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Abstract

This paper is devoted to the study of locally Lipschitz semi-infinite program-

ming problems in which the index set of the inequality constraints is assumed

to be arbitrary. We introduce an analogous of the Arrow-Hurwitcz-Uzawa con-

straint qualification which is based on the Clarke subdifferential. Then, we derive

a Karush-Kuhn-Tucker type necessary condition . Finally, interrelations between

the new and the Slater constraint qualifications are investigated.
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1 Introduction

A semi-infinite problem with inequality constraints is an optimization problem with

finitely many variables x = (x1, x2, . . . , xn) ∈ <n on a feasible set described by –

probably– infinitely many inequality constraints. In this paper we study the following

semi-infinite programming problem (SIP, in brief)
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(SIP ) inf f(x)

s.t. gi(x) ≤ 0 i ∈ I,

x ∈ <n,

where f and gi, i ∈ I are locally Lipschitz functions from <n to < ∪ {+∞}, and the

index set I is an arbitrary set, not necessarily finite –but nonempty–. In the review

papers [6, 10], as well as in [5], we will find many applications of SIP in different fields

such as Chebyshev approximation, robotics, mathematical physics, engineering design,

optimal control, transportation problems, fuzzy sets, robust optimization, etc.

If the set I is finite, necessary conditions of Karush-Kuhn-Tucker (KKT) type for

optimality can be established under various constraint qualifications. In order to study

and compare of these constraint qualifications in smooth and nonsmooth cases, see the

book [3].

For linear semi-infinite systems, the “Farkas-Minkowski property” has been intro-

duced by Goberna et al. in [4]. In [14], Puente et al. introduced the “locally Farkas-

Minkowski (LFM) property” for linear SIPs and its role as constraint qualification was

emphasized there. For an excellent study of linear SIPs, see the book [5], and the

survey article [10].

Some constraint qualifications for semi-infinite systems with convex inequalities

and linear inequalities are studied in [8]. There, characterizations of various constraint

qualifications in terms of upper semicontinuity of certain multifunctions are given. In

[9], López and Vercher have given optimality conditions for convex nondifferentiable

semi-infinite programming problems which involves the notion of Lagrangian saddle

point.

We point out most of the references cited above are restricted to differentiability or

convexity assumptions, and equality constraints are not considered.

On the other hand, the classical Lagrange multiplier rule was generalized in the
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direction of replacing the usual gradient by certain generalized gradients such as in

Clarke [2], Michael and Penot [11], Mordukhovich [12, 13] and Rockafellar [17].

Some constraint qualifications for nonconvex and nondifferentiable SIPs are intro-

duced in [15, 16]; for instance Abadie, Basic, Zangwill, and Guignard constraint qual-

ifications. There presented Fritz-John and Karush-Kuhn-Tucker type necessary and

sufficient optimality conditions for these problem.

The aim of this paper is to provide the Karush-Kuhn-Tucker type condition for

optimal solution of nonsmooth SIP, by using Arrow-Hurwicz-Uzawa constraint qualifi-

cation, based on Clarke subdifferential.

We organize the paper as follows. In Section 2, basic notations and results of non-

smooth analysis are reviewed. In Section 3, we introduce the Arrow-Hurwicz-Uzawa

constraint qualification for nonconvex SIPs, and investigate a necessary optimality con-

dition of Karush-Kuhn-Tucker type. Then, there is devoted to the discussion of a new

constraint qualification and its relation with the Slater constraint qualification.

2 Notations and Preliminaries

In this section we briefly overview some notions of variational analysis widely used in

formulations and proofs of main results of the paper. For more details, discussion, and

applications see [2, 7, 17].

Given a nonempty set M ⊆ <n, we denote by cl(M), conv(M), and cone(M), the

closure of M , convex hull and convex cone (containing the origin) generated by M ,

respectively. The polar cone and strict polar cone of M are defined respectively by:

M0 := {d ∈ <n | 〈x, d〉 ≤ 0, ∀x ∈M}

M− := {d ∈ <n | 〈x, d〉 < 0, ∀x ∈M},

where 〈., .〉 exhibits the standard inner product in <n. Notice that M0 is always closed

convex cone. It is easy to show that if M− 6= φ then cl(M−) = M0.
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Definition 2.1 Let ϕ : <n → < be a locally Lipschitz function and x̂ ∈ dom(f).

