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1 Introduction

Approximation is the problem of constructing a function P belonging to a finite di-
mensional linear space from a set of given data. Usually the approximation obtains
by simplifying another more difficult function f. In this situation P, approximates
f. Approximation of univariate polynomials is a classical work. But approximation
by multivariate polynomials is more complicated and is an active subject to research.

There are some new works on multivariate approximations [8, 10, 11].
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We first introduce the basic concepts of approximation, and a polynomial P, (x) from
degree n in which x € R?. In Section 3 we represent some structure of points. We try
to find the best polynomial approximation of a function in £; by linear programming,
and we find the relation between number of points, dimension of space and degree of
approximating polynomial, in Section 4. In Section 5 we try to find the best polynomial
approximation of a function in L2 by quadratic programming, and we try to check the

sufficient condition for this problem.

2 Basic concepts

Consider a functions f : R — R which maps = = (y1,72,...,74)" to a real number,
where 7; € R. We consider the set of all nonnegative integers by Z., and Z‘i is the set
of all d-indices o = (a1, o, ..., aq) where o; € Z4 for i = 1,--- ,d. Such a d-indices is

named a multiindices.

Definition 2.1. For a multiindices o € Z‘i and = (1,72, ...,74)", we define
d
]a|::a1+a2—|—...+ad:2ai (1)
i=1
and
d
T =gt yt = nyf” (2)
i=1
For i = 1,--- ,d, the degree of mononomial z® respect to 7; is «;; and | a | is the

total degree of z¢. Let Ng’" = {a € Z%;| a |< n} and we use the symbol # for the
cardinal of a set. Let Hd be the set of all polynomials from R? to R and we use Hi for
the set of all polynomials belonging to Hd where total degree of them does not exceed
n.

Let Xy = {21,22,...,2n5} be a sequence of distinct points in R¢, for a positive
integer N, which we name it the set of approximation nodes (for interpolation, the

set of interpolation nodes). Consider the set of nodes Xy and a subset of real points

YN: {yl,wa'-ny}
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Definition 2.2. The approximation problem in HZ with respect to X is said to be
poised, if there exists a unique polynomial P € Hi such that with a good approzimation

we have:

3 Multivariate polynomials

A multivariate polynomial is a function from R? to R with the following form:
P(z) = anxa , zeR?

which sum is finite and for « € Zi, the coefficients ¢, are fixed real numbers. Degree
of polynomial P is defined by max{| a |: ¢, # 0} and a d-variables polynomial from

degree at most n, is defined by:

P(z) = Z Cax® (3)

aeNg’n

The set of mononomials {x — 2% :| a |< n} is a basis for Hi [2].

A d-variables polynomial P from degree at most n has the following form:

n d d d
Pn(.%') =ao + Z Z Z cee Z Ay io,yig Via Vi - - - Vij (4)
j=1

i=liz=iy  ij=ij 1
In this formula for j = 1,2,...,nand 1 < i1 < ip < -+ < 45 < d; gy y,..5; i the

J

coeflicient of ~;, Vi, ... 7i.-

J

For j = 1,2,...,n define I; := (i1,42,...,%;) such that

1<idy <d,and ip_1 < i <dfor k=2,3,...,j. By using these definitions we have:

n
Pu(z)=ao+ Y Y any; (5)
j=1 I
We define the sets E]C-l, for j =1,2,...,n, and E%" as follows:

EY :={ag, : Ij = (i1,42,...,4j) & 1<iy <ipg <.+ <ij <d} (6)
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and

Let

Similarly we define rg =1 (7’61 = #Eg = #{ag} =1).

Lemma 3.1. 7";1 satisfies in the following recursive formula:

]+1 ZTJ’ j=0

TOZI

Proof. For j =1 we know that the number of mononomials ~;, is d.

Suppose that the formula is true for j. In the next step we try to find the number

of mononomials v;, 7, - - Yij for 1 <ip <idpg < -+ <ijpq < d.

If iy =1 then 1 < iy < --- < ij41 < d; and according to assumption of induction

the number of mononnomials when 71 = 1 is r?.

Now suppose 71 be an arbitrary index, then we have 1 <i9 — 41 +1 <i3—1; +1 <

- <ijy1—t1+1<d—i;+1. Thus we have 1 < i < < -- <z]+1§d—i1—|—1.

