

Vol. 4, No. 2 (2010) 135-142

# Common fixed point theorem with w-distance M. Boujary<sup>1</sup>

Department of Mathematics, Islamic Azad University, Shahrood Branch, Shahrood, Iran.

#### Abstract

In this paper, we prove the existence of common fixed point for mappings defined on complete metric spaces with w-distance p satisfying a general contractive inequality of type integral.

Keywords: Common fixed point, w-distance.

Mathematical Sciences

© 2010 Published by Islamic Azad University-Karaj Branch.

## 1 Introduction and Preliminaries

Jungck initiated a study of common fixed points of commuting maps. He proved the following common fixed point theorem in [3].

**Theorem 1.1** A continuous self map of a complete metric space (X,d) has a fixed point iff there exist  $c \in (0,1)$  and a mapping  $g: X \to X$  which commute with f and satisfies  $:g(X) \subset f(X)$  and  $d(g(x), g(y)) \leq cd(f(x), f(y))$  for all x, y in X. In fact, fand g have a unique common fixed point.

Than , he obtained the Banach contraction principle as a consequence of it. Further, Jungck [4] made generalization of commuting maps by introducing the notion of compatible mappings.

<sup>&</sup>lt;sup>1</sup>E-mail Address: m.boujary@gmail.com

Mathematical Sciences Vol. 4, No. 2 (2010)

In other hand, Kada and et al in [5] for first time introduced definition of w-distance and then give some Lemmas which are connected with w-distance.

**Definition 1.2** Let X be a metric space with metric d. Then a function  $p: X \times X \longrightarrow [0, \infty)$  is called w-distance on X if the following satisfy:

(1)  $p(x,z) \le p(x,y) + p(y,z)$  for any  $x, y, z \in X$ .

(2) p(x, .) is lower semi-continuous , i.e. if  $x \in X$  and  $y_n \to y$  on X then  $p(x, y) \leq \liminf_n p(x, y_n)$ .

(3) For any  $\epsilon > 0$ , there exists  $\delta > 0$  such that  $p(z, x) \leq \delta$  and  $p(z, y) \leq \delta$  imply  $d(x, y) \leq \epsilon$ .

For example the metric d is w-distance in every metric space (X, d).

**Example 1.3** Let X be a normed linear space with norm  $\| \cdot \|$ . Then a function  $p: X \times X \to [0, \infty)$  defined by

$$p(x,y) = \parallel y \parallel \qquad for every \qquad x, y \in X$$

is a w-distance on X.

**Lemma 1.4** (See [5]) Let (X, d) be a metric space and p be a w-distance on X. If  $\{x_n\}$  is a sequence in X such that  $\lim_n p(x_n, x) = \lim_n p(x_n, y) = 0$  then x = y. In particular, if p(z, x) = p(z, y) = 0 then x = y.

**Lemma 1.5** (See [5]) Let p be a w-distance on metric space (X,d) and  $\{x_n\}$  be a sequence in X such that for each  $\varepsilon > 0$ , there exist  $n \in N$  such that m > n > N implies  $p(x_n, x_m) < \varepsilon$ , then  $\{x_n\}$  is a Cauchy sequence.

Also, Branciari in [1] established a fixed point result for an integral-type inequality, that is generalization Banach's contraction principle. Baraciari in [1] proved the following fixed point theorem.

136

M. Boujary

**Theorem 1.6** Let (X,d) be a complete metric space,  $c \in ]0,1[$ , and let  $f: X \to X$  a mapping such that for each  $x, y \in X$ ,

$$\int_0^{d(f(x), f(y))} \varphi(t) dt \le c \int_0^{d(x, y)} \varphi(t) dt.$$

where  $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$  is a Lebesgue-integrable mapping which is summable on each compact subset of  $\mathbb{R}^+$ , nonnegative, and for each  $\epsilon > 0$ ,

$$\int_0^\epsilon \varphi(t) dt > 0.$$

then f has a unique fixed point  $a \in X$  such that  $\lim_{n\to\infty} f^n(x) = a$ , for each  $x \in X$ .

In this paper, we prove a common fixed point theorem which generalizations of results in [1] and [3] by w- distance. First, we prove main theorem. Then, we discuss the relation between it and Branciari's Theorem and Jungck's common fixed point Theorem .

## 2 Main Results

Let N represent the set of natural numbers , R the set of real numbers , and  $R^+$  the set of nonnegative real numbers.

