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Abstract

In this paper, we use Taylor series and Legendre functions of the second kind
to remove singularity of the weakly singular Fredholm integral equations of the

second kind with the kernel k(z,y) = (

z%y)ow 0<a<l. Legendre polynomials

are used as a basis and some integrals that appear in this method are computed
with Cauchy principal value sense without using any numerical quadrature. Three
examples are given to show the efficiency of the method.
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1 Introduction

Weakly singular integral equations arise in some problems of mathematical physics.
It is difficult to solve these equations analytically and analytical solutions in some
special cases can be found in [8, 11, 18, 19] hence, the numerical solutions are required.
Recently, numerical solutions for these equations have been developed by many authors
and researchers I.K. Lifanov in [17] introduced hypersingular integral equations with
applications and numerical solution for a class of these equations of Prandtl’s type is

given by B.N. Mandal in [18]. Numerical solutions for Cauchy and Abel type of weakly
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singular integral equations are discussed in [1,5 — 7,9, 14 — 22]. Consider the following

integral equation

1
M($)¢($)+)\($)/_lmdy:f(m)7 zl<1, 0<a<l, (1.1)

where p(x) # 0, \(z) # 0 and u(z), A(x), f(z) € L?[-1,1] are given functions and ¢(x)
is the unknown function to be determined. In [1, 5, 7], Eq. (1.1) has been considered
but u(x) and A(x) taken to be constants. With e = 1 we have Cauchy type singular
integral equation and in this case we suppose the integral in Eq. (1.1) exists in Cauchy

principal value sense and

1
d 1-—
p.v. / Y —m (m>7 |z |< 1.
1Yy—z 1+2

(see[11]). In Eq. (1.1) the kernel

1
(x —y)™’

is the polar kernel that has been introduced in [16, 20]. Here we consider integral

k(x,y) = 0<a<l.

equation given in the relation (1.1) and assume that ¢(y) has Taylor series expansion

of any order on the interval (—1,1).

2 Numerical Solution

Consider the integral equation with the given conditions in the relation (1.1). With
the Taylor series expansion of ¢(y) based on expanding about the given point x belong
to the interval I =(—1,1) we have the Taylor series approximation of ¢(y) in the

following form

3

)
o) =36 ) ),
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where (; , is between x and y . By substituting the relation (2.1) into the Eq. (1.1) we

have

n k) () 1
p(@ole) + 7)Y S [ = iy + Bao) = S0 (2.2
' ~1

k=0

where

0) 1 ! ntl—a i (n+1)
60@) = @), Fula) = gy [ =)0 (G .

Alternatively, we use truncated Taylor series of ¢(y) and solve the following equation
"L W) (z
p(e)o(x) + M) S T o) dy = £a), (23)
k=0 )
where
1
I k() —/ (y—2z)dy, |z|<1l, 0<a<l, k=0,1,...,n

-1

For k=0 and 0 < o < 1 we have

1 r—n 1
Ino(z) = (y —x) “dy = lim (y —x) %dy + lim (y—z) “dy =
' -1 n—0t J_1 =0T Jzte

1
_ (=) 1 _ (1)
o o
(2.4)
Fora=1and k=0
1
dy 1—=x
Iig(z) = pov. /_1 - =In <1+CU>’ | z |< 1.
For k=1,2,...,n, I, (x) is computed as follows
1
- - 1— (k’*OH»l) —(=1— (k*a+1) ) .
lo(@) = 7—— {0~ ) (~1— @)t} (2.5)

When 0 < o < 1 for the two cases k = 0 and k > 0, I, (z) is computed from the
same formula (2.5). Hence, for k =0,1,... ,n we have

1

Toorle) = 3 =01

{(1 N x)(k—a—i-l) + (_1)(k—a)(1 + m)(k—@z—kl)} _
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k:—(l)z—l—l {(1 — z)*F=oF D) L ()R (cos(am) — i sin(am))(1 + 1:)(k_a+1)} _
k—iﬁ—l {(1 — z)*=aFD) L (—1)k cos(am) (1 + x)(k—aﬂ)} B
ki_(_all_kl sin(am)(1 + x)(k_a'f'l)‘

Now we solve Eq. (2.3) numerically. Suppose the sequence {¢,(z)} be a complete
orthogonal basis with respect to the weight function w(z) for the space L?[—1,1] and

¢(x) is expanded based on this basis as follows

N
(@) = o (x) = ) vj0;(a). (2.6)
j=0
where the coefficients g,..., ¥y are unknowns that must be determined. By substi-

tuting ¢n(z) from Eq. (2.6) into the Eq. (2.3) we get

N N n Ia,k(x) N | *) B
p@) Y i) + M) Y =20 D w65 () = f(a), (27)
=0 k=0 j=0
N
D wyri(e) = f(@), (2.8)
j=0
where
() = p(x)oy(2) + A@) 30 12D 50 )
k=0

For determining coefficients v; we define residual function

N
Ry(x) = f(x) = ) wyrj(w).
§=0
By using Galerkin method we put

(RN(x),@(x)) —0, i=0,...,N, (2.9)
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where (Ry(z), ¢i(x)) is inner product of two functions Ry (z) and ¢;(z) with respect

to the weight function w(x), i.e.

