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Abstract

In this paper, we giving certain properties of the commuting regular semigroups,

we get significant results on semigroups. Our investigation involve certain inter-

esting class of commuting regular semigroups.
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1 Introduction

We use S to denote a semigroup. An element a of a semigroup S is called regular if

there exists x in S such that axa = a. The semigroup S is called regular if all its

elements are regular. For elements a and b of a semigroup S, b is called the inverse of

a if and only if both of the relations aba = a and bab = b holds. The set of inverses of

an element a ∈ S, denote by V (a). An element s of semigroup S is called cancellable

if for every r and t, sr = st implies r = t. The semigroup S is called cancellative, if all

elements of S are cancellable. A semigroup S is called a rectangular band if aba = a

for all a, b in S, (see [7]).

A semigroup S is called commuting regular (see [4, 5, 11]) if and only if for each

x, y ∈ S there exists an element z of S such that xy = yxzyx. Also, a two-sided (left,
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right) ideal I of a semigroup is said to be commuting regular two-sided (left, right)

ideal if for every a, b ∈ I there exists an element c ∈ I such that ab = bacba.

Following [8], we note that a semigroup S with 0, is called a quasi -reflexive semi-

group with 0 if and only if for all left (right or two sided) ideals A and B of S, AB = 0

yields BA = 0.

It is known [4] that every commuting regular semigroup with 0 is quasi-reflexive, but

not vice-versa and a direct product of a family {Si | i ∈ I} of semigroups with 0 is

commuting regular if and only if each Si is commuting regular.

Proposition 1.1 ([10]) An idempotent e 6= 0 of a semigroup S with zero element 0

is primitive if and only if e is the only non-zero idempotent of subsemigroup eSe.

Proposition 1.2 ([4]) Let S be a commuting semigroup with 0 and e 6= 0 is an

idempotent element of S. Then the following statements are equivalent:

(1) Se is a 0-minimal left ideal of S,

(2) eSe is a division subgroup with 0 of S,

(3) eSe is a 0-minimal commuting regular quasi-ideal of S.

We recall the following definitions from [7] and [8]:

Definition 1.3 If a is an element of a semigroup S, the smallest left ideal of S

containing a is Sa
⋃
{a} and denoted by S1a. An equivalence £ on S is define by the

rule that a £ b if and only if S1a = S1b. Similarly, we define the equivalence < by the

rule that a < b if and only if aS1 = bS1.

The equivalence D = £ ◦ < = < ◦ £ is a two-sided analogue of £ and <. Also the

equivalence = by the rule a = b if and only if S1aS1 = S1bS1. Following [1], if S is a

commuting regular semigroup, then D = =.
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2 Some properties for commuting regular semigroups

Some new results of the commuting regular semigroups are as follows. We omitted the

proofs where they are easy.

Proposition 2.1 Let S be a rectangular band semigroup. Then S is commutative

if and only if S is commuting regular .

Proposition 2.2 Let S be a commuting regular semigroup then for every a ∈ S,

aS = Sa.

Proposition 2.3 If S is a commuting regular semigroup, then every left ideal Sa2

is generated by an idempotent.

proof Let a ∈ S, there exists b ∈ S such that a2 = a2ba2. So ba2 = ba2ba2 and e = ba2

is an idempotent. We show that Sa2 = Se. Let y ∈ Sa2, there exists r ∈ S such that

y = ra2 and so y = ra2 = ra2ba2 = ra2e. Therefore Sa2 ⊆ Se. Also e = ba2 ∈ Sa2 and

Se ⊆ Sa2.

Note that if α : R → S is a homomorphism semigroups and R is a commuting

regular semigroup, then R/Ker(α) and α−1(S) are commuting regular.

Proposition 2.4 If S be a commuting regular semigroup, then Da2 is regular for

all a ∈ S.

Proof Since a ∈ S then ∃x ∈ S such that a2 = a2xa2 so a2 is regular element of S and

by proposition 3.1 of [9], Da2 is regular.

