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Abstract

In this paper, the properties of the hybrid functions which consist of block-pulse

functions plus Legendre polynomials are presented. Then, integral equations are

converted into an algebraic system by hybrid of general block-pulse functions and

the Legendre polynomials. In continue, approximate solutions of integral equa-

tions are derived, finally the numerical examples are included to demonstrate the

validity and applicability of the algorithm.
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1 Introduction

Integral equations are a class of important models in applied science, since it is diffi-

cult to obtain the analytic solutions of these equations, numerical methods to obtain

approximate solutions are of interest. Piecewise constant basis functions [1] were intro-

duced by Alfred Haar in 1910. Orthogonal functions or polynomials, such as block-pulse

functions(BPF) [2,3], Walsh functions [4], Fourier series [5], Legendre polynomials [6],
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Chebyshev polynomials [7] and Laguerre polynomials [8], were used to derive solutions

of some integral equations. Among all these functions, the BPF set proved to be the

most fundamental [9] and it enjoyed immense popularity in different applications in

the area of numerical analysis. In recent years the different kinds of hybrid functions

[10-14] were applied to solve this problem. In this paper the hybrid functions consisting

of general block-pulse functions and Legendre polynomials are used to solve integral

equations. The general operational matrices are presented and numerical solutions are

derived by hybrid functions.

2 Preliminaries

A set of block-pulse function bk(t), k = 1, 2, ...,K on the interval [0, T ) are defined as

bk(t) =

 1, tk−1 ≤ t < tk,

0, otherwise,

where t0 = 0, tK = T and [tk−1, tk) ⊂ [0, T ), k = 1, 2, ...,K.

The Legendre polynomials Lm(t) on the interval [−1, 1] are given by the following

recursive formula L0(t) = 1, L1(t) = t,

(m + 1)Lm+1(t) = (2m + 1)tLm(t)−mLm−1(t), m = 1, 2, 3, ....

The hybrid functions hkm(t), k = 1, 2, ...,K,m = 0, 1, ...,M − 1; on the interval [0,T)

are defined as

hkm(t) = bk(t)Lm(d−1
k (2t− tk−1 − tk)).

So

hkm(t) =

 Lm(d−1
k (2t− tk−1 − tk)), tk−1 ≤ t < tk,

0, otherwise,

where dk = tk − tk−1, k = 1, 2, ...,K. Let

Hk(t) = [hk0(t), · · · , hk,M−1(t)]τ , H(t) = [Hτ
1 (t), · · · ,Hτ

K(t)]τ .
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is the transpose.We have the operational properties of hybrid functions

∫ t

0
H(s)ds = PH(t),

∫ τ

t
H(s)ds = P̄H(t),

where

P = diag(d1, · · · , dK)⊗ 1
2

[
E

(M)
11 +

M−1∑
k=1

(
1

2k − 1
E

(M)
k,k+1 −

1
2k + 1

E
(M)
k+1,k)

]

+
K−1∑
k=1

K−k∑
i=1

diE
(K)
i,i+k ⊗ E

(M)
11 ,

P̄ = d1

K∑
i=1

K∑
j=1

E
(K)
ij ⊗ E

(M)
11 − P,

E
(m)
ij is the m×m matrix with 1 at its entry (i, j) and zeros elsewhere and ⊗ denotes

Kronecker product.

3 Function Approximation

An l−dimensional vector function f(t) on the interval [0, T ) is expressed as

f(t)'
K∑

k=1

M−1∑
m=0

fkmhkm(t), (1)

where

fkm =
2m + 1

dk

∫ tk

tk−1

f(t)Lm(d−1
k (2t− tk−1 − tk))dt.

Rewrite f(t) as

f(t)'
K∑

k=1

FkHk(t) = FH(t),

where
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Fk = [fk0, · · · , fk,M−1], F = [F1, · · · , FK ],

for corresponding Fkand F we denote

F̂k = [f̂ τ
k0, · · · , f̂ τ

k,M−1]
τ , F̂ = [F̂ τ

1 , · · · , F̂ τ
K ]τ .

Let a matrix function M(t) be appropriate to a vector functionf(t). We express M(t)

and f(t), respectively, as

M(t)'
K∑

k=1

M−1∑
m=0

Mkmhkm(t), f(t)'
K∑

k=1

M−1∑
m=0

fkmhkm(t),

then

M(t)f(t)'
K∑

k=1

M−1∑
i=0

M−1∑
j=0

Mkifkjhki(t)hkj(t).