(RNum¢A@>:i[iRN@MMxW(@dm

The relation (2.9) leads to the linear system of equations with matrix representation

AV = b,

or
N
> Aghi=bi,  i=0,...,N.
§=0

where

1
Aij = /_lrj(ﬂf)@(fﬁ)w(:c) dx, i,j=0,...,N,

1
bi:/_lf(a:)gi)i(x)w(z)dx, i=0,...,N,

U= Wow-‘ﬂ/JN]T-

Since (—1)“ is a complex number we solve the following linear system of equations
R(A)T = R(b).

When a = 1 the above method holds and in the following section we use Legendre
polynomials as a basis. Alternatively, for @« = 1 by using Legendre function of the

second kind we establish the following method.

3 Numerical Discussion with Legendre Polynomials

In this section we use Legendre polynomials as a basis and in the next section error

analysis based on these polynomials is given. Now suppose ¢, (z) = p,(z) where p,(z)


www.SID.ir

192 Mathematical Sciences Vol. 4, No. 2 (2010)

is Legendre polynomial of degree n. These polynomials are orthogonal over the interval

[—1, 1] with respect to the weight function w(xz) =1 and

1
2
n m :75mna
[ pe@pnte)ds = 2

where 0, is Kronecker delta [10]

1 m=n,
6mn—

0 m#n.

When a = 1 the Eq. (1.1) turns into the following Cauchy type integral equation

1
(o) +3@) [ Ay = jw). o< (3.)

in this case we use the famous relation [2 — 5,13]

_ 1
Qn () = 1p'v./ Pn(y) .

2 1y—=x

where @, (x) is Legendre function of the second kind. By substituting ¢(z) ~ ¢n(x) =
Z;-V:O ¥;pj(z) into the Eq. (3.1) we have

N N 1 ( )
u<m>2wjpj<w>+A(m>ij/ PRV gy = f(a), |zl<1,
j=0 §=0 -

N
> (pe)pi (@) - 22@)Q; () = f(a). (3.2)
§=0

For determining coefficients v; we multiply both sides of the Eq. (3.2) by pi(z), i =

0...,N and integrate from —1 to 1 . This process leads to
N
> Ajhi=bi,  i=0...,N,
j=0

where

A= [ (W@ - 2@ @), i5=0..N.
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1
bi:/ f(z)pi(z) dz, i=0,...,N.
~1
In the both cases o = 1 and 0 < o < 1 for computing A;; and b; elements of matrix
A and b we use Gauss-Legendre quadrature. In some cases, when A(z) and p(z) are
constants or polynomials or if we have Taylor series of \(x) and pu(z) then we don’t
need any quadrature. Furthermore, if we have Fourier series of A(z) and pu(z) based on

Legendre polynomials

z) =Y Api(x),  pa)=> up()
1=0 1=0

or in the form of the power series

o o0
=> nal ople) =) wd,
=0 =0

then fora=1,4¢5=0,...,N

)

U_Zm/ pi(@)p; (@)p dx—2z/\l/ pi(@)pi(@)Q; (x) da. (3.3)

ForO<a<1,4,5=0,...,N,

1] —Zﬂl/ pz p] pl dx'i‘z)\lzkl/ ak pz pz( ) ()( )da: (34)
=0

By using the famous formula of p, (), i.e.

)

2
= Zekﬂlxn_zk? (35)
k=0

where

(—1)%(2n — 2k)! B n
R P05k

Qk,n =

and substituting p;(z) from the above relation into the Eq. (3.3) and Eq. (3.4), we need

to compute the following integrals
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1
If;gj :p.v./ z"pi(2)Q;(x) dx.

‘ 1
I;:]l = / z"py(z) 1, () dz, 0<a<l
-1

If m < n then from the orthogonality of p,(x) , I} = 0. If m > n and m — n is odd

then I' = 0 else, for even m — n we use the following lemma.

Lemma 3.1. Let g(x) be n times continuously differentiable on the interval [—1,1]

then

1 _1\n 1
| s@m@rae =50 [ @ -1 .

-1 2””' -1

Proof. By using Rodrigues’ formula of p,(z), i.e.

