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Abstract

In this paper , some results about the index of matrix and Drazin inverse are

given. We then explain applications of them in solving singular linear system of

equations.
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1 Introduction

Let Cn×n denote the space comprising those matrices of order n , over the complex

field. Any matrix A ∈ Cn×n have an index that we get Drazin inverse of A to make

use of it. On the contrary to our expectation, for any matrix A ∈ Cn×n , even singular

matrices, index and Drazin inverse of matrix A exists and is unique[10]. According to

this truth, the aim of this paper is to give the new results of them. The Drazin inverse

has various applications in the theory of finite Markov chains, the study of singular

differentail and difference equations, the investigation of Cesaro-Neumann iterations,

cryptograph, iterative methods in numerical analysis, multibody system dynamics and

others[4,8,9]. Computing the Drazin inverse is a current issue in recent years[3,10].

Section 2 provides preliminaries for index of matrix and Drazin inverse. Applications
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of them in solving singular linear system of equations is also explained. Some new

results on the index of matrix and Drazin inverse are given in section 3. Numerical

examples to illustrate previous sections are given in section 4.

2 Preliminaries and Basic Definitions

We first present some definitions and theorems about the index of matrix and Drazin

inverse which are needed in this paper.

Definition 2.1 Let A ∈ Cn×n . We say the nonnegative integer number k to be the

index of matrix A , if k is the smallest nonnegative integer number such that

rank(Ak+1) = rank(Ak) (1)

It is equivalent to the dimension of largest Jordan block corresponding to the zero

eigenvalue of A [9]. The index of matrix A , is denoted by ind(A) . For any matrix

A ∈ Cn×n the unique Jordan normal form of a matrix A can be built [6]. Therefore for

any matrix A ∈ Cn×n the index of A exists and is unique.

Definition 2.2 A number λ ∈ C , is called an eigenvalue of the matrix A if there

is a vector x 6= 0 such that Ax = λx . Any such vector is called an eigenvector of A

associated to the eigenvalue λ .

The set L(λ) = {x | (A− λI)x = 0} forms a linear subspace of Cn , of dimension

ρ(λ) = n− rank(A− λI)

The integer ρ(λ) = dimL(λ) specifies the maximum number of linearly independent

eigenvectors associated with the eigenvalue λ . It is easily seen that ϕ(µ) = det(A−µI)

is a nth-degree polynomial of the form

ϕ(µ) = (−1)n(µn + αn−1µ
n−1 + · · ·+ α0) (2)
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It is called the characteristic polynomial of the matrix A . Its zeros are the eigenvalues

of A . If λ1, · · · , λk are the distinct zeros of ϕ(µ) , then ϕ can be represented in the

form

ϕ(µ) = (−1)n(µ− λ1)σ1(µ− λ2)σ2 · · · (µ− λk)σk

The integer σi , which we also denote by σ(λi) = σi , is called the multiplicity of the

eigenvalue λi.

Theorem 2.3 . If λ be an eigenvalue of matrix A ∈ Cn×n , then

1 ≤ ρ(λ) ≤ σ(λ) ≤ n (3)

Proof See [6].

Definition 2.4 Let A ∈ Cn×n , with ind(A) = k . The matrix X of order n is the

Drazin inverse of A ,denoted by AD , if X satisfies the following conditions

AX = XA,XAX = X,AkXA = Ak (4)

When ind(A) = 1 , AD is called the group inverse of A , and denoted by Ag . For any

matrix A ∈ Cn×n , the Drazin inverse AD of A exists and is unique [3,10].

Theorem 2.5 Let A ∈ Cn×n , with ind(A) = k , rank(Ak) = r . We may assume

that the Jordan normal form of A has the form as follows

A = P

(
D 0

0 N

)
P−1

where P is a nonsingular matrix, D is a nonsingular matrix of order r , and N is a

nilpotent matrix that Nk = ō . Then we can write the Drazin inverse of A in the form

AD = P

(
D−1 0

0 N

)
P−1

When ind(A) = 1 , it is obvious that N = ō [3,10].

Corollary 2.6 . Let ind(A) = 1 and D = I . It is clear that D−1 = I , thus

A = Ag .
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Theorem 2.7 If Ax = b be a consistent or inconsistent singular linear system where

ind(A) = k,then the linear system of equations

AkAx = Akb (5)

is consistent.

Proof The linear system Ax = b has solution if and only if rank(A) = rank[A | b] [8].

From (1) we have rank(Ak+1) = rank[Ak+1 | Akb] . Therefore (5) is consistent.

According to[5]and properties of the Drazin inverse , in order to obtain the Drazin

inverse the projection method solves consistent or inconsistent singular linear system

Ax = b where ind(A) = k through solving the consistent singular linear system (5)[9].

Theorem 2.8 ADb is a solution of

Ax = b, k = ind(A) (6)

if and only if b ∈ R(Ak) , and ADb is an unique solution of (6) provided that x ∈ R(Ak).

