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1 Introduction

Approximation is the problem of constructing a function P belonging to a finite di-

mensional linear space from a set of given data. Usually the approximation obtains

by simplifying another more difficult function f . In this situation P , approximates

f . Approximation of univariate polynomials is a classical work. But approximation

by multivariate polynomials is more complicated and is an active subject to research.

There are some new works on multivariate approximations [8, 10, 11].
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We first introduce the basic concepts of approximation, and a polynomial Pn(x) from

degree n in which x ∈ Rd. In Section 3 we represent some structure of points. We try

to find the best polynomial approximation of a function in L1 by linear programming,

and we find the relation between number of points, dimension of space and degree of

approximating polynomial, in Section 4. In Section 5 we try to find the best polynomial

approximation of a function in L2 by quadratic programming, and we try to check the

sufficient condition for this problem.

2 Basic concepts

Consider a functions f : Rd → R which maps x = (γ1, γ2, . . . , γd)T to a real number,

where γi ∈ R. We consider the set of all nonnegative integers by Z+, and Zd
+ is the set

of all d-indices α = (α1, α2, . . . , αd) where αi ∈ Z+ for i = 1, · · · , d. Such a d-indices is

named a multiindices.

Definition 2.1. For a multiindices α ∈ Zd
+ and x = (γ1, γ2, . . . , γd)T , we define

| α |:= α1 + α2 + . . . + αd =
d∑

i=1

αi (1)

and

xα := γα1
1 γα2

2 . . . γαd
d =

d∏

i=1

γαi
i . (2)

For i = 1, · · · , d, the degree of mononomial xα respect to γi is αi; and | α | is the

total degree of xα. Let Nd,n
0 := {α ∈ Zd

+; | α |≤ n} and we use the symbol # for the

cardinal of a set. Let
∏d be the set of all polynomials from Rd to R and we use

∏d
n for

the set of all polynomials belonging to
∏d where total degree of them does not exceed

n.

Let XN = {x1, x2, . . . , xN} be a sequence of distinct points in Rd, for a positive

integer N , which we name it the set of approximation nodes (for interpolation, the

set of interpolation nodes). Consider the set of nodes XN and a subset of real points

YN = {y1, y2, . . . , yN}.
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Definition 2.2. The approximation problem in
∏d

n with respect to XN is said to be

poised, if there exists a unique polynomial P ∈ ∏d
n such that with a good approximation

we have:

P (xi) ≈ f(xi) , 1 ≤ i ≤ N

3 Multivariate polynomials

A multivariate polynomial is a function from Rd to R with the following form:

P (x) =
∑

cαxα , x ∈ Rd

which sum is finite and for α ∈ Zd
+, the coefficients cα are fixed real numbers. Degree

of polynomial P is defined by max{| α |: cα 6= 0} and a d-variables polynomial from

degree at most n, is defined by:

P (x) =
∑

α∈Nd,n
0

cαxα (3)

The set of mononomials {x → xα :| α |≤ n} is a basis for
∏d

n [2].

A d-variables polynomial P from degree at most n has the following form:

Pn(x) = a0 +
n∑

j=1





d∑

i1=1

d∑

i2=i1

. . .
d∑

ij=ij−1

ai1,i2,...,ijγi1γi2 . . . γij



 (4)

In this formula for j = 1, 2, . . . , n and 1 ≤ i1 ≤ i2 ≤ · · · ≤ ij ≤ d; ai1,i2,...,ij is the

coefficient of γi1γi2 . . . γij . For j = 1, 2, . . . , n define Ij := (i1, i2, . . . , ij) such that

1 ≤ i1 ≤ d, and ik−1 ≤ ik ≤ d for k = 2, 3, . . . , j. By using these definitions we have:

Pn(x) = a0 +
n∑

j=1

∑

Ij

aIjγIj (5)

We define the sets Ed
j , for j = 1, 2, . . . , n, and Ed,n as follows:

Ed
j := {aIj : Ij := (i1, i2, . . . , ij) & 1 ≤ i1 ≤ i2 ≤ · · · ≤ ij ≤ d} (6)
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and

Ed,n :=
n⋃

j=1

Ed
j . (7)

Let 



rd
j := #Ed

j , j = 1, 2, . . . , n

sd
n := #En,d

(8)

Similarly we define rd
0 := 1; (rd

0 = #Ed
0 = #{a0} = 1).

