dense

subset of f ’s in A, f = g2 for some g ∈ A.

Theorem 2.2. Let X be a hemicompact k-space with an admissible exhaustion (Xn),

such that for each n ∈ N, Xn is locally connected. Let F and E be subsets of C(X). If

for each f ∈ F there is φ ∈ E with f = φ2, then for each f ∈ F there is φ ∈ E such

that f = φ2.

Proof. Let f ∈ F . There exists a sequence {fk} in F such that fk −→ f as k −→ ∞.

By the hypothesis, there is a sequence {gk} in E such that fk = g2
k for each k ∈ N. We

will construct the subsequence {gkn} of {gk} and a sequence {φn} in C(Xn), by the

following argument.

Since g2
k −→ f in C(X), we have ‖g2

k − f‖X1 −→ 0, whenever k −→ ∞. In a way

similar to the proof of [6, Theorem 13.15], we can show that there is a subsequence
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{g(1)
k } of {gk} which is uniformly Cauchy on X1 and hence converges to a function

φ1 ∈ C(X1). By the compactness of X1, (g(1)
k )2 −→ φ2

1 on X1, whenever k −→ ∞.

Hence, φ2
1 = f on X1. Let gk1 ∈ {g

(1)
k : k ∈ N} be such that ‖gk1 − φ1‖X1 < 1. Since

(g(1)
k )2 −→ f on X, we have ‖(g(1)

k )2 − f‖X2 −→ 0, whenever k −→ ∞. As before we

can find a subsequence {g(2)
k } of {g(1)

k } and a function φ2 ∈ C(X2) such that g
(2)
k −→ φ2

on X2 and so (g(2)
k )2 −→ φ2

2 on X2. Since (g(2)
k )2 −→ f on X2, it follows that φ2

2 = f

on X2. On the other hand, X1 ⊆ X2, so g
(2)
k −→ φ2 on X1 which implies φ1 = φ2 on

X1. Let gk2 ∈ {g
(2)
k } be such that ‖gk2 − φ2‖X2 < 1

2 . Continuing in this way, we can

find a subsequence {gkn} of {gk} and a function φn ∈ C(Xn) satisfying the following

conditions:

i) ‖gkn − φn‖Xn < 1
n .

ii) φ2
n = f on Xn .

iii) φn+1 = φn on Xn .

Now we define the function φ on X by φ = φn on each Xn. By (iii) φ is well-defined

and since X is a k-space, φ is continuous. Also by (ii) φ2 = f on X. To prove that

φ ∈ E it is enough to show that {gkn} tends to φ. Let ε > 0 and s ∈ N. Choose N ∈ N

such that 1
N < ε and N ≥ s. For each n ≥ N we have

‖gkn − φ‖Xs ≤ ‖gkn − φ‖Xn = ‖gkn − φn‖Xn <
1
n
≤ 1

N
< ε

i.e., gkn −→ φ on Xs. Since s ∈ N was arbitrary, we have gkn −→ φ on X, which

completes the proof.

Corollary 2.3. Let X be a hemicompact k-space with an admissible exhaustion (Xn)

such that for each n ∈ N, Xn is locally connected. If each element of a dense subset of

C(X) has square root in C(X) then every element of C(X) has this property.
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Corollary 2.4. Let X be a hemicompact k-space with an admissible exhaustion (Xn)

such that for each n ∈ N, Xn is locally connected, and let the equalities

G(C(X)) = exp(C(X)) , G(C(X)) = C(X)

hold. Then for each f ∈ C(X) there exists g ∈ C(X) such that f = g2.

Proof. By the hypothesis, for each f ∈ G(C(X)) there is h ∈ C(X) such that f = exph.

If we set g = exp h
2 then f = g2. Now by Corollary 2.3, the conclusion holds.

In [3], authors proved that if X is a locally connected, compact Hausdorff space

such that the condition (∗) holds for C(X) then G(C(X)) = exp C(X) [3, Lemma 2.3].

Using this Lemma we get a similar result for hemicompact k-spaces.

Lemma 2.5. Let X be a hemicompact k-space with an admissible exhaustion (Xn)

such that for each n ∈ N, Xn is locally connected. Suppose for each f ∈ C(X), there is

g ∈ C(X) such that f = g2. Then G(C(X)) = exp C(X).

Proof. We first notice that since X is normal ( [2, Remark 3.1.10]), each element of

C(Xn) has a continuous extension on X. By the hypothesis, for every n ∈ N, Xn is

locally connected so G(C(Xn)) = exp C(Xn) by [3, Lemma 2.3]. Now if f ∈ G(C(X))

then f |Xn ∈ expC(Xn), for each n ∈ N, since Xn has finitely many component, the

conclusion holds by [4, Teorem 2.3].