The proof of the following theorem is based on an argument similar to the one used by Baraciari[1]

**Theorem 2.1** Let (X,d) be a complete metric space, let p be a w-distance on Xand let  $f: X \to X$  a mapping. Then f has a fixed point in X iff there exists  $c \in ]0,1[$ and mapping  $g: X \to X$  which commutes with f such that  $g(X) \subset f(X)$  and for each  $x, y \in X$ , satisfies

Mathematical Sciences Vol. 4, No. 2 (2010)

$$\int_{0}^{p(g(x),g(y))} \varphi(t)dt \le c \int_{0}^{p(f(x),f(y))} \varphi(t)dt.$$
(1)

where  $\varphi : R^+ \to R^+$  is a Lebesgue-integrable mapping which is summable on each compact subset of  $R^+$ , nonnegative, and for each  $\epsilon > 0$ ,  $\int_0^{\epsilon} \varphi(t) dt > 0$ . Indeed, f and g have a unique common fixed point if (1) holds.

**Proof.** Suppose that f(a) = a for some  $a \in X$ . Define  $g: X \to X$  by g(x) = a for  $x \in X$ . Then g(f(x)) = a and f(g(x)) = f(a) = a, so g(f(x)) = f(g(x)) for all  $x \in X$  and g commutes with f. Moreover, g(x) = a = f(a) for all  $x \in X$  so that  $g(X) \subset f(X)$ . Also (1) is holds.

On the other hand, suppose there is a mapping  $g: X \to X$  which commutes with f and for which (1) holds. We will show, this condition is sufficient to ensure that f and ghave a unique common fixed point. Let  $x_0 \in X$  and let  $x_1$  be such that  $f(x_1) = g(x_0)$ . In general, choose  $x_n$  so that

$$f(x_n) = g(x_{n-1}).$$
 (2)

This is true because  $g(X) \subset f(X)$ . By (1) and (2.3), we have

$$\int_0^{p(f(x_n), f(x_{n+1}))} \varphi(t) dt \varphi(t) dt \le \dots \le c^{n-1} \int_0^{p(f(x_0), f(x_1))} \varphi(t) dt.$$
(3)

Then we have

$$\lim_{n \to \infty} \int_0^{p(f(x_n), f(x_{n+1}))} \varphi(t) dt = 0 \tag{4}$$

which (1) implies that

$$\lim_{n \to \infty} p(f(x_n), f(x_{n+1})) = 0 \tag{5}$$

Now, we show that  $\{f(x_n)\}$  is Cauchy. Suppose that  $\{x_n\}$  is not p- Cauchy , that is ,

$$\exists \epsilon > 0, \forall N_0, \exists m_{\epsilon}, n_{\epsilon} \in N \ (m_{\epsilon} > n_{\epsilon} > N_0, \ p(f(x_m), f(x_n)) \ge \epsilon.)$$

We choose the sequences  $\{m_k\}_{k\in \mathbb{N}}, \{n_k\}_{k\in \mathbb{N}}$  such that for  $k\in \mathbb{N}, m_k$  is minimal in the sense that  $p(f(x_{m_k}), f(x_{n_k})) \ge \epsilon$ , but  $p(f(x_i), f(x_{n_k})) < \epsilon$  for each  $i \in \{n_k+1, \cdots, m_k-1\}$ 

138

M. Boujary

1}.We have  $p(f(x_{m_k}), f(x_{n_k})) \longrightarrow \epsilon + \text{ as } k \longrightarrow +\infty, \text{in fact by the triangular inequality}$ and (5)

$$\epsilon \leq p(f(x_{m_k}), f(x_{n_k}))$$

$$\leq p(f(x_{m_k}), f(x_{m_k-1})) + p(f(x_{m_k-1}), f(x_{n_k}))$$

$$\leq p(f(x_{m_k}), f(x_{m_k-1})) + \epsilon \longrightarrow \epsilon +$$
(6)

as  $k \longrightarrow \infty$ . Further, there exists  $\mu \in N$  such that for each natural number  $k > \mu$ , one has  $p(f(x_{m_k+1}), f(x_{n_k+1})) < \epsilon$ ; because, if exists a subsequence  $\{k_j\}_{j \in N} \subseteq N$  such that  $p(f(x_{m_{k_j}+1}), f(x_{n_{k_j}+1})) \ge \epsilon$ , than

$$\begin{aligned} \epsilon &\leq p(f(x_{m_{k_j}+1}), f(x_{n_{k_j}+1})) \\ &\leq p(f(x_{m_{k_j}+1}), f(x_{m_{k_j}})) + p(f(x_{m_{k_j}}), f(x_{n_{k_j}})) \\ &+ p(f(x_{n_{k_j}}), f(x_{n_{k_j}+1})) \longrightarrow \epsilon \end{aligned} (7)$$