I: The generalized Clarke directional derivative of ϕ at x̂ in the direction d ∈ <n is

defined by

ϕ0(x̂; d) := lim sup
y→x̂,t↓0

ϕ(y + td)− ϕ(y)

t
.

II: The Clarke subdifferential of ϕ at x̂ is defined by

∂cϕ(x̂) := {ξ ∈ <n | ϕ0(x̂; d) ≥ 〈ξ, d〉, ∀d ∈ <n}.

Observe that the Clarke subdifferential of a locally Lipschitz function at an interior

point of its domain is always nonempty, compact, and convex cone. The Clarke subd-

ifferential reduce to the classical gradient for continuously differentiable functions and

to the subdifferential of convex analysis for convex ones.

Let us recall the following theorems which will be used in the sequel.

Theorem 2.2 ([7]) Let {Mα|α ∈ Λ} be an arbitrary collection of nonempty convex

sets in <n. Then, every non-zero vector of conv(
⋃
α∈ΛMα) can be expressed as a non-

negative linear combination of n or fewer linearly independent vectors, each belonging

to a different Mα.

Theorem 2.3 ([7]) Let M be a nonempty compact subset of <n such that 0 /∈

conv(M). Then cone(M) is a closed cone.

Theorem 2.4 ([2]) Let ϕ and ψ are locally Lipschitz from <n to <, and x̂ ∈

dom(ϕ) ∩ dom(ψ). Then, the following properties hold:

a: ϕ0(x̂; d) = max{〈ξ, d〉 | ξ ∈ ∂cϕ(x̂)}, ∀d ∈ <n.

b: d→ ϕ0(x̂; d) is a convex function, and ∂cϕ(x) = ∂ϕ0(x; .)(0), where ∂ϕ(x̂) denotes

the subdifferential of convex function ϕ at x̂.

c: x 7→ ϕ(x) is an upper semicontinuous set-valued function.
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d: ∂c(ϕ+ ψ)(x̄) ⊆ ∂cϕ(x̄) + ∂cψ(x̄).

Furthermore, if ϕ and ψ are convex, then equality holds in above virtue.

e: If x̂ is a minimum point of ϕ over <n, then 0 ∈ ∂cϕ(x̂).

Definition 2.5 Let ϕ : <n → < be a locally Lipschitz function. ϕ is said to be

pseudoconcave at x̂ if for all x ∈ <n,

ϕ0(x̂;x− x̂) ≤ 0⇒ ϕ(x) ≤ ϕ(x̂).

3 Main Results

In this section we introduce a constraint qualification for a locally Lipschitz semi-infinite

problem. Also, we shall obtain an Karush-Kuhn-Tucker (KKT, in brief) type necessary

optimality conditions for it.

Let P denote the feasible solutions of SIP

P := {x ∈ <n | gi(x) ≤ 0, ∀ i ∈ I}.

For a given x̂ ∈ P , let I x̂ denote the index set of all active constraints at x̂; that is

I x̂ := {i ∈ I | gi(x̂) = 0}.

Set

V := {i ∈ I | gi is pseudoconcave at x̂} ,

W := I\V,

G(x) := sup
i∈W

gi(x), ∀x ∈ P.

One reason for difficulty of extending the results from a finite inequality problem to

SIP is that in the finite case G(.) is locally Lipschitz and we have (see [2, Propisition

2.3.12])

∂cG(x̂) ⊆ conv(
⋃

i∈W∩Ix̂
∂cgi(x̂)), ∀x ∈ P, (1)

but in general, (1) does not hold if I is infinite (see [2, Theorem 2.8.2]).
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Remark 3.1 An interesting sufficient condition ensuring the Lipschitz property of

G(.) around x̂, can found in [17, Theorem 9.2].

Let

E(x̂) :=
⋃

i∈W∩Ix̂
∂cgi(x̂),

F (x̂) :=
⋃

i∈V ∩Ix̂
∂cgi(x̂),

K(x̂) := E(x̂) ∪ F (x̂) =
⋃
i∈Ix̂

∂cgi(x̂),

We now extend the Arrow-Hurwicz-Uzawa constraint qualification (AHUCQ, in brief)

for SIP.

