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Abstract

In this paper, we have used Chebyshev polynomials to solve linear and non-

linear Volterra-Fredholm integral equations, numerically. First we introduce these

polynomials, then we use them to change the Volterra-Fredholm integral equation

to a linear or nonlinear system. Finally, the numerical examples illustrate the effi-

ciency of this method.
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1 Introduction

Nonlinear Volterra-Fredholm integral equations are defined as follows:

y(x)−
∫ x

−1
k1(x, t)[y(t)]p dt−

∫ 1

−1
k2(x, t)[y(t)]q dt = f(x), x ∈ [−1, 1]. (1)

where, the functions f(x), k1(x, t) and k2(x, t) are known and y(x) is the unknown

function to be determined and p, q ≥ 1 are two positive integers.

Previously, some kinds of Volterra-Fredholm integral equations had been solved nu-

merically, by different methods that are indicated below. First of all Kauthen used
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Taylor polynomials to solve this kind of equations [1], then Yalsinbas and Sezer used

them in obtaining approximate solution of high-order linear Vloterra-Fredholm integro-

differential equations [2]. In [3], Yalsinbas developed numerical solution of nonlinear

Volterra-Fredholm integral equations by using Taylor polynomials. Also, Maleknejad

and Mahmodi [4] introduced a method for numerical solution of high-order nonlinear

Volterra-Fredholm integro-differential equations based on Taylor polynomials. In [5],

Yousefi and Razzaghi solved nonlinear Volterra-Fredholm integral equation by using

Legendre wavelets. Yusufoglu and Erbas presented the method based on interpolation

in solving linear Volterra-Fredholm integral equations [6]. Before that, Chebyshev poly-

nomials also were applied for solving nonlinear Fredholm-Volterra integro-differential

equations by Cerdik-Yaslan and Akyuz-Dascioglu [7].

We know that Chebyshev polynomials of the first kind of degree n are defined by [3]:

Tn(x) = cos(n arccos(x)), n ≥ 0.

Also these polynomials are derived from the following recursive formula [3]:

T0(x) = 1,

T1(x) = x,

Tn+1(x) = 2xTn(x)− Tn−1(x), n = 1, 2, 3, ...

These polynomials are orthogonal on [-1,1] with respect to weight function ω(x) =

(1− x2)−1/2 [3]:

∫ 1

−1
Ti(x)Tj(x)ω(x) dx =


π, i = j = 0,

π
2 δij , i, j > 0.

where

δij =


1, i = j,

0, i 6= j.
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We apply these polynomials, as basis in [-1,1], to solve the equation (1) and reduce it

to a system of equations. The generated system, which according the type of equation

(1) would be either linear or nonlinear, can be solved through various methods and

accordingly the unknown coefficients can be found.

2 Approximation of function by using Chebyshev poly-

nomials

We suppose the function y(x) defined in [-1,1]. This function may be represented by

first kind Chebyshev polynomials series as [8]:

y(x) =
∞∑
i=0

yiTi(x), (2)

if we truncated the series (2), then we can write (2) as follows:

y(x) '
N∑
i=0

yiTi(x) = Y TT (x), (3)

where

Y = [y0, y1, y2, ...yN ]T , (4)

T (x) = [T0(x), T1(x), T2(x), ..., TN (x)]T . (5)

Clearly Y and T are (N + 1)× 1 vectors and coefficients yi are given by [8]:

yi = (y(x), Ti(x)) =


1
π

∫ 1
−1 ω(x)y(x) dx, i = 0,

2
π

∫ 1
−1 ω(x)Ti(x)y(x) dx, i > 0.

(6)

where ω(x) is the weight function as (1− x2)−1/2.

