



More on the regularity property

L. Pourfaraj^{*a*,1}, M. Azadi^{*b*}

^aIslamic Azad University, Center Tehran Branch, Tehran, IRAN.

^bDepartment of Mathematics, Islamic Azad University, Centeral Tehran Branch, Tehran, IRAN.

Abstract

In this paper, we giving certain properties of the commuting regular semigroups, we get significant results on semigroups. Our investigation involve certain interesting class of commuting regular semigroups.

Keywords: commuting regular semigroups, semigroups, regular semigroups.

© 2010 Published by Islamic Azad University-Karaj Branch.

1 Introduction

We use S to denote a semigroup. An element a of a semigroup S is called regular if there exists x in S such that axa = a. The semigroup S is called regular if all its elements are regular. For elements a and b of a semigroup S, b is called the inverse of a if and only if both of the relations aba = a and bab = b holds. The set of inverses of an element $a \in S$, denote by V(a). An element s of semigroup S is called cancellable if for every r and t, sr = st implies r = t. The semigroup S is called cancellative, if all elements of S are cancellable. A semigroup S is called a rectangular band if aba = afor all a, b in S, (see [7]).

A semigroup S is called commuting regular (see [4, 5, 11]) if and only if for each $x, y \in S$ there exists an element z of S such that xy = yxzyx. Also, a two-sided (left,

¹Corresponding Author. E-mail Address: L.pourfaraj@iauctb.ac.ir

124

right) ideal I of a semigroup is said to be commuting regular two-sided (left, right) ideal if for every $a, b \in I$ there exists an element $c \in I$ such that ab = bacba.

Following [8], we note that a semigroup S with 0, is called a quasi -reflexive semigroup with 0 if and only if for all left (right or two sided) ideals A and B of S, AB = 0yields BA = 0.

It is known [4] that every commuting regular semigroup with 0 is quasi-reflexive, but not vice-versa and a direct product of a family $\{S_i \mid i \in I\}$ of semigroups with 0 is commuting regular if and only if each S_i is commuting regular.

Proposition 1.1 ([10]) An idempotent $e \neq 0$ of a semigroup S with zero element 0 is primitive if and only if e is the only non-zero idempotent of subsemigroup eSe.

Proposition 1.2 ([4]) Let S be a commuting semigroup with 0 and $e \neq 0$ is an idempotent element of S. Then the following statements are equivalent:

- (1) Se is a 0-minimal left ideal of S,
- (2) eSe is a division subgroup with 0 of S,
- (3) eSe is a 0-minimal commuting regular quasi-ideal of S.

We recall the following definitions from [7] and [8]:

Definition 1.3 If a is an element of a semigroup S, the smallest left ideal of S containing a is $Sa \bigcup \{a\}$ and denoted by S^1a . An equivalence \pounds on S is define by the rule that a \pounds b if and only if $S^1a = S^1b$. Similarly, we define the equivalence \Re by the rule that a \Re b if and only if $aS^1 = bS^1$.

The equivalence $D = \pounds \circ \Re = \Re \circ \pounds$ is a two-sided analogue of \pounds and \Re . Also the equivalence \Im by the rule $a \Im b$ if and only if $S^1 a S^1 = S^1 b S^1$. Following [1], if S is a commuting regular semigroup, then $D = \Im$.

2 Some properties for commuting regular semigroups

Some new results of the commuting regular semigroups are as follows. We omitted the proofs where they are easy.

Proposition 2.1 Let S be a rectangular band semigroup. Then S is commutative if and only if S is commuting regular.

Proposition 2.2 Let S be a commuting regular semigroup then for every $a \in S$, aS = Sa.

Proposition 2.3 If S is a commuting regular semigroup, then every left ideal Sa^2 is generated by an idempotent.

proof Let $a \in S$, there exists $b \in S$ such that $a^2 = a^2ba^2$. So $ba^2 = ba^2ba^2$ and $e = ba^2$ is an idempotent. We show that $Sa^2 = Se$. Let $y \in Sa^2$, there exists $r \in S$ such that $y = ra^2$ and so $y = ra^2 = ra^2ba^2 = ra^2e$. Therefore $Sa^2 \subseteq Se$. Also $e = ba^2 \in Sa^2$ and $Se \subseteq Sa^2$.