It means that the number of mononomlals , 18 ;l “H. Therefore the number of all

mononomials v;, Vi, - - - Vi;y, 18t T?H = Z rd E+1 Z r 0
k=1

By using the Lemma 3.1 we have s¢ = 2?21 7“;-1. Consequently the number of all

coefficients in P,(z) is t& = s + 1. (We know that this number is the dimension of

space HZ)

Corollary 3.2. By the above notations we have 7“3-1 = (d?*l) for 7=0,1,2,...,n

also we have t& = (n;d)'
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4 Structure of approximation points

Poised in approximation of a multivariate function is dependent on geometrical struc-
ture of the nodes, Thus one must recognize the points and space of polynomials. In
this section we focus on various presented methods to choose the points x1,x9,..., TN
in R?, which the approximation problem with respect to these points can be poised in
[1¢. Let N = dim ]

The first and the most natural approach to choose such approximation nodes is
triangular grid of the simplex formed by the points in %Ng ™. In bivariate case, we
have the more general case of arrays formed by points (z;,v;) , 0 < i+ j < n, where
{z;} , {wi} , 4,5 = 0,1,...,n, are two set of n + 1 distinct points [6, 7]. Suppose
Xy ={x1,29,...,xN} is the set of N = (";d) points in R%, we say X satisfies the GC
condition (Geometric Characterization), if for each points z; there exist hyperplanes
H;; ,1=1,2,...,n, such that x; is not on any of these hyperplanes, and all points of
X lies on at least one of them. Equivalently, we have

n
vie| JHi=j#i , i,j=12,....N (10)
i=1
If X satisfies the GC condition, arbitrary data at the nodes can be approximated
[2]. In general, it is difficult to recognizing whether a set of nodes satisfies the GC
condition or not, even for R%2. However, there are some special methods. For example
let 79,71, ..., nt1, be n-+2 straight lines in R? such that any two of them r;, r;j intersect
at exactly one points x;; and these points have the property that z;; # xy < {i,j} #
{k,l}. Then the set X = {z;; : 0 <i < j <n+ 1} satisfies the GC condition. And the
set X is called a natural lattice of order n.

A pencil of order n in R? is a family of n + 1 hyperplanes which either all intersect
in an affine subspace of codimension 2 or are all parallel. The intersection (in the
projective sense) of the hyperplanes of a pencil is called its center. We consider d + 1
pencils of order n in R? with centers C,Cy, ..., Cyyq, not contained in a hyperplane

of the d-dimensional projective space ,with the additional condition that there exist
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N = (";rd) points, each of them lying precisely on d + 1 hyperplanes, one from each
pencil [9].

In [2], Cheney and Light proved that if the set of nodes {z1,z2,...,x10} satisfies
the conditions (a)-(d); then approximation of arbitrary data at the nodes is possible
by unique polynomial in H?Q)

a. x7,Is,Tg9,T1p are on a line L

b. 4,75, %6, v7 are on a line Loy

c. In#Ls

d. 21,22, x3 are not colinear and are not in Ly U Lo

Also in [5], Gasca and Maeztu have shown the following Theorem:

Theorem 4.1. Let X be a set of 5(n+1)(n+2) nodes in R?, where n > 2. Suppose
that there exist hyperplanes Ho, Hy,...,H, in RY, If X ¢ HyUH,U---UH, and
#(XNH;)=1i+1, fori=0,...,n; then arbitrary data on X can be interpolated by

IT5-

5 Best approximation in £;

In this section we try to find the coefficients ay; for j =0,1,...,n, such that
N N
Z |f (i) — Py()| = mind(z |f(z:) — Pu(xi)])
i=1 Poelly 521

Thus we want to find

N
min (Y |f(@i) = Pa(i))- (11)

Puelln i1
Fori=1,2,..., N, we use two definitions for the error in the node x; as:
ei = flxi) — P(wi) (12)
and

€, = U; — Uy (13)
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where u; and v; are defined as:
uj =e;, vy =0; e >0
uiZO,Ui:—ei; e; <0

Now we define 6 and A as follows

B :=min(ar,,ar, ,,...,arn,ao)
A := max(0, 3)

For j =1,2,...,n; we define @y and @j; as follows:
alj::a1j+>\7 j:1,2,...,n

ag = ag + A.