Similarly, regarding a function with two variable of k(x, t), which is defined on [-1,1],

we’ll have [9]:

k(x, t) '
N∑
i=0

N∑
j=0

Ti(x)kijTj(t) = T T (x)KT (t), (7)
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where K is a (N + 1)× (N + 1) matrix, with

Kij = (Ti(x), (k(x, t), Tj(t))). (8)

Also the positive integer powers of a function may be approximated as:

[y(x)]p ' [Y TT (x)]p = Y ∗
T

p T (x), (9)

where Y ∗p is called the operational vector of the pth power of the function y(x). The

elements of Y ∗p are nonlinear combinations of the elements of the vector Y.

For the Chebyshev polynomials with N=3 the second and third product vector opera-

tion vector of y(x) is computed as follows [10]:

Y ∗2 =
1

2



2y20 + y21 + y22 + y23

4y0y1 + 2y1y2 + 2y2y3

y21 + 4y0y2 + y1y3

2y1y2 + 4y0y3


,

also

Y ∗3 =
1

4



4y30 + 6y0y
2
1 + 3y21y2 + 6y0y

2
2 + 6y1y2y3 + 6y0y

2
3

12y20y1 + 3y31 + 12y0y1y2 + 6y1y
2
2 + 3y21y3 + 12y0y2y3 + 3y22y3 + 6y1y

2
3

6y0y
2
1 + 12y20y2 + 6y21y2 + 3y32 + 12y0y1y3 + 6y1y2y3 + 6y2y

2
3

y31 + 12y0y1y2 + 3y1y
2
2 + 12y20y3 + 6y21y3 + 6y22y3 + 3y33


.

3 The operational matrices

In this section we introduce the operational matrix as P [11] for computing the

integral of vector T(x) which defined in (5).

For T0(x) and T1(x) we have:∫ x

−1
T0(t) dt = 1 + x = T0(x) + T1(x),
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∫ x

−1
T1(t) dt =

x2

2
− 1

2
=
−1

4
T0(x) +

1

4
T2(x), (10)

and similarly for TN−1(x) which N ≥ 3 we have:

∫ x

−1
TN−1(t) dt =

1

2N
TN (x)− 1

2(N − 2)
TN−2(x) +

(−1)N−1

1− (N − 1)2
T0(x). (11)

Equations (10) and (11) allow us to write:

∫ x

−1
T (t) dt = PT (x), (12)

where P is the (N + 1)× (N + 1) operational matrix as follows:

P =



1 1 0 0 . . . 0 0

−1
4 0 1

4 0 . . . 0 0

−1
3 −1

2 0 1
6 . . . 0 0

1
8 0 −1

4 0 . . . 0 0

. . . . . . .

. . . . . . .

. . . . . . .

(−1)N−1

1−(N−1)2 0 0 0 . . . 0 1
2N

(−1)N
1−N2 0 0 0 . . . − 1

2(N−1) 0



. (13)

The following equation is generated in the same way

∫ 1

−1
T (t) dt = PT (1). (14)

Moreover, for Chebyshev polynomials we have:

T (x)T T (x)C ' C̃TT (x), (15)

where C is (N + 1)× 1 vector as

C = [c0, c1, c2, ..., cN ], (16)
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and C̃ is a (N + 1)× (N + 1) square matrix

C̃ =
1

2



2c0 c1 . . . ci . . . cN−1 cN

2c1 2c0 + c2 . . . ci−1 + ci+1 . . . cN−2 + cN cN−1

. . . . . .

. . . . . . . . .

. . . . . .

2ci ci−1 + ci+1 . . . 2c0 + c2i . . . cN−i−1 cN−i

. . . . . .

. . . . . . . . .

. . . . . .

2cN−1 cN−2 + cN . . . cN−i−1 . . . 2c0 c1

2cN cN−1 . . . cN−i . . . c1 2c0



,

(17)

where i = [N2 ].

4 The method of solving

Now we begin to solve the integral equation (1) by using Chebyshev polynomials of

first kind.