Note that if $\alpha : R \to S$ is a homomorphism semigroups and R is a commuting regular semigroup, then $R/Ker(\alpha)$ and $\alpha^{-1}(S)$ are commuting regular.

Proposition 2.4 If S be a commuting regular semigroup, then D_{a^2} is regular for all $a \in S$.

Proof Since $a \in S$ then $\exists x \in S$ such that $a^2 = a^2 x a^2$ so a^2 is regular element of S and by proposition 3.1 of [9], D_{a^2} is regular.

Proposition 2.5 If S be a commuting regular semigroup with zero. If S has no zero divisor, then a^2 has inverse, for all $a \in S$.

Proof $a^2 = a^2 x a^2$, if $a^2 = b$ then b = bxb. Also xb = xbxb, so (x - xbx)b = 0 and therefore x = xbx. Thus x is an inverse of $b = a^2$.

Mathematical Sciences Vol. 4, No. 2 (2010)

Proposition 2.6 If S is a commuting regular semigroup, then so is each homomorphic image of S.

Proof Let α be an epimorphism from semigroup S into a semigroup S' and $a, b \in S'$, then there exist $r, s \in S$ such that $a = \alpha(r)$ and $b = \alpha(s)$. Since S is a commuting regular, there exists t such that rs = srtsr and

$$ab = \alpha(r)\alpha(s) = \alpha(rs) = \alpha(srtsr) = \alpha(s)\alpha(r)\alpha(t)\alpha(s)\alpha(r) = bacba,$$

where $c = \alpha(t)$.

Lemma 2.7 The center of a commuting regular semigroup S is commuting regular.

Proof Let $a, b \in Z(S)$, there exists $x \in S$ such that $ab = baxba = (ba)^2 x = x(ba)^2$. So $abx = (ba)^2 x^2 = x^2(ba)^2$. Therefore $ab = baxba = (ba)^2 x^2 ba = ba(bax^2)ba$. We show that $bax^2 \in Z(S)$. Note that $bax \in Z(S)$ because if $y \in S$ then,

$$(bax)y = ba(xy) = (xy)ba = (xy)(baxba) = (xba)y(xba) = x(ba)^2yx = bayx = y(bax)bax = y($$

and so

$$(bax^{2})y = (bax)(xy) = xy(bax) = x(yba)x = x(bay)x = (xba)yx = y(xba)x = y(bax^{2}).$$

If we consider $bax^2 = t$, then $ab = ba(bax^2)ba = batba$ and Z(S) is a commuting regular semigroup.

Example 2.8 If the semigroup $S = \{0, a, b, c\}$ is defined by the multiplication table,

	0	a	b	с
0	0 0 0	0	0	0
a	0	a	0	0
b	0	с	b	с
c	0	с	0	0

then S is not commuting regular semigroup but $I = aS = \{0, a\}$ is a commuting regular ideal.

126

Example 2.9 Consider the bicyclic semigroup $B = \langle a, b | ab = 1 \rangle$, (see [2, 7]). It is clear that for every positive integer m, n, p and q we have,

$$(b^m a^n)(b^p a^q) = b^{m-n+t} a^{q-p+t}$$
 $(t = max(n, p)).$

Suppose that $x = b^m a^n$ and $y = b^p a^q$ are arbitrary elements of B. If $q \ge p$ and $m \ge n$, then we get $t = b^{t+q-p} a^{t+m-n}$ where, t = max(n, p). So,