By these definitions P (z) has the following form

Pr(x)=ao+ Y Y ary, —AM1+Y_> qr).
I.

n
j=1 I j=1 I;
From (12) and (13), we have

u;— v+ Pr(x)= f(z;) , i=12,...,N.
Thus one must solve the following linear programming problem:
N
(LP1)  min Z (wi + v;)
i=1

with the following constraints:

n n
w; — v +ao+ Y YAy — ML+ X0 D v6) = f@i),
J=1T; J=1T;
w>0, , u;>0 i=1,2... N

ar, >0, i=1,2,...,n

ag >0

A>0

\

211

(15)

(18)

We know that the number of all variables in (LP1) is 2N + tZ 4 1, and the number of

constraints is V.
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Lemma 5.1. In optimal solution of the problem (LP1) we have
wvi=0 , i=1,2,...,N. (19)

Proof. Let F := {i : wv; > 0}. Let m; := min(u;,v;), for i € F. Thus we have
u; —m; > 0 and v; —m; > 0. In (LP1) for ¢ € F, we put u; —m; and v; —m; instead of
u; and v;, respectively. It can be shown that constraints of (LP1) are unchanged, but

in objective function we have

N
D (i) = (ui+ i)+ (ui+v;)
i=1 igF i€F
or equivalently
N
Z(uz —I—Ui) —i—Z(uz + v; —Qmi) = Z(’U,Z —i—vi) —QZmi.
igF icF i=1 i€F

Now we have a new problem that its constraints are (18) but its objective function is
N
(LP1*)  min {>  (u;+v;) =2  min(u,v;)}. (20)
i=1 i€F
Let z* and z** be the optimum values of (LP1) and (LP1*), respectively. Since two

problems have the same constraints we have:

2 =2 =2 min(u, vi)}. (21)

i€l

It means that z** < z*. Consequently F' is empty. O

Lemma 5.2. The problem (LP1) is always feasible, and has a finite solution.

Theorem 5.3. For finding the best polynomial approximation of degree n for an

arbitrary function, the number of points should be greater than or equal to t&. i.e.

N>t (22)
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Proof. Let A be a t x s matrix. Also X,C € R® , b € R,
Let the following problem (LP)

min CTX

s.t.

AX =0
X>0

has an optimum solution X* = (7§,73,...,75)%. Now define U := {i , v; #0, 1 <

i < s}. Thus we have

#U <t (23)
Now suppose the problem of finding the best approximating polynomial of a polynomial
f(z) =ap+ 2?21 le ar;v1;, where ar; # 0 for j =1,2,...,n; and also ag # 0. Thus
we should have #U = tﬁ and consequently we should have tfl < N. ]

6 Best approximation in £,

In this section we try to find ay; for j =0,1,...,n, such that

N N
[f (i) = Pr(z)]? = min (Y [f(ai) = Pa(a:)]?).
im1 Puelly, =
Thus we want to find N
min (> " [f(xi) = Pu(@:)]?). (24)
Phel1¢ ;
Let y € R’ be in the form of yl = (y"T,y"_lT, e ,le, 1), such that
Yl =(n) 5 1<ii<ip<---<i;j<d, j=12,...,n

Also consider the elements of y by w;. i.e.

_ T
(wlaw27"'7wt%)T = ((’Yd)ny(’Yd—l)n I’Ydr"u]-) .
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For y; that is dependence to x;, we have

T 1T T
vt = e ),
T
where = (V1)) 1<ip<ig<--<4;<d, j=12,...,n and for
i=1,2,...,N; (wi,lawi,2a e 7wi,tg> = ((v,0)", (Via—1)" i, - -, 1).
Suppose that for j =1,2,...,n; aj; be a vector, we define
o7 = (aInT,aln_lT, .. .,aIlT,ao).

Also suppose that we show the elements of ® by ¢;. i.e.

( (bla ¢27 cee 7¢t;il ) = ( A(n,n,...nmn) Y(n—1n—1,..,n—1,n)s - - - @0 ) :

By these definitions we have

P, (z) = ®Ty. (25)

Thus we want to find ®* such that P*(z) = ®*7y, is the best approximating polynomial

of f(x) from degree at most n on Xy.