as  $j \longrightarrow \infty$ . We have from (1),

$$\int_{0}^{p(f(x_{m_{k_{j}}}+1),f(x_{n_{k_{j}}}+1))} \varphi(t)dt \le c \int_{0}^{p(f(x_{m_{k_{j}}}),f(x_{n_{k_{j}}}))} \varphi(t)dt.$$
(8)

letting now  $j \to \infty$  in both sides of (8), we have  $\int_0^{\epsilon} \varphi(t) dt \leq c \int_0^{\epsilon} \varphi(t) dt$  which is a contradiction being  $c \in ]0,1[$  and the integral being positive . Therefore for a certain  $\mu \in N$  one has  $p(f(x_{m_k}), f(x_{n_k})) < \epsilon$  for all  $k > \mu$ . Finally , we prove the stronger property that there that there exist a  $h_{\epsilon} \in ]0, \epsilon[$  and a  $N_{\epsilon}$  such that for each  $k > N_{\epsilon}$  we have  $p(f(x_{m_k+1}), f(x_{n_k+1})) < \epsilon - h_{\epsilon}$ ; suppose the existence of a subsequence  $\{k_j\}_{j \in N} \subseteq N$  such that  $p(f(x_{m_{k_j}+1}), f(x_{n_{k_j}+1})) \longrightarrow \epsilon$  as letting now  $j \longrightarrow \infty$ , then from

$$\int_{0}^{p(f(x_{m_{k_{j}}}+1),f(x_{n_{k_{j}}}+1))} \varphi(t)dt \le c \int_{0}^{p(f(x_{m_{k_{j}}}),f(x_{n_{k_{j}}}))} \varphi(t)dt.$$
(9)

Again, letting  $j \to \infty$  in both sides of (9), we have the contradiction that  $\int_0^{\epsilon} \varphi(t) dt \leq c \int_0^{\epsilon} \varphi(t) dt$ . In conclusion , we can prove the Caushy character of  $\{f(x_n)\}$ . For each  $k > N_{\epsilon}$  ( $N_{\epsilon}$  as above)

$$\epsilon \leq p(f(x_{m_k}), f(x_{n_k})) \leq p(f(x_{m_k}), f(x_{m_k+1})) + p(f(x_{m_k+1}), f(x_{n_k+1})) + p(f(x_{n_k+1}), f(x_{n_k})) \leq p(f(x_{m_k}), f(x_{m_k+1})) + (\epsilon - h_{\epsilon}) + p(f(x_{n_k+1}), f(x_{n_k+1})) \longrightarrow \epsilon - h_{\epsilon}$$
(10)

www.SID.ir

140

Mathematical Sciences Vol. 4, No. 2 (2010)

thus  $\epsilon \leq \epsilon - h_{\epsilon}$  which is a contradiction .This proves that  $\{f(x_n)\}$  is *p*-Cauchy ,so Lemma 1.5 imply that it is Cauchy. Since (X, d) is a complete metric space, there exists a point  $a \in X$  such that  $a = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} g(x_{n-1})$ . For each  $\epsilon > 0$  there exist  $N_{\epsilon} \in N$  such that  $n > N_{\epsilon}$  implies  $p(f(x_{N_{\epsilon}}), f(x_n)) < \epsilon$ , but  $a = \lim_{n \to \infty} f(x_n)$ and p(x, .) is lower semi continuous thus

$$p(f(x_{N_{\epsilon}}), a) \le \liminf_{n \to \infty} p(f(x_{N_{\epsilon}}), f(x_n)) \le \epsilon$$

there for  $p(f(x_{N_{\epsilon}}), a) < \epsilon$ , we put  $\epsilon = 1/k, N_{\epsilon} = n_k$  and we have

$$\lim_{k \to \infty} p(f(x_{n_k}), a) = 0.$$
(11)

In other hand, suppose  $p(f(x_{n_k}), f(a))$  does not to 0 as  $k \to \infty$ , then there exist a subsequence  $\{x_{n_{k_j+1}}\} \subseteq \{x_k+1\}$  such that  $p(f(x_{n_{k_j+1}}), f(a)) \ge \epsilon$  for a certain  $\epsilon > 0$ ; thus we have the following contradiction

$$0 < \int_0^\epsilon \varphi(t) dt \le \int_0^{p(f(x_{n_{k_j}+1}), f(a))} \varphi(t) dt \le c \int_0^{p(f(x_{n_{k_j}}), a)} \varphi(t) dt \longrightarrow 0$$

as  $j \to \infty$ . Thus  $\lim_{k\to\infty} p(f(x_{n_k}), f(a)) = 0$ , but we have

$$p(f(x_{n_k}), f(a) \le p(f(x_{n_k}), f(x_{n_k+1})) + p(f(x_{n_k+1}, f(a)))$$

thus

$$\lim_{k \to \infty} p(f(x_{n_k}), f(a)) = 0.$$
(12)

Now (11), (12) and Lemma 1.4 implies f(a) = a. In this way, we have g(a) = a.