Definition 3.2 Let x̂ is a feasible solution of SIP. We say that the AHUCQ is

satisfied at x̂ if

(i): G(.) is Lipschitz around x̂.

(ii):

∂cG(x̂) ⊆ conv(E(x̂)). (2)

(iii):

E−(x̂) ∩ F 0(x̂) 6= ∅. (3)

Remarks 3.3

1. The definition 3.2 reduce to the classical AHUCQ -which is considered in [1]- for

finite differentiable problems.

2. Owing to the [7, pp. 267], the estimate of (2) is equivalent to ∂cG(x̂) = conv(E(x̂)),

for convex SIPs.

3. It is known that if for all i ∈ I, gi is convex function; I is a compact set in

some metric space; and for each fixed x̃ ∈ P the function i → gi(x̃) is upper

semicontinuous on I, then (2) verifies at every x̂ ∈ P (see [7, pp. 267]).
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There is no relation of implication between the virtues of (2) and (3). Indeed, for any

finite I, inclusion of (2) is trivially true, but it may not satisfy in inequality of (3); while

the following example the system actually satisfies in (3) at x̂ = 0, but the estimation

(2) does not hold at this point.

Example: Let I = {0, 1, 2 . . .}, x̂ = 0, and

g0(x) = 2x,

g2k+1(x) = x− 1

k + 1
, k = 0, 1, 2, . . .

g2k(x) = 3x− 1

k
, k = 1, 2, . . . .

Since gis are linear, we obtain that V = ∅ and W = I.

We observe that:

P = (−∞, 0], I x̂ = {0} , E(x̂) = K(x̂) = {2} ,

and

G(x) = sup
i∈{1, 2, ...}

{g0(x), gi(x)} =

 x if x < 0

3x if x ≥ 0.

Since

E−(x̂) = (−∞, 0),

F 0(x̂) = <,

∂cG(x̂) = [1, 3]

conv(E(x̂)) = {2} ,

the system does not satisfy in (3) but the virtue of (2) is true.

Now, the optimality condition of KKT-type for SIP is stated as follows.

Theorem 3.4 (KKT condition) Suppose that x̂ is an optimal solution of SIP, and

assume that the AHUCQ satisfies at x̂.
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(a): One has

0 ∈ ∂cf(x̂) + cl(cone(K(x̂))). (4)

(b): If, in addition, cone(K(x̂)) is closed cone, then there exist scalers λi, i ∈ I x̂,

which finite numbers of them are nonzero, such that

0 ∈ ∂cf(x̂) +
∑
i∈Ix̂

λi∂cgi(x̂). (5)

Proof:

(a): Since E−(x̂) ∩ F 0(x̂) 6= ∅, we can choice a vector d ∈ E−(x̂) ∩ F 0(x̂). Thus

〈ξ, d〉 < 0, ∀ξ ∈ E(x̂), (6)

〈η, d〉 ≤ 0, ∀η ∈ F (x̂). (7)

Let ξ̂ ∈ conv(E(x̂)). Then, there exist scalers γ1, . . . , γs ≥ 0, and vectors ξ1, . . . , ξs ∈

E(x̂), such that
s∑

v=1

γv = 1, ξ̂ =
s∑

v=1

γvξv.

Using the virtue of (6) we have

〈ξ̂, d〉 =
s∑

v=1

γv〈ξv, d〉 < 0,

and hence –in view of (2)– we conclude

d ∈
(
conv(E(x̂))

)−
⊆ (∂cG(x̂))−.

Thus

G0(x̂; d) < 0,

and consequently, there exists a scaler δ1 > 0, such that

gi(x̂+ βd) ≤ G(x̂+ βd) < G(x̂) ≤ 0, ∀ 0 ≤ β ≤ δ, ∀ i ∈W. (8)

On the other hand, in regard to (7), we have

g0
j (x̂; d) ≤ 0, ∀ j ∈ V.
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Thus, for all β̂ ∈ (0, 1] we obtain

g0
j (x̂;

1

β̂
[(x̂+ β̂d)− x̂]) = g0

j (x̂; d) ≤ 0, ∀ j ∈ V.