Lemma 3.1. rd
j satisfies in the following recursive formula:





rd
j+1 =

d∑
i=1

ri
j , j ≥ 0

rd
0 = 1

(9)

Proof. For j = 1 we know that the number of mononomials γi1 is d.

Suppose that the formula is true for j. In the next step we try to find the number

of mononomials γi1γi2 . . . γij+1 for 1 ≤ i1 ≤ i2 ≤ · · · ≤ ij+1 ≤ d.

If i1 = 1 then 1 ≤ i2 ≤ · · · ≤ ij+1 ≤ d; and according to assumption of induction

the number of mononnomials when i1 = 1 is rd
j .

Now suppose i1 be an arbitrary index, then we have 1 ≤ i2 − i1 + 1 ≤ i3 − i1 + 1 ≤
· · · ≤ ij+1 − i1 + 1 ≤ d− i1 + 1. Thus we have 1 ≤ i′2 ≤ i′3 ≤ · · · ≤ i′j+1 ≤ d− i1 + 1.

It means that the number of mononomials , is rd−i1+1
j . Therefore the number of all

mononomials γi1γi2 . . . γij+1 is: rd
j+1 =

d∑
k=1

rd−k+1
j =

d∑
i=1

ri
j .

By using the Lemma 3.1 we have sd
n =

∑n
j=1 rd

j . Consequently the number of all

coefficients in Pn(x) is tdn = sd
n + 1. (We know that this number is the dimension of

space
∏d

n.)

Corollary 3.2. By the above notations we have rd
j =

(
d+j−1

j

)
for j = 0, 1, 2, . . . , n;

also we have tdn =
(
n+d

d

)
.
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4 Structure of approximation points

Poised in approximation of a multivariate function is dependent on geometrical struc-

ture of the nodes, Thus one must recognize the points and space of polynomials. In

this section we focus on various presented methods to choose the points x1, x2, . . . , xN

in Rd, which the approximation problem with respect to these points can be poised in
∏d

n. Let N = dim
∏d

n.

The first and the most natural approach to choose such approximation nodes is

triangular grid of the simplex formed by the points in 1
nNd,n

0 . In bivariate case, we

have the more general case of arrays formed by points (xi, yi) , 0 ≤ i + j ≤ n, where

{xi} , {yi} , i, j = 0, 1, . . . , n, are two set of n + 1 distinct points [6, 7]. Suppose

XN = {x1, x2, . . . , xN} is the set of N =
(
n+d

d

)
points in Rd, we say X satisfies the GC

condition (Geometric Characterization), if for each points xi there exist hyperplanes

Hil , l = 1, 2, . . . , n, such that xi is not on any of these hyperplanes, and all points of

X lies on at least one of them. Equivalently, we have

xj ∈
n⋃

i=1

Hil ⇐⇒ j 6= i , i, j = 1, 2, . . . , N (10)

If X satisfies the GC condition, arbitrary data at the nodes can be approximated

[2]. In general, it is difficult to recognizing whether a set of nodes satisfies the GC

condition or not, even for R2. However, there are some special methods. For example

let r0, r1, . . . , rn+1, be n+2 straight lines in R2 such that any two of them ri, rj intersect

at exactly one points xij and these points have the property that xij 6= xkl ⇐⇒ {i, j} 6=
{k, l}. Then the set X = {xij : 0 ≤ i < j ≤ n + 1} satisfies the GC condition. And the

set X is called a natural lattice of order n.

A pencil of order n in Rd is a family of n + 1 hyperplanes which either all intersect

in an affine subspace of codimension 2 or are all parallel. The intersection (in the

projective sense) of the hyperplanes of a pencil is called its center. We consider d + 1

pencils of order n in Rd with centers C1, C2, . . . , Cd+1, not contained in a hyperplane

of the d-dimensional projective space ,with the additional condition that there exist
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N =
(
n+d

d

)
points, each of them lying precisely on d + 1 hyperplanes, one from each

pencil [9].