_ 1 d" 2 n
Pnle) = gy g
and integration by parts we can obtain the result. O

In the above lemma for every m > n if we take g(x) = 2™ then

o) = P(En(TiZi)l) o
and
) I'(m+1)T <m_;+1>
Im:/—lx Pl 2“F(m—n—|—1)1“<m+2n+3>7 o0
for m =n
1 n+1 (12
I = /_1 x"pp(z) dr = M (3.7)
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Now we have a tool to compute the above integrals. For this purpose let

1
1= [ ap @) do
-1
From the Rodrigues’ formula of pj(x) and relations (3.6) and (3.7) we have

(2] (4]

1 1
l ‘ -
Iy = / 2'pi(@)pi(z) de = Oy / 2 gy (x) de =) Op T op s
—1 —1

k=0 k=0

Therefore

(3]

1 1 2

Izj,l = /lpi(iU)Pj(x)pl(x) dr = Zeu,i/ 2 pi(x)py(z) de = Zﬁyﬁilff%’j.
v=0

For computing %% from [2, 3, 13] we have

(1= (=1)""*)(n + m)!
(k—n)(k+n+1)(n—m)

1
/ Q@ () dr = (-1)" (3.8)

where p}*(z) and Q)'(z) are associated Legendre functions of the first and second kind.
For k = n and m = 0, Eq. (3.8) takes a simple form. So, we use the following interesting
relation from [13]

Qula) = S palo)mn (157 - :1

Pe-1(2)pn—k (7). (3.9)

o~
Edan

Since

1-=z
2

|

s (150),

is an odd function in the interval [—1, 1] then

1 1— 1—e€ 1—
p.v./ p2(x) ln<1+x> dr = lim pi(l’)ln< :c) dx = 0.
1

X e—0F —1+4e€

. /_11 O (@)pn(@) da = _71 <p.v. /_11 P2 (z) In G ;D dx>+

n 1
kzl % /1Pn($)pk—1($)pn—k(ﬂ?) dr =0,

So
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and

0 m+n even,

2

For even i + j +m , IP?. =0, for odd i + j + m we have

’ tmyi,g

1

1 [5] L
Igﬁj = p-U-/ 2"'pi(2)Qj(x) dr = ZHW‘ (p.v. / 1 :UZ_2”+’"Q]-(:E) daz).
N v=0 -

For computing Igﬁ j by using Eq. (3.9) we need to compute Cauchy principal value

integrals in the following form

1
1—
19 :p.v./ x" 1n< x) dx.
-1 1+=x

Lemma 3.2. For every odd n

n—1
1 0 2
1 4 1
. " 4 .
by /_f n<1+ ) ;;) 2% + 1)( n+2k—|—2) n—i—lkz;)ZkH—l

Proof. From [4]

1— o © 2k+1
1 B i <1
n(l—i—a:) ZO%H’ lzl<l,

SO

1=e -z > 1
I " dz| = —4 .
er0r [/Hex n<1+x> x] kzo(zk+1)(n+2k+2)

On the other hand

1 1 1 1
(2k+1)(n+2k+2) n+1 {2k+1 _n+2kz—i—2}’

SO

o0 [ee]
> > SR
£ (2k +1) n+2k:+2 n+1H 2k:+1 42k 42
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n+1 2k +1 n+2k+2 n+1 2k +1 2 +1(
k=0 k=0 k=0 f—=ntl

2

n—1

© ‘

1 1
n+1 2k +1°

b
Il
o

For computing Isfb’]l' with 0 < a < 1 let

1
I,‘fﬁ;j:/ ™I, () de,
-1

where I, j(x) is given by Eq. (2.5) so
_ 1 0 1
10 :/ a1y () d :/ ™Iy () dx—l—/ ™1, () d

-1 -1 0

1+ (=1)I—atm y
j—a+1

1
—M([1+I2+13+I4)—<

) m (M 9jtk—at2 _ q
{ﬁ(m+1,ja+2)+z::(1) <k>]+k_a+2}

k=0

where

0 m +k—a+2
. 9 —1
L= [ am(1—ayotde =S (—nk(™) "~
' /_1x( z) v I;O( O Sy

L= (1)%&/ (1 +z)/ " dr = (1) B(m + 1,5 — a + 2).
-1

1
I3:/ (1 —z) M de = B(m+1,j —a+2).
0
1 m +k—at2
| | | 90 —1
L= (=10 [ a™(1+az) ot dg = (—1)—otm k()
1= [Lam et e = (1) S () Trrare
and
1

4]

. 1 2
Ly = / 2" pi(x) Lo j(x) e =Y O, / atm=2vy, (x) da

-1 v=0

-1

(4]

_ a,j

- Z HV:lIl—l—m—Zu'
v=0
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4 Numerical Examples

In this section three examples with the exact solutions are given. Since for two
natural numbers N < n and for every polynomial py(z) of degree N, pg\?) (x) = 0. So,
in these examples we take N = n where n is the number of the terms of the Taylor

series and NN is the number of the terms of the Fourier series of the unknown function

¢ ().