Thus a is a common fixed point of f and g. Also, (1) implies that f and g can have only one common fixed point. Suppose there are two distinct fixed points  $a, b \in X$  such that f(a) = a and f(b) = b, then by (1) we have the following contradiction

$$0 < \int_0^{p(a,b)} \varphi(t) dt = \int_0^{p(g(a),g(b))} \varphi(t) dt \le c \int_0^{p(f(a),f(b))} \varphi(t) dt = c \int_0^{p(a,b)} \varphi(t) dt.$$

Then p(a, b) = 0. In this way, we have p(b, a) = 0, so a = b.

 $\diamond$ 

M. Boujary

**Corollary 2.2** Theorem (2.1) is a generalization Theorem (1.6), let be p = d and f(x) = x.

But the converse (2.2) is not true that show its the following example.

**Example 2.3** Let be  $X = \{\frac{1}{n} | n \in N\} \bigcup \{0\}$ , let be for each  $x, y \in X$ , d(x, y) = x + yif  $x \neq y$ , and d(x, y) = 0 if x = y. (X, d) is a complete metric space. Also, we define w-distance p(x, y) = y on (X, d). Since for every  $x, y \in X(y \neq 0), p(x, y) = y = d(0, y)$ thus every Branciari contraction map f is w-Branciari contraction, that is,

$$\int_{0}^{p(f(x),f(y))} \varphi(t)dt \le c \int_{0}^{p(x,y)} \varphi(t)dt \quad for \, every \quad x,y \in X$$

but its inverse is not true. Let  $g(x) = \frac{1}{2}x$ , f(x) = x are maps on X and let be  $\varphi(t) = 1$ , if  $0 \le t \le \frac{1}{2}$ ,  $\varphi(t) = 0$ , if  $t > \frac{1}{2}$ , then g is w-Branciari contraction by  $c = \frac{3}{4}$  but is not Branciari contraction since if  $y = \frac{1}{n}$  then

$$\int_{0}^{p(g(x),g(y))} \varphi(t)dt = \int_{0}^{g(y)} \varphi(t)dt = \int_{0}^{\frac{1}{2n}} dt = \frac{1}{2n}$$

$$\leq \frac{3}{n4} = \frac{3}{4} \int_{0}^{\frac{1}{n}} \varphi(t)dt = \int_{0}^{p(x,y)} \varphi(t)dt.$$
(13)

But for  $n\neq 1$  , then

$$\int_{0}^{d(g(\frac{1}{n}),g(1))} \varphi(t)dt = \int_{0}^{\frac{1}{2n}+\frac{1}{2}} \varphi(t)dt = \frac{1}{2} > \\ \frac{3}{8} = \frac{3}{4} \int_{0}^{\frac{1}{n}+1} \varphi(t)dt = \int_{0}^{d(\frac{1}{n},1)} \varphi(t)dt.$$
(14)

**Corollary 2.4** Theorem (2.1) is a generalization Theorem (1.1), let be p = d and let be  $\varphi(t) = 1$ .

#### Acknowledgment

The author want to thank Islamic Azad University, Shahrood Branch, for its financial support and the referee(s) for of suggestions on a previous version of this paper.

### References

 Banach S. (1922) "Sur les operations dans les ensembles abstraits et leur application aux equations integrales," Fund. Math, 3, 133-181.

Mathematical Sciences Vol. 4, No. 2 (2010)

- [2] Branciari A. (2002) "A fixed point theorem for mapping satisfying a general contractive condition of integral type," International Journal of Mathematics and Mathematical Sciences, 10, 531-536.
- [3] Jungck G. (1976) "Commuting mappings and fixed points," Amer. Math. Monthly, 83, 261-263.
- [4] Jungck G. (1986) "Compatible mappings and common fixed points," Int. J. Math. Math. Sci, 9, 771-779.
- [5] Kada O., Suzuki T., Takahashi W. (1996) "Nonconvex minimization theorems and fixed point theorems in complete metric spaces," Math. Japonica, 44, 381-591.

142