In [2], Cheney and Light proved that if the set of nodes {x1, x2, . . . , x10} satisfies

the conditions (a)-(d); then approximation of arbitrary data at the nodes is possible

by unique polynomial in
∏2

3:

a. x7, x8, x9, x10 are on a line L1

b. x4, x5, x6, x7 are on a line L2

c. L1 6= L2

d. x1, x2, x3 are not colinear and are not in L1 ∪ L2

Also in [5], Gasca and Maeztu have shown the following Theorem:

Theorem 4.1. Let X be a set of 1
2(n+1)(n+2) nodes in Rd, where n ≥ 2. Suppose

that there exist hyperplanes H0,H1, . . . , Hn in Rd, If X ⊂ H0 ∪H1 ∪ · · · ∪Hn and

#(X ∩Hi) = i + 1, for i = 0, . . . , n; then arbitrary data on X can be interpolated by
∏d

n.

5 Best approximation in L1

In this section we try to find the coefficients aIj for j = 0, 1, . . . , n, such that

N∑

i=1

|f(xi)− P ∗
n(xi)| = min

Pn∈
∏d

n

(
N∑

i=1

|f(xi)− Pn(xi)|)

Thus we want to find

min
Pn∈

∏d
n

(
N∑

i=1

|f(xi)− Pn(xi)|). (11)

For i = 1, 2, . . . , N , we use two definitions for the error in the node xi as:

ei = f(xi)− P ∗
n(xi) (12)

and

ei = ui − vi (13)
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where ui and vi are defined as:




ui = ei , vi = 0; ei ≥ 0

ui = 0 , vi = −ei; ei < 0
(14)

Now we define β and λ as follows

β := min(aIn , aIn−1 , . . . , aI1 , a0)

λ := max(0, β)
(15)

For j = 1, 2, . . . , n; we define a0 and aIj as follows:




aIj := aIj + λ, j = 1, 2, . . . , n

a0 := a0 + λ.

By these definitions P ∗
n(x) has the following form

P ∗
n(x) = a0 +

n∑

j=1

∑

Ij

aIjγIj − λ(1 +
n∑

j=1

∑

Ij

γIj ). (16)

From (12) and (13), we have

ui − vi + P ∗
n(x) = f(xi) , i = 1, 2, . . . , N.

Thus one must solve the following linear programming problem:

(LP1) min
N∑

i=1

(ui + vi) (17)

with the following constraints:




ui − vi + a0 +
n∑

j=1

∑
Ij

aIjγ(i,Ij) − λ(1 +
n∑

j=1

∑
Ij

γ(i,Ij)) = f(xi), i = 1, 2, . . . , N

ui ≥ 0, , vi ≥ 0 i = 1, 2, . . . , N

aIj ≥ 0, j = 1, 2, . . . , n

a0 ≥ 0

λ ≥ 0
(18)

We know that the number of all variables in (LP1) is 2N + tdn + 1, and the number of

constraints is N .
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Lemma 5.1. In optimal solution of the problem (LP1) we have

uivi = 0 , i = 1, 2, . . . , N. (19)

Proof. Let F := {i : uivi > 0}. Let mi := min(ui, vi), for i ∈ F . Thus we have

ui−mi ≥ 0 and vi−mi ≥ 0. In (LP1) for i ∈ F , we put ui−mi and vi−mi instead of

ui and vi, respectively. It can be shown that constraints of (LP1) are unchanged, but

in objective function we have

N∑

i=1

(ui + vi) =
∑

i6∈F

(ui + vi) +
∑

i∈F

(ui + vi)

or equivalently

∑

i6∈F

(ui + vi) +
∑

i∈F

(ui + vi − 2mi) =
N∑

i=1

(ui + vi)− 2
∑

i∈F

mi.