From

hki(t)hkj(t)'
M−1∑
m=0

d
(ij)
km hkm(t),

where

d
(ij)
km =

2
π

∫ 1

−1
Si(t)Sj(t)Sm(t)(1− t2)

1
2 dt,

we have

M(t)f(t)'
K∑

k=1

M−1∑
m=0

M−1∑
i=0

M−1∑
j=0

d
(ij)
km Mkifkj

hkm(t) =
K∑

k=1

M−1∑
m=0

M̃kmhkm(t) =
K∑

k=1

M̃kHk(t),

(2)

where

M̃km =
M−1∑
i=0

M−1∑
j=0

d
(ij)
km Mkifkj = M̂kmF̂k, F̂k = [fτ

k0, . . . , f
τ
k,M−1]

τ , ˆ̃Mk = M̂k F̂k,
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ˆ̃Mk = [M̃τ
k0, . . . , M̃

τ
k,M−1]

τ , M̂k = [ M̂τ
k0, . . . , M̂τ

k,M−1]
τ ,

M̂km =

[
M−1∑
i=0

d
(i0)
km Mki, . . . ,

M−1∑
i=0

d
(i,M−1)
km Mki

]
.

Therefore

N(s, t)f(t) '
K∑

k=1

M−1∑
m=0

Ñkm(s)hkm(t), (3)

where

Ñkm(s) = N̂km(s)F̂k, F̂k = [fτ
k0, . . . , f

τ
k,M−1]

τ ,

N̂km(s) =

[
M−1∑
i=0

d
(i0)
km Nki(s), . . . ,

M−1∑
i=0

d
(i,M−1)
km Nki(s)

]
,

Nki(s) =
2
π

∫ 1

−1

N(s, 2−1(dkt + tk−1 + tk))Si(t) (1− t2)
1
2 dt.

Let

w(t) =
∫ tf

t0
N(t, s)f(s)ds '

∑K
k=1

∑M−1
m=0 wkmhkm(t),

N̂km(t) '
∑K

j=1

∑M−1
l=0 N̂

(jl)
km hjl(t),

(4)

where

N̂
(jl)
km =

[
M−1∑
i=0

d
(i0)
km M

(jl)
ki , . . . ,

M−1∑
i=0

d
(i,M−1)
km M

(jl)
ki

]
,

N
(jl)
ki (s) =

2
π

∫ 1

−1

Nki(2−1(djt + tj−1 + tj))Sl(t) (1− t2)
1
2 dt.

By Eq. (3) we have

w(t) '
K∑

j=1

M−1∑
l=0

K∑
k=1

M−1∑
m=0

N̂
(jl)
km

(∫ tk

tk−1

hkm(t)dt

)
F̂khjl(t).

So
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Ŵ =
[
M+1

2 ]∑
k=1

K∑
i=1

K∑
j=1

E
(K)
ij ⊗ dj

2k − 1
N

(i)
j,2k−1F̂ , (5)

where

N
(i)
j,2k−1 =

[
N

(i0)τ

j,2k−1 , . . . , N
(i,M−1)τ

j,2k−1

]τ
.

4 Analysis of Systems of Integral Equations

Consider the following integral equations system described by:

x(t) +
∫ tk

t0

K(t, s)x(s)ds + u(t) = 0 , t ∈ [t0, tk], (6)

where x(t)and u(t) are known and unknown n-dimensional vector function.

By using Eqs. (1) –(4) we approximate the quantities x(t),
∫ tk

t0
K(t, s)x(s)ds and u(t)with:

x(t) '
K∑

k=1

M−1∑
m=0

Ãkmhkm(t), u(t) '
K∑

k=1

M−1∑
m=0

B̃kmhkm(t),

inttk
t0 K(t, s)x(s)ds '

K∑
k=1

M−1∑
m=0

wkmhkm(t).

Integrating Eq. (6) from t0to t and combining Eqs. (2),(3) and (5) we obtain

[X1, . . . , XK ]H(t)−[X01, . . . , X0K ]H(t) =
∫ t

t0

{[Ã1, . . . , ÃK ]+[W1, . . . , WK ]+[B̃1, . . . , B̃K ]}H(s)ds,

where

Xk = [xk0, . . . , xk,M−1], X0k = [x0, 0, . . . , 0], k = 1, 2, . . . K.

Thus

[X1, . . . , XK ]− [X01, . . . , X0K ] = {[Ã1, . . . , ÃK ] + [W1, . . . , WK ] + [B̃1, . . . , B̃K ]}P.

Using Kronecker product we rewrite the above equation as
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X̂ − X̂0 = (P τ ⊗ In) {[ ˆ̃Aτ
1 , . . . , ˆ̃Aτ

K ]τ + [Ŵ τ
1 , . . . , Ŵ τ

K ]τ + [ ˆ̃Bτ
1 , . . . , ˆ̃Bτ

K ]τ},

where

X̂ = [X̂τ
1 , . . . , X̂τ

K ]τ , X̂k = [xτ
k0, . . . , x

τ
k,M−1]

τ , ˆ̃Ak = [Ãτ
k0, . . . , Ãτ

k,M−1]
τ ,

X̂0 = [X̂τ
01, . . . , X̂

τ
0K ]τ , X̂0k = [xτ

0 , 0τ , . . . , 0τ ]τ , k = 1, 2, . . . ,K.

