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Abstract

In this paper, we will present a new method for a Volterra integral equation

with weakly singular kernel in the reproducing kernel space. Firstly the equation

is transformed into a new equivalent equation. Its exact solution is represented in

the form of series in the reproducing kernel space. In the mean time, the n-term

approximation un(t) to the exact solution u(t) is obtained. Some numerical ex-

amples are studied to demonstrate the accuracy of the present method. Results

obtained by the method are compared with the exact solution of each example and

are found to be in good agreement with each other.
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1 Introduction

In this paper, we consider the following second kind Volterra integral equation with

weakly singular kernel in the reproducing kernel space

u(t)−
∫ t

0

sµ−1

tµ
u(s)ds = f(t), t ∈ [0, T ] (1.1)
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where µ > 0, u(t) ∈ W 2
2 [0, T ], f(t) is a given function and f(t) ∈ W 2

2 [0, T ]. Equations

of this type arise from certain heat conduction problems(see Ref.[1-2]). The distinctive

feature of the equation is the presence of a singularity at t = 0 for all values of µ > 0

and at s = 0 for all values of t > 0 for 0 < µ < 1. This means that conventional

analytical and numerical theory does not apply. In fact, this equation has been the

subject of previous analysis in [3-9]. In [3], the authors presented some results on

existence, uniqueness and smoothness. In [4], the author gave a spectral approach to

an integral equation. In [5], [8], the authors presented product integral methods and

Hermite-type collocation method for equation of this type. In [6], [7], extrapolation

methods for the equation of this type was presented. In [9], the authors also gave the

numerical solution of the equation of this type. It is of interest because of the rather

unusual singularity. For values of µ > 1, the singularity at t = 0 does not persist for

t > 0. Thus the solution is quite well-behaved. However, for 0 < µ < 1, there are

infinitely many solutions to Eq.(1.1). In [5], it was proved that Eq.(1.1) has a unique

solution in the continuity class Cm[0, T ] if f(t) is in Cm[0, T ] and µ > 1. However, if

0 < µ ≤ 1, then Eq.(1.1) has a family of solutions in C[0, T ], of which only one has C1

continuity(see Ref.[3]). Therefore, in the reproducing kernel space W 2
2 [0, T ], Eq.(1.1)

has a unique solution for µ > 0.

Reproducing kernel theory has important application in numerical analysis, differ-

ential equation, probability and statistics and so on [10-19]. Recently, using the RKM,

Geng and Cui [14-19] discussed two-point boundary value problems, periodic boundary

value problems. For Volterra integral equation with weakly singular kernel, however,

this method has not yet been applied. The aim of this paper is to fill this gap.

In this paper, we will give the representation of exact solution to Eq.(1.1) and

approximate solution in the reproducing kernel space. The approach is simple and

effective. We shall consider the condition of 0 < µ < 1. When µ ≥ 1, it is easier to

solve Eq.(1.1) by similar method.
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Multiplication of both sides of Eq.(1.1) by tµ yields

tµu(t)−
∫ t

0
sµ−1u(s)ds = tµf(t)

Hence differentiation with respect to t gives

tµu′(t) + µtµ−1u(t)− 1
t1−µ

u(t) = µtµ−1f(t) + tµf ′(t),

and multiplication by t1−µ gives

tu′(t) + (µ− 1)u(t) = µf(t) + tf ′(t)

Remark 1.1 Note that lim
t→0

∫ t
0

sµ−1

tµ u(s)ds = u(0)
µ . Therefore, if u(0) 6= 0 we have

u(0) 6= f(0), more precisely u(0) = µ
µ−1f(0).

Hence Eq.(1.1) can be converted into the following equivalent form tu′(t) + (µ− 1)u(t) = µf(t) + tf ′(t), 0 < t ≤ T

u(0) = µ
µ−1f(0),

(1.2)

Using change of variable u(t) = u(t) − µ
µ−1f(0), put Lu(t) = tu′(t) + (µ − 1)u(t) and

rewrite g(t) = µf(t) + tf ′(t) − µf(0) simply, then Eq.(1.1) can further be converted

into the following form  Lu(t) = g(t), 0 < t ≤ T

u(0) = 0,
(1.3)

where g ∈W 1
2 [0, T ], u ∈W 2,0

2 [0, T ]. From the uniqueness of solution to Eq.(1.1) in the

space W 2
2 [0, T ], it is easy to see Eq.(1.3) has a unique solution in the space W 2,0

2 [0, T ].

W 1
2 [0, T ], W 2,0

2 [0, T ] and W 2
2 [0, T ] are defined in the following section.