$$\begin{aligned} yxtyx &= (b^{p}a^{q})(b^{m}a^{n})(b^{t+q-p}a^{t+m-n})(b^{p}a^{q})(b^{m}a^{n}) \\ &= (b^{p}a^{q})b^{m}(a^{n}b^{t+q-p})(a^{t+m-n}b^{p})a^{q}(b^{m}a^{n}) \\ &= (b^{p}a^{q})(b^{m}b^{t+q-p-n})(a^{t+m-n-p}a^{q})(b^{m}a^{n}) \quad (for, \ t+q-p \ge n \ and \ t+m-n \ge p) \\ &= (b^{p}a^{q})(b^{m+t+q-p-n}a^{t+m-n-p+q})(b^{m}a^{n}) \\ &= b^{p}(a^{q}b^{m+t+q-p-n})(a^{t+m-n-p+q}b^{m})a^{n} \\ &= b^{p}b^{m+t-p-n}a^{t-n-p+q}a^{n} \quad (for, \ q+t-p+m-n \ge q \ and \ m+t-n+q-p \ge m) \\ &= b^{m-n+t}a^{q-p+t} \\ &= xy. \end{aligned}$$

If $p \ge q$ or $n \ge m$ then with a similar method, for every elements x and y of B, there exists $t \in B$, such that xy = yxtyx. Thus B is a commuting regular semigroup.

Lemma 2.10 Suppose that S is a commuting regular semigroup then:

- (i) Every idempotent element is central, i.e., $Id(S) \subseteq Z(S)$.
- (ii) For each $x, y \in S$, there exist $s, t \in S$, such that xy = sx = yt.

Proof The proof is similar methods used in the Theorem I, of [11]. For idempotents e and f of a semigroups S the intersection of the right ideals Se and Sf is not exactly equal to the ideal Sef, but for commuting regular semigroups we have:

Proposition 2.11 If e and f are idempotents in a commuting regular semigroup S, then $Se \cap Sf = Sef$.

Proof If $z = sef \in Sef$, then $z \in Sf$ and $z = sfe \in Se$, by the Lemma 2.10. Hence $z \in Se \cap Sf$.

127

www.SID.ir

Conversely, if $z = xe = yf \in Se \cap Sf$ then z = yf = (yf)f = zf = xef and so $z \in Sef$. Following [6, 7] and the definition of an ideal of a semigroup. Then,

Theorem 2.12 Let S be a cancellative semigroup and I be an ideal of S such that non zero idempotent e belong to I, S is a commuting regular semigroup if and only if I is a commuting regular.

Proof Let S be a commuting regular semigroup and $a, b \in I$, there exists $c \in S$ such that ab = bacba. By the Lemma 2.10, abe = (bacba)e = ba(ce)ba. Therefore I is a commuting regular semigroup.

Conversely, let $a, b \in S$, then $ae, be \in I$ and there exists $c \in R$ such that aebe = (be)(ae)c(be)(ae). So abe = (bacba)e, by the Lemma 2.10. Then ab = bacba. Therefore S is a commuting regular semigroup.

Proposition 2.13 Let e be an idempotent element of a semigroup S. If S is a commuting regular semigroup, then S' = eSe is a commuting regular semigroup with identity.

Proof Clearly S' is a semigroup with identity. Let *exe* and *eye* are arbitrary elements in S'. Then, there are t_1, t_2, t_3, t_4 in S such that

$$(exe)(eye) = e(xey)e = e(yxet_1yxe)e$$

$$= e(y(ext_2ex)t_1y(ext_2ex))e$$

$$= eyex(t_2ext_1yext_2)exe$$

$$= eyex((et_2t_3et_2)xt_1(ext_2yt_3ext_2y))exe$$

$$= eyexe(t_2t_3et_2xt_1ext_2yt_3)(xt_2et_4xt_2e)yexe$$

$$= (eye)(exe)(et_5e)(eye)(exe),$$

where, $t_5 = t_2 t_3 e t_2 x t_1 e x t_2 y t_3 x t_2 e t_4 x t_2$.

Proposition 2.14 Let S be a commuting regular semigroup with the set E of the idempotents. Let e, $f \in E$ and a, $b \in S$. We define the sandwich set S(e, f), by

$$S(e,f) = \{g \in V(ef) \cap E : ge = fg = g\}.$$

www.SID.ir

Then, S(e, f) is a subsemigroup of S with exactly one element.