ŴKand ˆ̃BKhave the similar meaning as ˆ̃AK . So

lX̂ − X̂0 = (P τ ⊗ In) {[(Â1X̂1)τ , . . . , (ÂKX̂K)τ ]τ + Ŵ + [(B̂1Û1)τ , . . . , (B̂KÛK)τ ]τ}

= (P τ⊗In)

 K∑
k=1

(E(K)
kk ⊗ Âk)X̂ +

[
M+1

2 ]∑
k=1

K∑
i=1

K∑
j=1

E
(K)
ij ⊗ dj

2k − 1
N

(i)
j,2k−1X̂ +

K∑
k=1

(E(K)
kk ⊗ B̂k)Û

 .

Therefore

X̂ = ΓÛ + Ω, (7)

where

Γ = [IMKn − (P τ ⊗ In)φ]−1 (P τ ⊗ In)
K∑

k=1

(E(K)
kk ⊗ B̂k),

φ =
K∑

k=1

(E(K)
kk ⊗ Âk) +

[
M+1

2 ]∑
k=1

K∑
i=1

K∑
j=1

E
(K)
ij ⊗ dj

2k − 1
N

(i)
j,2k−1,

Ω = [IMKn − (P τ ⊗ In)φ]−1 X̂0.

5 Numerical Examples

In this section we want to use this method to solve integral equations.

Example 1. In this example we solve equation

x(t) =
∫ π

2

0

k(t, s)f(s)ds + u(t)
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where

k(t, s) = t sin(s + t)− s cos(s− t)

g(t) = sin(t) +
1
16

(−2π(2t− 1) cos(t) + (4 + π2 − 8t) sin(t))

and the exact solution is x(s) = sin(s).

By using Eq. (7) and choosing M = 3,K = 2 and M = 4,K = 3 we have the numerical results

that shown in Table 1.

t Values 0 π
6

π
4

π
3

π
2

E(M=3,K=2) 3.11× 10−11 6.41× 10−9 2.41× 10−9 5.81× 10−10 1.53× 10−8

E(M=4,K=3) 0 4.27× 10−11 8.82× 10−10 1.36× 10−10 9.11× 10−10

Table 1: Numerical results for Example 1

Example 2.Consider the following system of Fredholm integral equation

 u1(t) =
∫ 1

−1
sin(t2 + s)x1(s)ds−

∫ 1

−1
3set2s2

x2(s)ds,

u2(t) = −
∫ 1

−1
3 cos(ts)x1(s)ds +

∫ 1

−1
ste3ts2

x2(s)ds,

where 
u1(t) = − 3et2−1(−e+et4 )

2(1+t2) − sin(t2+3t)+sin(t2−3)
6 + (sin(t−t2)+sin(t2+1))

2 ,

u2(t) = e3t3+t2−e3t+1

2(e+3et) + −6 cos 2t cos t2+3t sin 2 sin t+6 cos t(cos 2−t sin t sin t2)
t2−4 ,

and the exact solutions are x1(s) = sin 2s and x2(s) = es2−1. Numerical results for hybrid

solutions of this equation with M = 4,K = 3 and M = 5,K = 3 are shown in Table 2.

Conclusion

Using the excellent properties of operational matrices of the hybrid function of general block-

pulse functions and the Legendre polynomials, the general algorithms for system of integral

equations are derived. This paper’s method has some advantages, method is easy to apply for

first and second kind system of integral equations, also we need less computations than other

methods. In some methods kernels of system must be satisfied in some conditions such as being
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Ex1 Ex2

x M = 4,K = 3 M = 5,K = 3 M = 4,K = 3 M = 5,K = 3

-1 3.2154× 10−6 2.0180× 10−8 8.1426× 10−4 1.0021× 10−6

-0.75 1.5841× 10−8 5.6211× 10−10 3.1102× 10−6 5.2984× 10−7

-0.5 1.9427× 10−8 8.1247× 10−9 6.3523× 10−8 7.9416× 10−8

-0.25 5.3974× 10−7 2.1144× 10−9 1.2488× 10−8 6.3529× 10−10

0 2.3819× 10−8 3.6284× 10−11 7.1515× 10−6 1.3025× 10−9

0.25 5.1982× 10−7 1.1544× 10−11 1.2343× 10−7 8.2474× 10−10

0.5 1.2014× 10−6 4.2931× 10−9 5.2110× 10−8 4.1444× 10−9

0.75 7.3618× 10−6 3.3213× 10−9 6.1024× 10−7 4.1625× 10−9

1 5.7211× 10−5 2.8417× 10−7 7.1111× 10−5 3.8171× 10−7

Table 2: Numerical results for Example 2

separable but the method of this paper do not have such conditions. The illustrative examples

demonstrate that this technique is convenient for application.
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