Proposition 2.5 If S be a commuting regular semigroup with zero. If S has no zero

divisor, then a2 has inverse, for all a ∈ S.

Proof a2 = a2xa2, if a2 = b then b = bxb. Also xb = xbxb, so (x − xbx)b = 0 and

therefore x = xbx. Thus x is an inverse of b = a2.
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Proposition 2.6 If S is a commuting regular semigroup, then so is each homomor-

phic image of S.

Proof Let α be an epimorphism from semigroup S into a semigroup S′ and a, b ∈ S′,

then there exist r, s ∈ S such that a = α(r) and b = α(s). Since S is a commuting

regular, there exists t such that rs = srtsr and

ab = α(r)α(s) = α(rs) = α(srtsr) = α(s)α(r)α(t)α(s)α(r) = bacba,

where c = α(t).

Lemma 2.7 The center of a commuting regular semigroup S is commuting regular.

Proof Let a, b ∈ Z(S), there exists x ∈ S such that ab = baxba = (ba)2x = x(ba)2. So

abx = (ba)2x2 = x2(ba)2. Therefore ab = baxba = (ba)2x2ba = ba(bax2)ba. We show

that bax2 ∈ Z(S). Note that bax ∈ Z(S) because if y ∈ S then,

(bax)y = ba(xy) = (xy)ba = (xy)(baxba) = (xba)y(xba) = x(ba)2yx = bayx = y(bax)

and so

(bax2)y = (bax)(xy) = xy(bax) = x(yba)x = x(bay)x = (xba)yx = y(xba)x = y(bax2).

If we consider bax2 = t, then ab = ba(bax2)ba = batba and Z(S) is a commuting regular

semigroup.

Example 2.8 If the semigroup S = {0, a, b, c} is defined by the multiplication table,

0 a b c

0 0 0 0 0

a 0 a 0 0

b 0 c b c

c 0 c 0 0

then S is not commuting regular semigroup but I = aS = {0, a} is a commuting regular

ideal.

Archive of SID

www.SID.ir

www.SID.ir


L. Pourfaraj and M. Azadi 127

Example 2.9 Consider the bicyclic semigroup B = 〈a, b|ab = 1〉, (see [2, 7]). It is

clear that for every positive integer m,n, p and q we have,

(bman)(bpaq) = bm−n+taq−p+t (t = max(n, p)).

Suppose that x = bman and y = bpaq are arbitrary elements of B. If q ≥ p and m ≥ n,

then we get t = bt+q−pat+m−n where, t = max(n, p). So,

yxtyx = (bpaq)(bman)(bt+q−pat+m−n)(bpaq)(bman)

= (bpaq)bm(anbt+q−p)(at+m−nbp)aq(bman)

= (bpaq)(bmbt+q−p−n)(at+m−n−paq)(bman) (for, t+ q − p ≥ n and t+m− n ≥ p)

= (bpaq)(bm+t+q−p−nat+m−n−p+q)(bman)

= bp(aqbm+t+q−p−n)(at+m−n−p+qbm)an

= bpbm+t−p−nat−n−p+qan (for, q + t− p+m− n ≥ q and m+ t− n+ q − p ≥ m)

= bm−n+taq−p+t

= xy.

If p ≥ q or n ≥ m then with a similar method, for every elements x and y of B, there

exists t ∈ B, such that xy = yxtyx. Thus B is a commuting regular semigroup.

Lemma 2.10 Suppose that S is a commuting regular semigroup then:

(i) Every idempotent element is central, i.e., Id(S) ⊆ Z(S).

(ii) For each x, y ∈ S, there exist s, t ∈ S, such that xy = sx = yt.

Proof The proof is similar methods used in the Theorem I, of [11]. For idempotents e

and f of a semigroups S the intersection of the right ideals Se and Sf is not exactly

equal to the ideal Sef , but for commuting regular semigroups we have:

Proposition 2.11 If e and f are idempotents in a commuting regular semigroup S,

then Se
⋂
Sf = Sef .