Proof By Theorem 3.9 of [1], S(e, f) is a regular subsemigroup of S. Now, Let $x \in S(e, f)$, then

$$\begin{aligned} x &= x(ef)x = x(xef) = (xefx)(xef) \\ &= (efxx)(xef) = ef(xxx)ef \quad (\text{for, S(e,f) is a semigroup}) \\ &= ef \end{aligned}$$

This shows that, S(e, f) is a subsemigroup of S with exactly one element.

Proposition 2.15 Let e be a non-zero idempotent of a commuting regular semigroup S with zero element 0. If eS is a 0-minimal right ideal of S, then e is primitive in S.

Proof Assume eS is a 0-minimal right ideal of S. By proposition 1.2, eSe is a subgroup with 0 of S. Obviously e is the only non-zero idempotent of eSe. By proposition 1.1, e is primitive.

Proposition 2.16 Let S be a commutative semigroup. If S is 0-simple then S is commuting regular semigroup.

Proof Suppose that S is 0-simple. Then S^2 is an ideal of S and hence, since $S^2 \neq 0$, we must have $S^2 = S$. Hence, $S^5 = S$. Now for any a, b in $S - \{0\}$, the subset abSabis an ideal of S, hence abSab = 0 or abSab = S. If abSab = 0 then $I = \{x \mid axSax = 0\}$ contains elements other 0. So I = S and therefore, $aSaS = aS^2aS = 0$. Now, Let $J = \{x \in S \mid aSxS = 0\}$. So J = 0, and therefore, $S = S^5 = 0$, contradiction. Thus, abSab = S, but $x = ba \in S$, so, there exist $t \in S$ such that abtab = ba.

Corollary 2.17 Let S be a commutative semigroup. If S is simple then S is commuting regular.

Proposition 2.18 A semigroup S with zero is a 0-group if and only if aS = Sa = S, $\forall a \in S - \{0\}$.

Mathematical Sciences Vol. 4, No. 2 (2010)

Example 2.19 Every 0-group is a commuting regular semigroup.

Proposition 2.20 Let S be a commuting regular semigroup. If S is a 0-simple. then S is a 0-group.

Proof We have aS = Sa, aS is an ideal in S so aS = 0 or aS = S, but $S^2 \neq 0$, therefore, aS = S and by proposition 1.6 of [7], S is a 0-group.

3 Commuting regular and lattice of Congruences

Firstly, we recall the following definitions from [7]:

Definition 3.1 Let S be a semigroup. A relation R on the set S is called compatible if

$$(\forall s, t, a \in S) \ [(s,t) \in R \text{ and } (s',t') \in R] \Rightarrow (ss',tt') \in R.$$

A compatible equivalence relation is called congruence.

If ρ is a congruence on a semigroup S then we can define a binary operation on the quotient set $\frac{S}{\rho}$ in a natural way as follows:

$$(a\rho)(b\rho) = (ab)\rho.$$

Proposition 3.2 Let ρ be a congruence on commuting regular semigroup S. Then $\frac{S}{\rho}$ is a commuting regular semigroup.

Remark: If Y is a non-empty subset of a partially ordered set X, then element c in X is a lower bound for Y if $c \leq y$ for every $y \in Y$. If the set of lower bounds of Y is non-empty and has a maximum element d, then d is called the greatest lower bound and denoted by $d = \wedge \{y : y \in Y\}$. If $Y = \{a, b\}, d = a \wedge b$. If (X, \leq) is such that $a \wedge b$ exists for every $a, b \in X, (X, \leq)$ is called a lower semilattice. Analogous definitions exists for the least upper bound $\lor \{y : y \in Y\}$ of a non-empty subset Y of

130

X and for an upper semilattice. If (X, \leq) is both a lower semilattice and an upper semilattice, then it is a lattice. If non-empty M of lattice $L = (L, \leq, \land, \lor)$ such that

$$a, b \in M \Longrightarrow a \land b, a \lor b \in M$$

then M is a sublattice [9].

Proposition 3.3 Let (E, \leq) be a lower semilattic. Then (E, \wedge) is commuting regular semigroup.