2 Several Reproducing Kernel Spaces

1 The reproducing kernel space W 2,0
2 [0, T ]

The inner product space W 2,0
2 [0, T ] is defined as W 2,0

2 [0, T ] = {u(x) | u, u′ are
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absolutely continuous real valued functions, u, u′, u′′ ∈ L2[0, T ], u(0) = 0}. The inner

product in W 2,0
2 [0, T ] is given by

(u(y), v(y))
W 2,0

2
=

∫ 1

0
(4uv + 5u′v′ + u′′v′′)dy, (2.1)

and the norm ‖ u ‖
W 2,0

2
is denoted by ‖ u ‖

W 2,0
2

=
√

(u, u)
W 2,0

2
, where u, v ∈W 2,0

2 [0, T ].

Theorem 2.1. The space W 2,0
2 [0, T ] is a reproducing kernel space. That is, for any

u(y) ∈ W 2,0
2 [0, T ] and each fixed x ∈ [0, T ], there exists Rx(y) ∈ W 2,0

2 [0, T ], y ∈ [0, T ],

such that (u(y), Rx(y))
W 2,0

2
= u(x). The reproducing kernel Rx(y) can be denoted by

Rx(y) =

 c1e
y + c2e

−y + c3e
2y + c4e

−2y, y ≤ x,

d1e
y + d2e

−y + d3e
2y + d4e

−2y, y > x.
(2.2)

The coefficients of the reproducing kernel Rx(y) and the proof of Theorem 2.1 are

given in appendix A, B.

2 The reproducing kernel space W 2
2 [0, T ]

The inner product space W 2
2 [0, T ] is defined as W 2

2 [0, T ] = {u(x) | u, u′ are ab-

solutely continuous real valued functions, u, u′, u′′ ∈ L2[0, T ]}. The inner product in

W 2
2 [0, T ] is given by

(u(y), v(y))W 2
2

=
∫ 1

0
(4uv + 5u′v′ + u′′v′′)dy, (2.3)

and the norm ‖ u ‖W 2
2

is denoted by ‖ u ‖W 2
2
=

√
(u, u)W 2

2
, where u, v ∈W 2

2 [0, T ].

Similarly, we can prove that W 2
2 [0, T ] is a reproducing kernel space and obtain its

reproducing kernel.

3 The reproducing kernel space W 1
2 [0, T ]

The inner product space W 1
2 [0, T ] is defined by W 1

2 [0, T ] = {u(x) | u is absolutely con-

tinuous real value function, u, u′ ∈ L2[0, T ]}. The inner product and norm in W 1
2 [0, T ]

are given respectively by

(u(x), v(x))W 1
2

=
∫ T

0
(uv + u′v′)dx, ‖ u ‖W 1

2
=

√
(u, u)W 1

2
,
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where u(x), v(x) ∈W 1
2 [0, T ]. In Ref.[10], the authors proved that W 1

2 [0, T ] is a complete

reproducing kernel space and its reproducing kernel is

Rx(y) =
1

2 sinh(T )
[cosh(x+ y − T ) + cosh(|x− y| − T )].

3 The solution of Eq.(1.3)

In this section, the solution of Eq.(1.3) is given in the reproducing kernel space

W 2,0
2 [0, T ].

In Eq.(1.3), it is clear that L : W 2,0
2 [0, T ] → W 1

2 [0, T ] is a bounded linear opera-

tor. Put ϕi(t) = Rti(t) and ψi(t) = L∗ϕi(t) where L∗ is the adjoint operator of L .

The orthonormal system {ψi(t)}∞i=1 of W 2,0
2 [0, T ] can be derived from Gram-Schmidt

orthogonalization process of {ψi(t)}∞i=1,

ψi(t) =
i∑

k=1

βikψk(t), (βii > 0, i = 1, 2, ...). (3.1)

Theorem 3.1. For Eq.(1.3), if {ti}∞i=1 is dense on [0, T ], then {ψi(t)}∞i=1 is the

complete system of W 2,0
2 [0, T ] and ψi(t) = LyRt(y)|y=ti.

Proof. We have

ψi(t) = (L∗ϕi)(t) = ((L∗ϕi)(y), Rt(y))

= (ϕi(y), LyRt(y)) = LyRt(y)|y=ti .

The subscript y by the operator L indicates that the operator L applies to the function

of y.

Clearly, ψi(t) ∈W 2,0
2 [0, T ].

For each fixed u(t) ∈W 2,0
2 [0, T ], let (u(t), ψi(t)) = 0, (i = 1, 2, ...), which means that,

(u(t), (L∗ϕi)(t)) = (Lu(·), ϕi(·)) = (Lu)(ti) = 0. (3.2)

Note that {ti}∞i=1 is dense on [0, T ], hence, (Lu)(t) = 0. It follows that u ≡ 0 from the

existence of L−1. So the proof of the Theorem 3.1 is complete.
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Theorem 3.2. If {ti}∞i=1 is dense on [0, T ] , then the solution of Eq.(1.3) is

u(t) =
∞∑
i=1

i∑
k=1

βikf(tk)ψi(t). (3.3)

Proof. Applying Theorem 3.1, it is easy to know that {ψi(t)}∞i=1 is the complete or-

thonormal basis of W 2,0
2 [0, T ].