Using the pseudoconcavity of gj (j ∈ V ), we get

gj(x̂+ β̂d) ≤ gj(x̂) ≤ 0, ∀ β̂ ∈ (0, 1], ∀ j ∈ V. (9)

Therefore, in view of (8)-(9), we have

x̂+ td ∈ P, ∀ 0 ≤ t ≤ min {1, δ1} ,

and by minimality of x̂, we conclude that

1

β̂
(f(x̂+ td)− f(x̂)) ≥ 0, ∀ 0 ≤ t ≤ min {1, δ1} .

Summarizing, –since d is an arbitrary element of E−(x̂) ∩ F 0(x̂)– we have

f0(x̂; d) ≥ 0, ∀ d ∈ E−(x̂) ∩ F 0(x̂).

Since (
cl(cone(K(x̂)))

)0
= K0(x̂) = E0(x̂) ∩ F 0(x̂) = cl(E−(x̂) ∩ F 0(x̂)),

and since each gi(x̂; .) is continuous, we obtain that

f0(x̂; d) ≥ 0, ∀ d ∈
(
cl(cone(K(x̂)))

)0
:= X.

Thus, the following convex function attains its minimum at d̂ = 0:

Ψ(.) := ΦX(.) + f0(x̂; .),

where ΦX(.) denotes the indicator function of X, it is defined as

ΦX(y) :=

 0 if y ∈ X,

+∞ if y /∈ X.

Hence –in view of Theorem 2.4– we get

0 ∈ ∂Ψ(0) = ∂ΦX(0) + ∂f0(x̂; .)(0) = cl(cone(K(x̂))) + ∂cf(x̂).

(b): It is follows from virtue of (4) and Theorem 2.2.
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Remark 3.5 If I is a finite set and for each i ∈ I, gi is differentiable, then

cone(K(x̂)) is closed.

Recall, the following definition from [9, Definition 3.6].

Definition 3.6 We say that the SIP satisfies the Slater constraint qualification

(SCQ, in brief) if gis are convex function (for all i ∈ I); I ⊆ <m is a compact set;

gi(x) is a continuous function of (i, x) in I×<n; and there is a point x0 ∈ <n such that

gi(x0) < 0, for all i ∈ I.

Theorem 3.7 Suppose that SIP satisfies the SCQ. Then

(i): The SIP satisfies the AHUCQ at each x̂ ∈ P .

(ii): cone(K(x̂)) is a closed cone for all x̂ ∈ P .

Proof:

(i): By definition of SCQ we have

V = ∅ = F (x̂), I = W, K(x̂) = E(x̂).

Let x0 be a point which satisfies in definition of SCQ. For all i0 ∈ I x̂ and ξ ∈ ∂gi0(x̂),

we have

〈ξ, x0 − x̂〉 ≤ gi0(x0)− gi0(x̂) = gi0(x0) < 0.

Thus, (x0 − x̂) ∈ K−(x̂), which implies that (3) is verify. Owning to the Remark 3.3,

the proof is complete.

(ii): Since K−(x̂) 6= ∅ –by (i) in above– it is easy to see 0 /∈ conv(K(x̂)). On

the other hand, according to [7, Theorem 4.4.1] K(x̂) is a compact set. Owing to the

Theorem 2.3, the proof is complete.

The following result –which was proved in [9] by another approach– is immediate

from Theorems 3.4 and 3.7.
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Theorem 3.8 Suppose that x̂ is an optimal solution of a convex SIP, and SCQ

holds. Then, there exist scalers λi, i ∈ I x̂, which finite numbers of them are nonzero,

such that

0 ∈ ∂f(x̂) +
∑
i∈Ix̂

λi∂gi(x̂).

4 Conclusions

We have established a Karush-Kuhn-Tucker type necessary optimality condition for

nonsmooth semi-infinite programming problems under analogous of the Arrow-Hurwitcz-

Uzawa constraint qualification which is based on the Clarke subdifferential. Further-

more, we have extended our results to the case where the problem satisfies in Slater

constraint qualification which is based on the convex subdifferential.
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