Proof If z = sef ∈ Sef , then z ∈ Sf and z = sfe ∈ Se, by the Lemma 2.10. Hence

z ∈ Se
⋂
Sf .
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Conversely, if z = xe = yf ∈ Se
⋂
Sf then z = yf = (yf)f = zf = xef and so

z ∈ Sef. Following [6, 7] and the definition of an ideal of a semigroup. Then,

Theorem 2.12 Let S be a cancellative semigroup and I be an ideal of S such that

non zero idempotent e belong to I, S is a commuting regular semigroup if and only if

I is a commuting regular.

Proof Let S be a commuting regular semigroup and a, b ∈ I, there exists c ∈ S such

that ab = bacba. By the Lemma 2.10, abe = (bacba)e = ba(ce)ba. Therefore I is a

commuting regular semigroup.

Conversely, let a, b ∈ S, then ae, be ∈ I and there exists c ∈ R such that aebe =

(be)(ae)c(be)(ae). So abe = (bacba)e, by the Lemma 2.10. Then ab = bacba. Therefore

S is a commuting regular semigroup.

Proposition 2.13 Let e be an idempotent element of a semigroup S. If S is a

commuting regular semigroup, then S′ = eSe is a commuting regular semigroup with

identity.

Proof Clearly S′ is a semigroup with identity. Let exe and eye are arbitrary elements

in S′. Then, there are t1, t2, t3, t4 in S such that

(exe)(eye) = e(xey)e = e(yxet1yxe)e

= e(y(ext2ex)t1y(ext2ex))e

= eyex(t2ext1yext2)exe

= eyex((et2t3et2)xt1(ext2yt3ext2y))exe

= eyexe(t2t3et2xt1ext2yt3)(xt2et4xt2e)yexe

= (eye)(exe)(et5e)(eye)(exe),

where, t5 = t2t3et2xt1ext2yt3xt2et4xt2.

Proposition 2.14 Let S be a commuting regular semigroup with the set E of the

idempotents. Let e, f ∈ E and a, b ∈ S. We define the sandwich set S(e, f), by

S(e, f) = {g ∈ V (ef) ∩ E : ge = fg = g}.
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Then, S(e, f) is a subsemigroup of S with exactly one element.

Proof By Theorem 3.9 of [1], S(e, f) is a regular subsemigroup of S.

Now, Let x ∈ S(e, f), then

x = x(ef)x = x(xef) = (xefx)(xef)

= (efxx)(xef) = ef(xxx)ef (for, S(e,f) is a semigroup)

= ef

This shows that, S(e, f) is a subsemigroup of S with exactly one element.

Proposition 2.15 Let e be a non-zero idempotent of a commuting regular semigroup

S with zero element 0. If eS is a 0-minimal right ideal of S, then e is primitive in S.

Proof Assume eS is a 0-minimal right ideal of S. By proposition 1.2, eSe is a subgroup

with 0 of S. Obviously e is the only non-zero idempotent of eSe. By proposition 1.1,

e is primitive.

Proposition 2.16 Let S be a commutative semigroup. If S is 0-simple then S is

commuting regular semigroup.

Proof Suppose that S is 0-simple. Then S2 is an ideal of S and hence, since S2 6= 0,

we must have S2 = S. Hence, S5 = S. Now for any a, b in S − {0}, the subset abSab

is an ideal of S, hence abSab = 0 or abSab = S. If abSab = 0 then I = {x| axSax = 0}

contains elements other 0. So I = S and therefore, aSaS = aS2aS = 0. Now, Let

J = {x ∈ S| aSxS = 0}. So J = 0, and therefore, S = S5 = 0, contradiction. Thus,

abSab = S, but x = ba ∈ S, so, there exist t ∈ S such that abtab = ba.

Corollary 2.17 Let S be a commutative semigroup. If S is simple then S is com-

muting regular.

Proposition 2.18 A semigroup S with zero is a 0-group if and only if aS = Sa =

S, ∀a ∈ S − {0}.
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Example 2.19 Every 0-group is a commuting regular semigroup.