Note that (v(t), ϕi(t)) = v(ti) for each v(t) ∈W 1
2 [0, T ], hence we have

u(t) =
∞∑
i=1

(u(t), ψi(t))ψi(t)

=
∞∑
i=1

i∑
k=1

βik(u(t), L∗ϕk(t))ψi(t) =
∞∑
i=1

i∑
k=1

βik(Lu(t), ϕk(t))ψi(t)

=
∞∑
i=1

i∑
k=1

βik(g(t), ϕk(t))ψi(t) =
∞∑
i=1

i∑
k=1

βikg(xk)ψi(t)

(3.4)

and the proof of the theorem is complete.

Therefore, the solution to Eq.(1.1) in the space W 2
2 [0, T ] is

u(t) = u(t) +
µ

µ− 1
f(0). (3.5)

Now, the approximate solution un(t) to Eq.(1.1) can be obtained by the n-term inter-

cept of the exact solution u(t) and

un(t) =
n∑

i=1

i∑
k=1

βikg(tk)ψi(t) +
µ

µ− 1
f(0). (3.6)

Theorem 3.3. Assume u(t) is the solution of Eq.(1.1) and rn(t) is the error between

the approximate un(t) and the exact solution u(t). Then the error rn(t) is monotone

decreasing in the sense of ‖ · ‖W 2
2
.

Proof. From (3.5), (3.6), it follows that

‖ rn ‖W 2
2

=‖
∞∑

i=n+1

i∑
k=1

βikf(tk)ψi(t) ‖W 2
2

=
∞∑

i=n+1
(

i∑
k=1

βikf(tk))2.
(3.7)

(3.7) shows that the error rn is monotone decreasing in the sense of ‖ · ‖W 2
2
.

The proof is complete.
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4 Numerical example

In this section, some numerical examples are studied to demonstrate the accuracy

of the present method. The examples are computed using Mathematica 4.2. Results

obtained by the method are compared with the exact solution of each example and are

found to be in good agreement with each other.

Example 1

Considering equation

u(t)−
∫ t

0

sµ−1

tµ
u(s)ds = f(t), t ∈ [0, 1]

where f(t) = t+1. For any 0 < µ < 1, we can find the true solution is µ
µ−1+µ+1

µ t+αt1−µ,

where α is a arbitrary constant. However, the true solution that is in W 2
2 [0, 1] is

µ
µ−1 + µ+1

µ t. For µ = 0.5, using our method, we choose 100 points and 200 points

on [0, 1] respectively. The numerical results are given in the following table 1, 2. For

µ = 0.4, using our method, we choose 100 points and 200 points on [0, 1] respectively.

The numerical results are given in the following table 3, 4.

Table 1: Numerical results for µ = 0.5 (n = 100).

t True solution u(t) Approximate solution u100 Relative error

0.001 -0.997 -0.997001 1.1E-06

0.08 -0.76 -0.760166 2.1E-04

0.16 -0.52 -0.52028 5.3E-04

0.24 -0.28 -0.280376 1.3E-03

0.48 0.44 0.439391 1.3E-03

0.64 0.92 0.919261 8.0E-04

0.80 1.40 1.39914 6.1E-04

0.96 1.88 1.87904 5.1E-04

1.00 2.00 1.99901 4.9E-04
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Table 2: Numerical results for µ = 0.5 (n = 200).

t True solution u(t) Approximate solution u200 Relative error

0.001 -0.997 -0.997001 9.4E-07

0.08 -0.76 -0.760051 6.7E-05

0.16 -0.52 -0.520083 1.6E-04

0.24 -0.28 -0.28011 3.9E-04

0.48 0.44 0.439824 3.9E-04

0.64 0.92 0.919788 2.3E-04

0.80 1.40 1.39976 1.7E-04

0.96 1.88 1.87973 1.4E-04

1.00 2.00 1.99972 1.4E-04

Table 3: Numerical results for µ = 0.4 (n = 100).

t True solution u(t) Approximate solution u100 Relative error

0.001 -0.663167 -0.663171 3.9E-06

0.08 -0.386667 -0.387055 1.0E-03

0.16 -0.106667 -0.107323 6.1E-03

0.24 0.173333 0.172451 5.0E-03

0.48 1.01333 1.01189 1.4E-03

0.64 1.57333 1.57158 1.1E-03

0.80 2.13333 2.13129 9.5E-04

0.96 2.69333 2.69102 8.5E-04

0.99 2.79833 2.79598 8.4E-04
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Table 4: Numerical results for µ = 0.4 (n = 200).