Proof By proposition 3.3 of [7], (E, \wedge) is a commutative semigroup of idempotents and so for all a, b in E, if $a \leq b$ then ab = a = ba. So, ab = (ba)a(ba).

Corollary 3.4 If ρ and δ are equivalences on semigroup S (congruence on semigroup S) such that $\rho \circ \delta = \delta \circ \rho$, then ρ and delta are commuting regular elements.

Proof

$$(\rho \circ \delta)^2 = \rho \circ (\delta \circ \rho) \circ \delta = (\rho \circ \rho) \circ (\delta \circ \delta) = (\rho \circ \delta),$$

so $(\rho \circ)^n = \rho \circ \delta$ for every *n* in *N*. Therefore,

$$\rho \circ \delta = (\delta \circ \rho)(\delta \circ \rho)(\delta \circ \rho).$$

Proposition 3.5 Let G be a group, then $\zeta(G)$ (the set of congruences on G), is a commuting regular semigroup.

Proof Let $(a, b) \in \rho \circ \delta$. Then, There exists c in G such that $(a, c) \in \rho$, $(c, b) \in \delta$. It follows that

$$a = cc^{-1}a \equiv bc^{-1}a \pmod{\delta},$$
$$bc^{-1}a \equiv bc^{-1}c = c \pmod{\rho}.$$

Thus $(a, b) \in \delta \circ \rho$ and so $\rho \circ \delta \subset \delta \circ \rho$. Similarly, $\delta \circ \rho \subseteq \rho \circ \delta$. Now the result follows from above corollary.

Mathematical Sciences Vol. 4, No. 2 (2010)

Example 3.6 If M, N are normal subgroups of G, then

$$\rho_M \circ \rho_N = \rho_{MN} = (\rho_N \circ \rho_M) \circ \rho_M \circ (\rho_N \circ \rho_M) = \rho_{(NM)M(NM)}.$$

Where $\rho_N = \{(a, b) \in G \times G \mid ab^{-1} \in N\}.$

Proposition 3.7 Let κ be a sublattice of the lattice $(\zeta(S), \subseteq, \cup, \cap)$ of congruences of a semigroup S, and suppose that $\rho \circ \delta = \delta \circ \rho$ for all ρ , δ in κ . Then κ is a commuting regular lattice.

Corollary 3.8 The lattice of congruences on a group is commuting regular lattice.

References

- Azadi M., Doostie H. and Pourfaraj L. (2008) "Certain Rings and Semigroups Examining the Regularity Property," Journal of Mathematics, Statistics and allied fields.
- [2] Bing-jun, YU, Qi-fen, JIAN (2001) "Generalized bycyclic semigroups and Jones semigroups," Southeast Asian Bull. Math., 25-2, 365-377.
- [3] Clifford A.H., Preston G.B. (1961) "The Algebraic Theory of Semigroups," Amer. Math. Soc., Providence R.I.
- [4] Doostie H., Pourfaraj L. (2006) "On the minimal ideals of commuting regular rings and semigroups," Internat. J. Appl. Math., 19, No. 2, 201-216.
- [5] Doostie H., Pourfaraj L. (2007) "Finite Rings and Loop Rings Involving the Commuting Regular Elements," Internal. Math. Forum, 2, No. 52, 2579-2586.
- [6] Grillet P.A., Semigroup: An Introduction to the Structure Theory, CRC Press, 1995.

132

- L. Pourfaraj and M. Azadi
- [7] Howie J.M., Fundamentals of Semigroup Theory, Clarendon Press. Oxford, New York, 1995.
- [8] Howie J.M., An Introduction to Semigroup Theory, Academic Press, London, 1976.
- [9] Petrich M., Rings and Semigroups, Lecture Notes in Mathematics, Springer-Verlag, 1974.
- [10] Van Rooyen G.W.S. (1993) "Quasi-reflexive rings with non-nilpotent minimal onesided ideals," Communications in Algebra, 21, 3425-3437.
- [11] Yamini Amir.H., Safari Sabet, Sh.A. (2003) "Commuting regular rings", Internal. J. Appl. Math., 14, No. 4, 3557-3364.