Now we have a new problem that its constraints are (18) but its objective function is

(LP1∗) min {
N∑

i=1

(ui + vi)− 2
∑

i∈F

min(ui, vi)}. (20)

Let z∗ and z∗∗ be the optimum values of (LP1) and (LP1∗), respectively. Since two

problems have the same constraints we have:

z∗∗ = z∗ − 2
∑

i∈F

min(ui, vi)}. (21)

It means that z∗∗ < z∗. Consequently F is empty.

Lemma 5.2. The problem (LP1) is always feasible, and has a finite solution.

Theorem 5.3. For finding the best polynomial approximation of degree n for an

arbitrary function, the number of points should be greater than or equal to tdn. i.e.

N ≥ tdn. (22)
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Proof. Let A be a t× s matrix. Also X, C ∈ Rs , b ∈ Rt.

Let the following problem (LP )





min CT X

s.t.

AX = b

X ≥ 0

has an optimum solution X∗ = (γ∗1 , γ∗2 , . . . , γ∗s )T . Now define U := {i , γ∗i 6= 0 , 1 ≤
i ≤ s}. Thus we have

#U ≤ t (23)

Now suppose the problem of finding the best approximating polynomial of a polynomial

f(x) = a0 +
∑n

j=1

∑
Ij

aIjγIj , where aIj 6= 0 for j = 1, 2, . . . , n; and also a0 6= 0. Thus

we should have #U = tdn and consequently we should have tdn ≤ N .

6 Best approximation in L2

In this section we try to find aIj for j = 0, 1, . . . , n, such that

N∑

i=1

[f(xi)− P ∗
n(xi)]2 = min

Pn∈
∏d

n

(
N∑

i=1

[f(xi)− Pn(xi)]2).

Thus we want to find

min
Pn∈

∏d
n

(
N∑

i=1

[f(xi)− Pn(xi)]2). (24)

Let y ∈ Rtdn be in the form of yT := (ynT , yn−1T
, . . . , y1T

, 1), such that

yjT = (γIj ) ; 1 ≤ i1 ≤ i2 ≤ · · · ≤ ij ≤ d , j = 1, 2, . . . , n.

Also consider the elements of y by wi. i.e.

(w1, w2, . . . , wtdn
)T =

(
(γd)n, (γd−1)n−1γd, . . . , 1

)T
.
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For yi that is dependence to xi, we have

yi
T = (yn

i
T , yn−1

i
T
, . . . , y1

i
T
, 1),

where yj
i

T
= (γ(i,Ij)) ; 1 ≤ i1 ≤ i2 ≤ · · · ≤ ij ≤ d , j = 1, 2, . . . , n. and for

i = 1, 2, . . . , N ;
(
wi,1, wi,2, . . . , wi,tdn

)
=

(
(γi,d)n, (γi,d−1)n−1γi,d, . . . , 1

)
.

Suppose that for j = 1, 2, . . . , n; aIj be a vector, we define

ΦT := (aIn
T , aIn−1

T , . . . , aI1
T , a0).

Also suppose that we show the elements of Φ by φi. i.e.

(
φ1, φ2, . . . , φtdn

)
=

(
a(n,n,...,n,n), a(n−1,n−1,...,n−1,n), . . . , a0

)
.

By these definitions we have

Pn(x) = ΦT y. (25)

Thus we want to find Φ∗ such that P ∗
n(x) = Φ∗T y, is the best approximating polynomial

of f(x) from degree at most n on XN .

Let

h(Φ) :=
N∑

i=1

[f(xi)− ΦT yi]2 (26)

and also fi = f(xi) , i = 1, 2, . . . , N . Therefore

h(Φ) =
N∑

i=1
[fi − ΦT yi]2

=
N∑

i=1
[fi −

tdn∑
j=1

φjwi,j ]2

=
N∑

i=1
f2

i − 2
tdn∑

j=1
φj(

∑N
i=1 fiwi,j) + (

tdn∑
j=1

tdn∑
k=1

φjφk

N∑
i=1

wi,jwi,k).
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By defining 



qj,k :=
N∑

i=1
wi,jwi,k j, k = 1, 2, . . . , tdn

bj :=
N∑

i=1
fiwi,j j = 1, 2, . . . , tdn

c :=
N∑

i=1
f2

i

and

bT := (b1, b2, . . . , btdn
) , Q :=

(
qi,j

)
i,j

We have

h(Φ) = c− 2
tdn∑

j=1

φjbj +
tdn∑

j=1

tdn∑

k=1

φjφkqj,k

or equivalently

h(Φ) = c− 2bT Φ + ΦT QΦ. (27)