We now explain applications of the index of matrix and Drazin inverse in solving

singular linear system of equations.

Singular linear system of equations arise in many different scientific applications.

Notably, partial differential equations discretized with finite difference or finite element

methods yield singular linear systems of equations. Large singular linear systems can

be solved with either sparse decompositions techniques or with iterative methods. For

consistent singular linear systems, these two approaches can be also combined into a

method that uses approximate decomposition preconditioning for an iterative method.

However, we cannot use preconditioned iterative method for inconsistent singular linear

systems[9]. A cramer rule for ADb was given in [7].

Singular linear systems with index one arises in many applications, such as Markov

chain modelling and numerical experiment on the perturbed Navier-Stokes equation.

Therefore, for the singular linear system with unit index, we must solve the system

AAx = Ab (7)
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which is consistent. So we can choose all kinds of preconditioned methods, such as

PCG , PGMRES, etc., to solve system (7). In [9] Wei proposed a two step algorithm

for solving singular linear system with index one. In an implementation we first solve

the system Ay = Ab , the inner iteration, and then we solve Ax = y , the outer iteration.

3 Some Results

In this section, we give some results about the index of matrix and Drazin inverse.

Theorem 3.1 If A ∈ Cn×n be a nonsingular matrix, then ind(A) = 0 .

Proof . Let A ∈ Cn×n be nonsingular matrix, we know that rank(A) = rank(In) = n.

Thus ind(A) = 0 . Moreover the eigenvalues of A are nonzero.

Therefore if A be a nonsingular matrix then ind(A) = 0 and AD = A−1, which satisfies

the conditions (4).

Theorem 3.2 If A ∈ Cn×n be a matrix with index one, then rank(A) = rank(Ag).

Proof . From rank(Ag) = rank(AgAAg) ≤ rank(AAg) ≤ rank(A) we have

rank(Ag) ≤ rank(A) (8)

Since rank(A) = rank(AAgA) ≤ rank(AgA) ≤ rank(Ag)

rank(A) ≤ rank(Ag) (9)

Thus of (8) , (9) we have rank(A) = rank(Ag).

Corollary 3.3 Let A ∈ Cn×n where ind(A) > 1 . We have rank(AD) < rank(A).

Theorem 3.4 Let A ∈ Cn×n,then Ag exists if and only if rank(A) = rank(A2)[1].

Corollary 3.5 The index of any idempotent matrix equal one. The converse of this

statement is not true always.
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Theorem 3.6 If A ∈ Cn×n be a symmetric matrix with index one, then Ag = (Ag)
T .

Proof Since Ag be group inverse of A we have

AAg = AgA, AgAAg = Ag, AAgA = A

From A = AT we have

(Ag)
TA = A(Ag)

T , (Ag)
TA(Ag)

T = (Ag)
T , A(Ag)

TA = A (10)

From (10) by Definition (2.4), (Ag)
T is group inverse of A . The group inverse of matrix

A is unique. Therefore Ag = (Ag)
T .

Corollary 3.7 For any matrix A ∈ Cn×n with index one , (Ag)g = A .

Theorem 3.8 . If A ∈ Cn×n where ind(A) = k ,then ind(A) = ind(AT ) .

Proof Since ind(A) = k , by Definition(2.1) we have rank(Ak+1) = rank(Ak). From

(An)T = (AT )n . We have

(Ak+1)T = (AT )k+1, (Ak)T = (AT )k

Since rank(A) = rank(AT ) we have

rank(Ak+1) = rank((AT )k+1), rank(Ak) = rank((AT )k)

Thus, we have rank((AT )k+1) = rank((AT )k) . Therefore ind(A) = ind(AT ).

Theorem 3.9 . If λ be an eigenvalue of A ∈ Cn×n , then 1
λ is an eigenvalue of AD.

Proof From Ax = λx, (x 6= 0) we have

AADx = λADx

ADAADx = λADADx

From (4) we can get ADx = λADADx . Now if we set ADx = y we have 1
λy = ADy .

Therefore 1
λ is an eigenvalue of AD.
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Theorem 3.10 . If A ∈ Cn×n be a nilpotent matrix that Ak = ō , then ind(A) = k.

Proof From Ak = ō we have

rank(Ak) = rank(ō)

From Ak+n = ō, n ∈ N we can get rank(Ak+1) = rank(Ak) . Therefore ind(A) = k.

Corollary 3.11 Let A ∈ Cn×n be a nilpotent matrix of index n , so ind(A) = n

and rank(An) = 0 . Thus in Theorem 1.2 , D = ō. Therefore AD = ō .

Theorem 3.12 . If A ∈ Cn×n, then 0 ≤ ind(A) ≤ n .

Proof By Theorem 3.1 , ind(A) = 0 for a nonsingular matrix A. By Theorem 3.10

ind(A) = n for a nilpotent matrix A such that An = ō .