Let
N
A(®) = 3 f () — @7yl (20)
i=1
and also f; = f(z;) , i=1,2,...,N. Therefore
N
h(®) = ; [fi — ®Ty]?
td

I
M=
=
]
S
&

N
Il
N
.
Il
—

td td d N

12=23 ¢5(0% fiwig) + (X X 60k 2 wijwi)-
i—1 j=1k=1 1=1

I
M=

N
Il

—
<
|
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By defining
N . .
djk = > Wy, jWj k g k=1,2,...,t%
i=1
3 d
b] - Z flw’b,] J = 1727 7tn
=1
X 2
c=> f
i=1
and
b = (b1, b2, byg) Q= ( Gi,j )z.j
We have

t 4t
W@)=c—2) ¢ibj+ Y > bionjk
j=1

j=1k=1

or equivalently

h(®) =c— 207 ® + dTQD. (27)
Therefore we want to solve the following problem
min i(®) = minc — 267 + T QD (28)
which is an unconstrained quadratic programming problem. It can be shown that @) is
a symmetric and positive semi definite matrix, and we have
Vh(®) =2QP — 2b.
The first necessary condition for minimizer of h(®) is that Q® = b. We know that
x;’s are distinct, then y;’s are distinct too; thus @ has a full rank. If N > t¢, then Q
is positive definite and ® is a minimizer of h(®).

7 Numerical Examples

In this section we present some examples to show the efficiency of this method.
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Example 7.1.

Considering f(x,y) = sin(z—y), d =2, n = 1and X = {(0,0.1),(0.1,0), (0.1,0.1))}
in £1 we have P(z,y) = 0.998334166468281836 = —0.998334166468281125 y. The exact

and approximating functions are shown in Figure 1:

Figure 1 : The exact function in left and the approximating function in right

Example 7.2.

Considering

and

1 1 2 3 4 ) 6 7 8 9 10

zi| O 0 0 0 01 01 01 01 0 0
Yi 0 0 0.1 01 0 0 0.1 0.1 0 -0.1
Z 0 0.1 0 0.1 0 0.1 0 0.1 —-0.1 0

1 11 12 13 14 15 16 17 18 19 20

T 0 -0.1 -0.1 —-01 -0.1 0 0 01 -01 0.1
y; | —0.1 0 0 -0.1 -0.1 0.1 -01 0 0 -0.1

z; | —0.1 0 —-0.1 0 -01 -01 01 -01 0.1 0.1
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in £1 we have
P(z,y,2) = 1.40.011062+1.0151222 — 1.005022>4-0.00905y — 0.01010zy+0.10000z>y
— 1.005023% — 0.101012y? — 1.00502y> — 1.00502z — 7.32748 x 10~ ¥ z2

—1.82077x 1074222 — 3.77476 x 10~ ¥y +0.00101zyz — 2.22045 x 10~ 1%y22
+ 1.005022% — 0.10101:2% 4 0.100001y22 + 100.5022°

with the maximum error 2.788573 x 10713,

Example 7.3.
Considering n =3, d =2, f(x,y) = sin(z + y) and
123 45 6 78 9 10

122313 2011
021133311 2

1

Z;

Yi

in Lo we have

P(z,y) = 0.687334 + 2.43507z — 1.0239822 4 0.117712> 4 2.595y — 2.1266xy
+ 0.252844x%y — 1.1839y> + 0.412773zy* 4+ 0.11771y3

The exact and approximating functions are shown in Figure 2:

SN

SN
AN
'Q NN
"'..‘ NN
77N
4 eSS
L7 7> SN

Figure 2 : The exact function in left and the approximating function in right
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Example 7.4.

Considering

n=3, d=3, f(z,y)=e" Y+

with the points given in Example 7.2, in £ we have

P(x,y,z) = 1.4+1.683492+1.011752% —168.3492° +2.26782y —0.010062y40.100672:%y
— 1.00168y% — 0.10067xy? — 226.782y> — 1.584612 — 5.58347 x 10 %z
— 277972 x 1073222 — 5.58347 x 10 %Yz — 2.08623 x 10~ Bayz
—2.31509 x 10713422 + 1.0050522 + 1.93570 x 10~ H4z22

+5.15409 x 10~ 13y2? 4 158.46123

with the maximum error 1.116694 x 10~ 7.

8 Conclusion

In this work we’ve extended the concept of best approximation of univariate function

to the multivariate one and we gave some numerical examples.
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