t True solution u(t) Approximate solution u200 Relative error

0.001 -0.663167 -0.663168 1.3E-06

0.08 -0.386667 -0.386788 3.1E-04

0.16 -0.106667 -0.106868 1.8E-03

0.24 0.173333 0.173066 1.5E-03

0.48 1.01333 1.0129 4.2E-04

0.64 1.57333 1.57281 3.3E-04

0.80 2.13333 2.13272 2.8E-04

0.96 2.69333 2.69265 2.5E-04

0.99 2.79833 2.79763 2.5E-04

5 Appendix

A The proof of Theorem 2.1

Through several integrations by parts for (2.1), then

(u(y), Rx(y))
W 2,0

2
=

∫ 1
0 u(y)(4Rx(y)− 5R(2)

x (y) +R
(4)
x (y))dy + u(y)(5R′x(y)

−3R(3)
x (y)|T0 + u′(y)R(2)

x (y)|T0 .
(A.1)

Since Rx(y) ∈W 2,0
2 [0, T ], it follows that

Rx(0) = 0. (A.2)

Since u ∈W 2,0
2 [0, T ], u(0) = 0. If

5R′x(T )− 3R(3)
x (T ) = 0, R(2)

x (0) = 0, R(2)
x (T ) = 0, (A.3)

then (A.1) implies that

(u(y), Rx(y))
W 2,0

2
=

∫ 1

0
u(y)(4Rx(y)− 5R(2)

x (y) +R(4)
x (y))dy.
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For ∀x ∈ [0, T ], if Rx(y) also satisfies

4Rx(y)− 5R(2)
x (y) +R(4)

x (y) = δ(y − x), (A.4)

then

(u(y), Rx(y))
W 2,0

2
= u(x).

Characteristic equation of (A.4) is given by

λ4 − 5λ2 + 4 = 0,

then we can obtain characteristic values λ1 = 1, λ2 = −1, λ3 = 2, λ4 = −2. So, let

Rx(y) =

 c1e
y + c2e

−y + c3e
2y + c4e

−2y, y ≤ x,

d1e
y + d2e

−y + d3e
2y + d4e

−2y, y > x.

On the other hand, for (A.4), let Rx(y) satisfy

R(k)
x (x+ 0) = R(k)

x (x− 0), k = 0, 1, 2. (A.5)

Integrating (A.4) from x− ε to x+ ε with respect to y and let ε→ 0, we have the jump

degree of R(3)
x (y) at y = x

R(3)
x (x+ 0)−R(3)

x (x− 0) = 1. (A.6)

Applying (A.2),(A.3), (A.5), (A.6), the unknown coefficients of (2.2) can be obtained.

B The coefficients of the reproducing kernel Rx(y)

c1 = 4 e3 T−7 e3 x−9 e2 T+x+7 e6 T+x+9 e4 T+3 x−4 e3 T+4 x

6 e2 x (−7−9 e2 T +9 e4 T +7 e6 T )

c2 = −4 e3 T +7 e3 x+9 e2 T+x−7 e6 T+x−9 e4 T+3 x+4 e3 T+4 x

6 e2 x (−7−9 e2 T +9 e4 T +7 e6 T )

c3 = −9 e4 T−7 e6 T +7 e4 x−8 e3 (T+x)+8 e3 T+x+9 e2 T+4 x

12 e2 x (−7−9 e2 T +9 e4 T +7 e6 T )

Archive of SID

www.SID.ir

www.SID.ir


Fazhan Geng and Feng Shen 169

c4 = 9 e4 T +7 e6 T−7 e4 x+8 e3 (T+x)−8 e3 T+x−9 e2 T+4 x

12 e2 x (−7−9 e2 T +9 e4 T +7 e6 T )

d1 =
−((−1+e2 x) (4 e3 T +7 ex−9 e4 T+x+4 e3 T+2 x))

6 e2 x (−7−9 e2 T +9 e4 T +7 e6 T )

d2 =
e2 T−2 x (−1+e2 x) (4 eT−9 ex+7 e4 T+x+4 eT+2 x)

6 (−7−9 e2 T +9 e4 T +7 e6 T )

d3 = (−1+e2 x) (7+9 e2 T +7 e2 x+9 e2 (T+x)−8 e3 T+x)
12 e2 x (−7−9 e2 T +9 e4 T +7 e6 T )

d4 =
−(e3 T−2 x (−1+e2 x) (9 eT +7 e3 T−8 ex+9 eT+2 x+7 e3 T+2 x))

12 (−7−9 e2 T +9 e4 T +7 e6 T )
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