In the next theorem we make use of the Countable Sum Theorem which asserts that

if X is a normal space and X =
⋃

i∈N Yi, where each Yi is closed in X and dim Yi ≤ n,

then dim X ≤ n [5, Theorem 3.2.5].

Theorem 2.6. Let X be a hemicompact k-space. Then G(C(X)) = C(X) if and

only if dim X ≤ 1.

Proof. Assume that G(C(X)) = C(X). Let n ∈ N and f ∈ C(Xn). Since X is

normal, f has a continuous extension f̃ on X. By the hypothesis for each ε > 0 there
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exists g̃ ∈ G(C(X)) such that ‖g̃ − f̃‖Xn < ε. If g = g̃|Xn , then g ∈ G(C(Xn)) and

‖g− f‖Xn < ε, i.e., G(C(Xn)) = C(Xn) for each n ∈ N. This implies that dim Xn ≤ 1.

Now using the Countable Sum Theorem we have dim X ≤ 1.

Conversely, suppose that dim X ≤ 1 and f ∈ C(X) is non-zero. We will find a

sequence {fn} in G(C(X)) such that fn −→ f as n −→∞.

Let Kn = {x ∈ X : |f(x)| ≤ 1
n} and En = Kc

n ∩Xn. Note that since f 6= 0, there

exists s ∈ N such that En 6= ∅ for all n ≥ s. Let n ≥ 2. We will construct a function

vn ∈ C(X) such that vn|En = |f |, vn(X) ⊆ [ 1
n , ‖f‖Xn + 1

n ] and 1
n ≤ vn ≤ 2

n−1 on Kn.

The procedure is as follows:

Since X is normal by Tietze’s extension theorem there is v ∈ C(X) such that

v|En = |f | and v(X) ⊆ [ 1
n , ‖f‖Xn ]. Set A = {x ∈ Kn : v(x) ≥ 1

n−1}, and B = {x ∈

Kn : v(x) ≤ 1
2( 1

n−1 + 1
n)}. Clearly A ∩ (B ∪ En) = ∅. Also A and B ∪ En are closed

subsets of X, hence Urysohn’s lemma provides a function g ∈ C(X) such that g = 0

on A , g = 1 on B ∪ En and 0 ≤ g ≤ 1 elsewhere. So the function gv ∈ C(X) has the

following properties:

i) gv = 0 on A.

ii) gv = |f | on En.

iii) 1
n ≤ gv ≤ 1

2( 1
n + 1

n−1) on B.

iv) 0 ≤ gv ≤ 1
n−1 on C = {x ∈ Kn : 1

2( 1
n + 1

n−1) ≤ v(x) ≤ 1
n−1}.

On the other hand, A∪C is closed and (D∪C)∩En = ∅, where D = {x ∈ X : g(x) = 0}.

By applying Urysohn’s lemma once more, we obtain a function h ∈ C(X) such that

h = 0 on En, h = 1
n on D ∪C and 0 ≤ h ≤ 1

n elsewhere. Let vn = gv + h. It is easy to

see that vn has the desired properties.

Now since dim X ≤ 1 by Theorem 1.11, there is a function wn ∈ C(X) such that

wn|En = f |En
|f |En |

and wn(X) ⊆ S1, where S1 is the unit circle in the plane. Set fn = vnwn.

Obviously fn ∈ G(C(X)). It remains to show that fn −→ f as n −→ ∞. Let r ∈ N
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and ε > 0. Take N ∈ N such that 3
N−1 < ε and N ≥ r. Let n ≥ N . For each x ∈ Xr,

if |f(x)| ≤ 1
n then

|f(x)− fn(x)| ≤ |f(x)|+ |vn(x)wn(x)| ≤ 1
n

+
2

n− 1
≤ 3

N − 1
< ε.

And if |f(x)| ≥ 1
n then |f(x) − fn(x)| = 0, i.e., ‖f − fn‖Xr < ε for all n ≥ N . This

completes the proof of the theorem.

Theorem 2.7. Let X be a hemicompact k-space and (Xn) be an admissible ex-

haustion of X such that for each n ∈ N, Xn is locally connected. Then the following

conditions are equivalent:

i) For each f ∈ C(X) there is g ∈ C(X) such that f = g2.

ii) π1(X) is trivial and dim X ≤ 1.

Proof. Let (i) hold. By Lemma 2.5, we have G(C(X)) = expC(X), so by [4, Teorem

3.1], π1(X) is trivial. On the other hand, since X is normal, (i) shows that for each

n ∈ N and f ∈ C(Xn), there is g ∈ C(Xn) such that f = g2. So [3, Teorem 2.2], shows

that dim Xn ≤ 1. Hence by the Countable Sum Theorem we have dim X ≤ 1.

Now let (ii) hold. Since π1(X) is trivial we have G(C(X)) = exp(C(X)) and

since dim X ≤ 1 by Theorem 2.6, we have G(C(X)) = C(X). Hence (i) follows from

Corollary 2.4.
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