Proposition 2.20 Let S be a commuting regular semigroup. If S is a 0-simple.

then S is a 0-group.

Proof We have aS = Sa, aS is an ideal in S so aS = 0 or aS = S, but S2 6= 0,

therefore, aS = S and by proposition 1.6 of [7], S is a 0-group.

3 Commuting regular and lattice of Congruences

Firstly, we recall the following definitions from [7]:

Definition 3.1 Let S be a semigroup. A relation R on the set S is called compatible

if

(∀s, t, a ∈ S) [(s, t) ∈ R and (s′, t′) ∈ R]⇒ (ss′, tt′) ∈ R.

A compatible equivalence relation is called congruence.

If ρ is a congruence on a semigroup S then we can define a binary operation on the

quotient set S
ρ in a natural way as follows:

(aρ)(bρ) = (ab)ρ.

Proposition 3.2 Let ρ be a congruence on commuting regular semigroup S. Then

S
ρ is a commuting regular semigroup.

Remark: If Y is a non-empty subset of a partially ordered set X, then element c in

X is a lower bound for Y if c ≤ y for every y ∈ Y . If the set of lower bounds of Y is

non-empty and has a maximum element d, then d is called the greatest lower bound

and denoted by d = ∧{y : y ∈ Y }. If Y = {a, b}, d = a ∧ b. If (X, ≤) is such

that a ∧ b exists for every a, b ∈ X, (X, ≤) is called a lower semilattice. Analogous

definitions exists for the least upper bound ∨{y : y ∈ Y } of a non-empty subset Y of
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X and for an upper semilattice. If (X, ≤) is both a lower semilattice and an upper

semilattice, then it is a lattice. If non-empty M of lattice L = (L,≤,∧,∨) such that

a, b ∈M =⇒ a ∧ b, a ∨ b ∈M

then M is a sublattice [9].

Proposition 3.3 Let (E,≤) be a lower semilattic. Then (E,∧) is commuting reg-

ular semigroup.

Proof By proposition 3.3 of [7], (E,∧) is a commutative semigroup of idempotents and

so for all a, b in E, if a ≤ b then ab = a = ba. So, ab = (ba)a(ba).

Corollary 3.4 If ρ and δ are equivalences on semigroup S (congruence on semi-

group S) such that ρ ◦ δ = δ ◦ ρ, then ρ and delta are commuting regular elements.

Proof

(ρ ◦ δ)2 = ρ ◦ (δ ◦ ρ) ◦ δ = (ρ ◦ ρ) ◦ (δ ◦ δ) = (ρ ◦ δ),

so (ρ◦)n = ρ ◦ δ for every n in N . Therefore,

ρ ◦ δ = (δ ◦ ρ)(δ ◦ ρ)(δ ◦ ρ).

Proposition 3.5 Let G be a group, then ζ(G) (the set of congruences on G), is a

commuting regular semigroup.

Proof Let (a, b) ∈ ρ ◦ δ. Then, There exists c in G such that (a, c) ∈ ρ, (c, b) ∈ δ. It

follows that

a = cc−1a ≡ bc−1a (mod δ),

bc−1a ≡ bc−1c = c (mod ρ).

Thus (a, b) ∈ δ ◦ ρ and so ρ ◦ δ ⊂ δ ◦ ρ. Similarly, δ ◦ ρ ⊆ ρ ◦ δ. Now the result follows

from above corollary.
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Example 3.6 If M , N are normal subgroups of G, then

ρM ◦ ρN = ρMN = (ρN ◦ ρM ) ◦ ρM ◦ (ρN ◦ ρM ) = ρ(NM)M(NM).

Where ρN = {(a, b) ∈ G×G | ab−1 ∈ N}.

Proposition 3.7 Let κbe a sublattice of the lattice (ζ(S),⊆,∪,∩) of congruences of

a semigroup S, and suppose that ρ ◦ δ = δ ◦ ρ for all ρ, δ in κ. Then κ is a commuting

regular lattice.

Corollary 3.8 The lattice of congruences on a group is commuting regular lattice.
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