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Common fixed point theorem with w-distance
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Abstract

In this paper, we prove the existence of common fixed point for mappings

defined on complete metric spaces with w-distance p satisfying a general contractive

inequality of type integral.
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1 Introduction and Preliminaries

Jungck initiated a study of common fixed points of commuting maps. He proved the

following common fixed point theorem in [3].

Theorem 1.1 A continuous self map of a complete metric space (X, d) has a fixed

point iff there exist c ∈ (0, 1) and a mapping g : X → X which commute with f and

satisfies :g(X) ⊂ f(X) and d(g(x), g(y)) ≤ cd(f(x), f(y)) for all x, y in X. In fact, f

and g have a unique common fixed point.

Than , he obtained the Banach contraction principle as a consequence of it. Fur-

ther, Jungck [4] made generalization of commuting maps by introducing the notion of

compatible mappings.
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In other hand, Kada and et al in [5] for first time introduced definition of w-distance

and then give some Lemmas which are connected with w-distance.

Definition 1.2 Let X be a metric space with metric d. Then a function p : X ×

X −→ [0,∞) is called w-distance on X if the following satisfy:

(1) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ X.

(2) p(x, .) is lower semi-continuous , i.e. if x ∈ X and yn → y on X then p(x, y) ≤

lim infn p(x, yn).

(3) For any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply

d(x, y) ≤ ε.

For example the metric d is w-distance in every metric space (X, d).

Example 1.3 Let X be a normed linear space with norm ‖ . ‖ . Then a function

p : X ×X → [0,∞) defined by

p(x, y) =‖ y ‖ for every x, y ∈ X

is a w-distance on X.

Lemma 1.4 (See [5]) Let (X, d) be a metric space and p be a w-distance on X. If

{xn} is a sequence in X such that limn p(xn, x) = limn p(xn, y) = 0 then x = y. In

particular, if p(z, x) = p(z, y) = 0 then x = y.

Lemma 1.5 (See [5]) Let p be a w-distance on metric space (X, d) and {xn} be a

sequence in X such that for each ε > 0, there exist n ∈ N such that m > n > N implies

p(xn, xm) < ε ,then {xn} is a Cauchy sequence .

Also, Branciari in [1] established a fixed point result for an integral-type inequal-

ity, that is generalization Banach’s contraction principle. Baraciari in [1] proved the

following fixed point theorem.
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Theorem 1.6 Let (X, d) be a complete metric space,c ∈]0, 1[, and let f : X → X a

mapping such that for each x, y ∈ X,

∫ d(f(x),f(y))
0 ϕ(t)dt ≤ c

∫ d(x,y)
0 ϕ(t)dt.

where ϕ : R+ → R+ is a Lebesgue-integrable mapping which is summable on each

compact subset of R+ ,nonnegative, and for each ε > 0,∫ ε

0
ϕ(t)dt > 0.

then f has a unique fixed point a ∈ X such that limn→∞f
n(x) = a , for each x ∈ X.

In this paper, we prove a common fixed point theorem which generalizations of re-

sults in [1] and [3] by w- distance. First, we prove main theorem. Then, we discuss the

relation between it and Branciari’s Theorem and Jungck’s common fixed point Theo-

rem .

2 Main Results

Let N represent the set of natural numbers , R the set of real numbers , and R+ the

set of nonnegative real numbers.

The proof of the following theorem is based on an argument similar to the one used

by Baraciari[1]

Theorem 2.1 Let (X, d) be a complete metric space, let p be a w-distance on X

and let f : X → X a mapping . Then f has a fixed point in X iff there exists c ∈]0, 1[

and mapping g : X → X which commutes with f such that g(X) ⊂ f(X) and for each

x, y ∈ X, satisfies
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∫ p(g(x),g(y))
0 ϕ(t)dt ≤ c

∫ p(f(x),f(y))
0 ϕ(t)dt. (1)

where ϕ : R+ → R+ is a Lebesgue-integrable mapping which is summable on each

compact subset of R+, nonnegative, and for each ε > 0,
∫ ε
0 ϕ(t)dt > 0. Indeed, f and g

have a unique common fixed point if (1) holds.