Example 1.

Consider the following integral equation

1
1+ aow) + 1+ [ gy~ ), Jel<

where

4 —
2

1—=x

f(:c):w?’ln( )+x3+2$2+

1+ 2

and the exact solution is

Let N =n and
N
on (@) = trpi(x),
k=0
Ery(z) =[ ¢(z) — on(2) | -
The approximate solutions with N = 5,7,9 are shown in table 2.1.
$5(z) = 0.0002461225391 +0.02705643090 = — 0.001630559812 x2 +0.7473264464 >+

0.002364374459 z* — 0.2783418124 2°,
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dr(x) = 0.7733275480 x 10~°+0.005975855 = —0.0005819087019 22 +0.9119489551 3+
0.001916337658 z* — 0.6077258238 2% — 0.001577719858 2% + 0.1905577137 ",

do(x) = 0.7102369987x 10~°40.001252967713 2:—0.0001632349973 22+0.9730666526 2>+
+0.0009853442092 z* — 0.8259127393 z° — 0.001847815222 x5
40.4819827683 2" + 0.001071171327 2 — 0.1305310512 z°.

Table 1 shows that the approximate solution is very close to the exact solution.

x Ers(x)

Erz(x)

Ery(x)

0.0
0.2
0.4
0.6
0.8
1.0

0.0002461225
0.0037932038
0.0006745919
0.0028454738
0.0010451303
0.0029789979

0.7733275E — 5
0.5938439E — 3
0.3710175E — 3
0.2064124F — 3
0.3333319E — 3
0.5211424F — 3

0.710236E — 5
0.866635E — 4
0.975018F — 4
0.724724F — 4
0.566285F — 4
0.888348F — 4

Example 2.

Table 1: Errors for Example 1.

Consider the following integral equation

e “cos(z)p(x) + €* /

where

ooy

-1(y—=

W=

dy = f(z),

|z <1,
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and the exact solution is
o(x) = ze™ ™.
Let n=N=7,
7
$(x) ~ pr(x) = >ty pr(®).
k=0

and

Ers(x) =| xze™* — ¢r(z) | .

x Ers(x) x Erz(x)
-1.0 0.3926E — 5 0.2 0.4687650966 F — 6
-0.8 0.56699F — 7 0.4 0.1017243986E — 5
—0.6 0.63006364F — 6 0.6 0.111989356F — 5
—-0.4 0.1055530434F — 5 0.8 0.359511F — 6
—0.2 0.128636815E — 6 1.0 0.4855E — 5

0.0 0.10589E — 5

Table 2: Errors for Example 2.

Table 2 shows that the approximate solution is very close to the exact solution.

Example 3.

Consider the following equation
1
u@@) 4@ [ a4y fa), Jel<t ol =0,

where p(z) =2, A(z) = 1 and f(z) = —3. This equation has been solved by Mandal
in [7] and by Frankel in [12]. Here we solve this equation by the method of this paper
and compare our results with Mandal and Frankel results. The approximate solutions

with N =n = 4,6,8 are as follows

ba(z) = 0.06923671996 — 0.05569881381 2 — 0.01353790613 2.
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d6(x) = 0.06956265318 —0.06060540191 22 — 0.001851739438 2* —0.007105511831 5.
ps(x) = 0.06949010241 — 0.05850969139 22 — 0.01139736658 * +0.00702059165 2 —
0.00660363609 z°.

In the following table for a comparison between the proposed method of this paper and
that of the methods used in [7, 12] we give values of ¢(z) at the points z = (0.2)k, k =
0,...,5.

X 0 0.2 0.4 0.6 0.8 1
present method ¢4(x) 0.06923 0.06698 0.05997 0.04743 0.02804 0
¢e(x) 0.06956 0.06713 0.05978 0.04717 0.02815 0
¢s(x) 0.06949 0.06713 0.05986 0.04716 0.02810 0
Frankel’s method ¢(xz) 0.06950 0.06712 0.05984 0.04718 0.02891 0
Mandal’s method n =13 ¢(x)  0.06950 0.06717 0.05981 0.04723 0.02805 0

Table 3: Results for Example 3.

5 Conclusion

In this paper, we established a method to find numerical solution of weakly singular
Fredholm integral and integro-differential equations. We used Taylor series and Leg-
endre functions of the second kind to remove singularity. Legendre polynomials were

used as a basis. Numerical examples show that the accuracy of the method is very high.
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