Let λ1, · · · , λk are the distinct zeros of the characteristic polynomial of the matrix

A ∈ Cn×n, and λ1 = 0 with multiplicity σ(λ1) = k < n. From (2) any matrix

A ∈ Cn×n has exactly n eigenvalue. By Theorem 2.3 ρ(λ1) ≤ σ(λ1) < n . From

Definition 2.1 we can get 0 < ind(A) < n . Therefore 0 ≤ ind(A) ≤ n .

4 Numerical Examples

We now give the following examples to explain the present results.

Example 4.1 Determine the index and Drazin inverse of the following matrix

A =


2 −3 −5

−1 4 5

1 −3 −4


It is obvious that rank(A) = rank(A2) , so ind(A) = 1 . Moreover the matrix A has

the eigenvalues λ1 = 0, λ2 = 1 with multiplicity

σ(λ1) = 1, ρ(λ1) = 1
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σ(λ2) = 2, ρ(λ2) = 2

Thus Jordan normal form of matrix A has the following form

J = PAP−1 =


[1] 0 0

0 [1] 0

0 0 [0]

 , P =


−1 3 4

−2 3 5

−1 3 5

 (11)

P is a nonsingular matrix. The dimension of largest Jordan block corresponding to the

zero eigenvalue of (11) is equal to one. Moreover A = A2 ,then A is an idempotent

matrix, by Corollary 3.5 ind(A) = 1 . From Theorem 2.5 we have

A = P−1

(
D 0

0 N

)
P =


2 −3 −5

−1 4 5

1 −3 −4



wherein D =

(
1 0

0 1

)
, is a nonsingular matrix of order 2 , and N = ō , is a nilpotent

matrix. Therefore the group inverse of A is

Ag = P−1

(
D 0

0 N

)
P =


2 −3 −5

−1 4 5

1 −3 −4


Moreover D = I , so of Corollary 2.6, we have A = Ag. A ,Ag satisfies the conditions

(4), thus Ag is group inverse of A. The system
2x1 − x2 + x3 = 1

−3x1 + 4x2 − 3x3 = 1

−5x1 + 5x2 − 4x3 = 2

is inconsistent. Ind(AT ) = 1, it is clear that the following system is consistent.
2x1 − x2 + x3 = 3

−3x1 + 4x2 − 3x3 = −5

−5x1 + 5x2 − 4x3 = −8
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Example 4.2 Determine the index and Drazin inverse of the following matrix

B =


1 1 3

5 2 6

−2 −1 −3


It is obvious that rank(B3) = rank(B4) , so ind(B) = 3 . Moreover the matrix B has

the eigenvalues λ = 0 with multiplicity

σ(λ) = 3, ρ(λ) = 1

So Jordan normal form of matrix B has the following form

J = PBP−1 =


0 1 0

0 0 1

0 0 0

 , P =


−1 0 −1

1 0 0

1 1 3

 (12)

P is a nonsingular matrix. The dimension of largest Jordan block corresponding to the

zero eigenvalue of (12) equal to 3. Moreover B3 = ō ,then ind(B) = 3 By Theorem 2.5

we have

B = P−1


0 1 0

0 0 1

0 0 0

P =


1 1 3

5 2 6

−2 −1 −3


Therefore the Drazin inverse of B is

BD = P−1


0 0 0

0 0 0

0 0 0

P = 0

Moreover B ∈ C3×3 is a nilpotent matrix of index 3, so of Corollary 3.11 we have

BD = ō. B , BD fulfills the conditions (4) , thus BD is Drazin inverse of B.

Example 4.3 Consider the following symmetric matrix

C =


−1 −1 −1

−1 1
3 −1

−1 −1 −1


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The matrix C has the eigenvalues λ1 = 0, λ2 = 1, λ3 = −8
3 . The index of matrix C is

equal to one, because rank(C) = rank(C2) . So Jordan normal form of matrix C has

the following form

J = PCP−1 =


[1] 0 0

0 [−8
3 ] 0

0 0 [0]

 , P =


1
11 − 3

11
1
11

− 9
22 − 3

11 − 9
22

1
2 0 −1

2

 (13)

P is a nonsingular matrix. The dimension of largest Jordan block corresponding to the

zero eigenvalue of (13) is equal to one. By Theorem 2.5 we have

Cg = P−1JP =
1

16


−1 −6 −1

−6 12 −6

−1 −6 −1


C , Cg satisfies the conditions (4) thus Cg is group inverse of C . It is clear that

rank(C) = rank(Cg) and (Cg)g = C . Consider the following singular linear system of

equation with index one 
−x1 − x2 − x3 = 3

−x1 + 1
3x2 − x3 = 1

−x1 − x2 − x3 = 3

(14)

Since b =


3

1

3

 ∈ R(C) , the solution of (14) is

x = Cgb =


− 1

16 − 6
16 − 1

16

− 6
16

12
16 − 6

16

− 1
16 − 6

16 − 1
16




3

1

3

 =


−3

4

−3
2

−3
4



5 Conclusions

In this paper, we prove some properties of index of matrix and Drazin inverse and give

some examples.
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