Proof. Suppose that f(a) = a for some a ∈ X. Define g : X → X by g(x) = a

for x ∈ X. Then g(f(x)) = a and f(g(x)) = f(a) = a, so g(f(x)) = f(g(x)) for all

x ∈ X and g commutes with f . Moreover, g(x) = a = f(a) for all x ∈ X so that

g(X) ⊂ f(X). Also (1) is holds.

On the other hand, suppose there is a mapping g : X → X which commutes with f and

for which (1) holds. We will show, this condition is sufficient to ensure that f and g

have a unique common fixed point. Let x0 ∈ X and let x1 be such that f(x1) = g(x0).

In general, choose xn so that

f(xn) = g(xn−1). (2)

This is true because g(X) ⊂ f(X). By (1) and (2.3) , we have

∫ p(f(xn),f(xn+1))
0 ϕ(t)dtϕ(t)dt ≤ · · · ≤ cn−1

∫ p(f(x0),f(x1))
0 ϕ(t)dt. (3)

Then we have

limn→∞
∫ p(f(xn),f(xn+1))
0 ϕ(t)dt = 0 (4)

which (1) implies that

limn→∞ p(f(xn), f(xn+1)) = 0 (5)

Now, we show that {f(xn)} is Cauchy. Suppose that {xn} is not p- Cauchy , that is ,

∃ε > 0,∀N0, ∃mε, nε ∈ N (mε > nε > N0 , p(f(xm), f(xn)) ≥ ε.)

We choose the sequences {mk}k∈N , {nk}k∈N such that for k ∈ N , mk is minimal in the

sense that p(f(xmk), f(xnk)) ≥ ε , but p(f(xi), f(xnk)) < ε for each i ∈ {nk+1, · · · ,mk−
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1}.We have p(f(xmk), f(xnk)) −→ ε+ as k −→ +∞,in fact by the triangular inequality

and (5)

ε ≤ p(f(xmk), f(xnk))

≤ p(f(xmk), f(xmk−1)) + p(f(xmk−1), f(xnk))

≤ p(f(xmk), f(xmk−1)) + ε −→ ε+

(6)

as k −→ ∞ . Further, there exists µ ∈ N such that for each natural number k > µ,

one has p(f(xmk+1), f(xnk+1)) < ε; because, if exists a subsequence {kj}j∈N ⊆ N such

that p(f(xmkj+1), f(xnkj+1)) ≥ ε, than

ε ≤ p(f(xmkj+1), f(xnkj+1))

≤ p(f(xmkj+1), f(xmkj )) + p(f(xmkj ), f(xnkj ))

+ p(f(xnkj ), f(xnkj+1)) −→ ε

(7)

as j −→∞. We have from (1),

∫ p(f(xmkj+1),f(xnkj
+1))

0 ϕ(t)dt ≤ c
∫ p(f(xmkj ),f(xnkj ))
0 ϕ(t)dt. (8)

letting now j −→ ∞ in both sides of (8), we have
∫ ε
0 ϕ(t)dt ≤ c

∫ ε
0 ϕ(t)dt which is a

contradiction being c ∈]0, 1[ and the integral being positive . Therefore for a certain

µ ∈ N one has p(f(xmk), f(xnk)) < ε for all k > µ. Finally , we prove the stronger

property that there that there exist a hε ∈]0, ε[ and a Nε such that for each k > Nε we

have p(f(xmk+1), f(xnk+1)) < ε−hε; suppose the existence of a subsequence {kj}j∈N ⊆

N such that p(f(xmkj+1), f(xnkj+1)) −→ ε− as letting now j −→∞, then from

∫ p(f(xmkj+1),f(xnkj
+1))

0 ϕ(t)dt ≤ c
∫ p(f(xmkj ),f(xnkj ))
0 ϕ(t)dt. (9)

Again,letting j −→ ∞ in both sides of (9), we have the contradiction that
∫ ε
0 ϕ(t)dt ≤

c
∫ ε
0 ϕ(t)dt. In conclusion , we can prove the Caushy character of {f(xn)} . For each

k > Nε (Nε as above)

ε ≤ p(f(xmk), f(xnk)) ≤ p(f(xmk), f(xmk+1)) + p(f(xmk+1), f(xnk+1))

+ p(f(xnk+1), f(xnk)) ≤ p(f(xmk), f(xmk+1))