Therefore we want to solve the following problem

min
Φ

h(Φ) = min
Φ

c− 2bT Φ + ΦT QΦ (28)

which is an unconstrained quadratic programming problem. It can be shown that Q is

a symmetric and positive semi definite matrix, and we have

∇h(Φ) = 2QΦ− 2b.

The first necessary condition for minimizer of h(Φ) is that QΦ = b. We know that

xi’s are distinct, then yi’s are distinct too; thus Q has a full rank. If N ≥ tdn, then Q

is positive definite and Φ is a minimizer of h(Φ).

7 Numerical Examples

In this section we present some examples to show the efficiency of this method.
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Example 7.1.

Considering f(x, y) = sin(x−y), d = 2, n = 1 and X = {(0, 0.1), (0.1, 0), (0.1, 0.1))}
in L1 we have P (x, y) = 0.998334166468281836 x−0.998334166468281125 y. The exact

and approximating functions are shown in Figure 1:
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Figure 1 : The exact function in left and the approximating function in right

Example 7.2.

Considering

n = 3, d = 3, f(x, y) = ex2−y2+z2

and

i 1 2 3 4 5 6 7 8 9 10

xi 0 0 0 0 0.1 0.1 0.1 0.1 0 0

yi 0 0 0.1 0.1 0 0 0.1 0.1 0 −0.1

zi 0 0.1 0 0.1 0 0.1 0 0.1 −0.1 0

i 11 12 13 14 15 16 17 18 19 20

xi 0 −0.1 −0.1 −0.1 −0.1 0 0 0.1 −0.1 0.1

yi −0.1 0 0 −0.1 −0.1 0.1 −0.1 0 0 −0.1

zi −0.1 0 −0.1 0 −0.1 −0.1 0.1 −0.1 0.1 0.1
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in L1 we have

P (x, y, z) = 1.+0.01106x+1.01512x2−1.00502x3+0.00905y−0.01010xy+0.10000x2y

− 1.00502y2 − 0.10101xy2 − 1.00502y3 − 1.00502z − 7.32748× 10−15xz

−1.82077×10−14x2z−3.77476×10−15yz+0.00101xyz−2.22045×10−15y2z

+ 1.00502z2 − 0.10101xz2 + 0.100001yz2 + 100.502z3

with the maximum error 2.788573× 10−13.

Example 7.3.

Considering n = 3, d = 2, f(x, y) = sin(x + y) and

i 1 2 3 4 5 6 7 8 9 10

xi 1 2 2 3 1 3 2 0 1 1

yi 0 2 1 1 3 3 3 1 1 2

in L2 we have

P (x, y) = 0.687334 + 2.43507x− 1.02398x2 + 0.11771x3 + 2.595y − 2.1266xy

+ 0.252844x2y − 1.1839y2 + 0.412773xy2 + 0.11771y3

The exact and approximating functions are shown in Figure 2:
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Figure 2 : The exact function in left and the approximating function in right
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Example 7.4.

Considering

n = 3, d = 3, f(x, y) = ex2−y2+z2

with the points given in Example 7.2, in L2 we have

P (x, y, z) = 1.+1.68349x+1.01175x2−168.349x3+2.26782y−0.01006xy+0.10067x2y

− 1.00168y2 − 0.10067xy2 − 226.782y3 − 1.58461z − 5.58347× 10−6xz

− 2.77972× 10−13x2z − 5.58347× 10−6yz − 2.08623× 10−13xyz

− 2.31509× 10−13y2z + 1.00505z2 + 1.93570× 10−14xz2

+ 5.15409× 10−13yz2 + 158.461z3

with the maximum error 1.116694× 10−7.

8 Conclusion

In this work we’ve extended the concept of best approximation of univariate function

to the multivariate one and we gave some numerical examples.
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