+ (ε− hε) + p(f(xnk+1), f(xnk+1)) −→ ε− hε

(10)
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thus ε ≤ ε − hε which is a contradiction .This proves that {f(xn)} is p-Cauchy ,so

Lemma 1.5 imply that it is Cauchy. Since (X, d) is a complete metric space, there exists

a point a ∈ X such that a = limn→∞ f(xn) = limn→∞ g(xn−1). For each ε > 0 there

exist Nε∈ N such that n > Nε implies p(f(xNε), f(xn)) < ε, but a = limn→∞ f(xn)

and p(x, .) is lower semi continuous thus

p(f(xNε), a) ≤ lim infn→∞ p(f(xNε), f(xn)) ≤ ε

there for p(f(xNε), a) < ε, we put ε = 1/k,Nε = nk and we have

lim
k→∞

p(f(xnk), a) = 0. (11)

In other hand, suppose p(f(xnk), f(a)) does not to 0 as k → ∞,then there exist a

subsequence {xnkj+1
} ⊆ {xk + 1} such that p(f(xnkj+1

), f(a)) ≥ ε for a certain ε > 0;

thus we have the following contradiction

0 <

∫ ε

0
ϕ(t)dt ≤

∫ p(f(xnkj+1
),f(a))

0
ϕ(t)dt ≤ c

∫ p(f(xnkj
),a)

0
ϕ(t)dt −→ 0

as j →∞.Thus limk→∞ p(f(xnk), f(a)) = 0, but we have

p(f(xnk), f(a) ≤ p(f(xnk), f(xnk+1)) + p(f(xnk+1, f(a))

thus

lim
k→∞

p(f(xnk), f(a)) = 0. (12)

Now (11), (12) and Lemma 1.4 implies f(a) = a. In this way, we have g(a) = a.

Thus a is a common fixed point of f and g. Also, (1) implies that f and g can have

only one common fixed point. Suppose there are two distinct fixed points a, b ∈ X such

that f(a) = a and f(b) = b, then by (1) we have the following contradiction

0 <

∫ p(a,b)

0
ϕ(t)dt =

∫ p(g(a),g(b))

0
ϕ(t)dt ≤ c

∫ p(f(a),f(b))

0
ϕ(t)dt = c

∫ p(a,b)

0
ϕ(t)dt.

Then p(a, b) = 0.In this way, we have p(b, a) = 0, so a = b. �
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Corollary 2.2 Theorem (2.1)is a generalization Theorem (1.6), let be p = d and

f(x) = x .

But the converse (2.2) is not true that show its the following example.

Example 2.3 Let be X = { 1n |n ∈ N}
⋃
{0} , let be for each x, y ∈ X, d(x, y) = x+y

if x 6= y, and d(x, y) = 0 if x = y. (X, d) is a complete metric space. Also, we define

w-distance p(x, y) = y on (X, d). Since for every x, y ∈ X(y 6= 0), p(x, y) = y = d(0, y)

thus every Branciari contraction map f is w-Branciari contraction , that is,∫ p(f(x),f(y))

0
ϕ(t)dt ≤ c

∫ p(x,y)

0
ϕ(t)dt for every x, y ∈ X

but its inverse is not true . Let g(x) = 1
2x ,f(x) = x are maps on X and let be ϕ(t) = 1

,if 0 ≤ t ≤ 1
2 , ϕ(t) = 0, if t > 1

2 ,then g is w-Branciari contraction by c = 3
4 but is not

Branciari contraction since if y = 1
n then

∫ p(g(x),g(y))
0 ϕ(t)dt =

∫ g(y)
0 ϕ(t)dt =

∫ 1
2n
0 dt = 1

2n

≤ 3
n4 = 3

4

∫ 1
n
0 ϕ(t)dt =

∫ p(x,y)
0 ϕ(t)dt.

(13)

But for n 6= 1 , then∫ d(g( 1
n
),g(1))

0 ϕ(t)dt =
∫ 1

2n
+ 1

2
0 ϕ(t)dt = 1

2 >

3
8 = 3

4

∫ 1
n
+1

0 ϕ(t)dt =
∫ d( 1

n
,1)

0 ϕ(t)dt.
(14)

Corollary 2.4 Theorem (2.1)is a generalization Theorem (1.1), let be p = d and

let be ϕ(t) = 1 .
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