If we compute the approximation of y(x), k1(x, t), k2(x, t), [y(x)]p and [y(x)]q with method

of Section 2, we’ll have:

y(x) = T T (x)Y,

[y(x)]m = Y ∗
T

m T (x), for m = p, q,

ki(x, t) = T T (x)KiT (t), for i = 1, 2, (18)

where T (x) is defined in (5), Y is an unknown vector and Y ∗m are operational vectors

that are described in Section 2.
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Using (15) and (18), we have:∫ x

−1
k1(x, t)[y(t)]p dt '

∫ x

−1
T T (x)K1T (t)T T (t)Y ∗p dt = T T (x)K1

∫ x

−1
T (t)T T (t)Y ∗p dt

= T T (x)K1

∫ x

−1
Ỹ ∗

T

p T (t) dt = T T (x)K1Ỹ
∗T
p PT (x). (19)

Similarly we’ll have: ∫ 1

−1
k2(x, t)[y(t)]q dt = T T (x)K2Ỹ

∗T
q PT (1). (20)

Then from equations (1), (18), (19) and (20) we get

T T (x)Y − T T (x)K1Ỹ
∗T
p PT (x)− T T (x)K2Ỹ

∗T
q PT (1) = f(x). (21)

To find the unknown coefficients, we first collocate equation (21) in (N + 1) at the

collocation points of {xi}Ni=0 in the interval [-1,1]. Here, we can consider the xi points

as:

xi = −1 +
2i

N
, i = 0, 1, 2, ..., N.

So we’ll have:

T T (xi)Y − T T (xi)K1Ỹ
∗T
p PT (xi)− T T (xi)K2Ỹ

∗T
q PT (1) = f(xi). (22)

The result of equation (22) will be either a linear or nonlinear system, by solving which

through direct or iterative methods we can compute the unknown coefficients.

5 Examples

In this section, we applied presented method in this paper for solving integral equa-

tion (1) and solved some examples. In examples 5.3 and 5.4 we used Newton’s iterative

method for solving introduced nonlinear system. The computations associated with

the examples were performed using Mathematica 5.2 software.
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Example 5.1 Consider the following linear Volterra-Fredholm integral equation:

y(x)−
∫ x

−1
(2x− t)y(t) dt−

∫ 1

−1
(2x+ 3x2t)y(t) dt = f(x), (23)

where f(x) = −2x3 − 9
2x

2 + 12x+ 1
2 .

For N=10, the method gives the exact solution y(x) = 3x − 1. Table 1 shows the

numerical results for N=7 and N=9.

Table 1. The Numerical results in Example 5.1.

xi Exact solution Approximation solution Approximation solution

in N=7 in N=9

-1 -4 -3.99106 -3.99954

-0.75 -3.25 -3.24584 -3.24952

-0.5 -2.5 -2.50061 -2.49950

-0.25 -1.75 -1.75537 -1.74948

0 -1 -1.01012 -0.99945

0.25 -0.25 -0.26486 -0.24944

0.5 0.5 0.48040 0.50006

0.75 1.25 1.22567 1.25061

1 2 1.97094 2.00063

Example 5.2 As the second example consider the following integral equation:

y(x)−
∫ x

−1
ex+ty(t) dt−

∫ 1

−1

x

2
ex+ty(t) dt = f(x), (24)

where f(x) = e−x − ex, with exact solution y(x) = e−x.

Table 2 illustrate the numerical results.
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Table 2. The Numerical results in Example 5.2.

xi Exact solution Approximation solution Approximation solution

in N=9 in N=11

-1 2.71828 2.56680 2.71980

-0.75 2.117 1.98470 2.11800

-0.5 1.64872 1.60013 1.64945

-0.25 1.28403 1.27500 1.28440

0 1 1.00000 1.00000

0.25 0.77880 0.77501 0.77844

0.5 0.60653 0.60068 0.60586

0.75 0.47237 0.47456 0.47171

1 0.36788 0.28520 0.36840

Example 5.3 For the following nonlinear Volterra-Fredholm integral equation:

y(x)−
∫ x

−1
(x+ t)[y(t)]2 dt−

∫ 1

−1
(x− t)y(t) dt = f(x), (25)

where f(x) = −1
3 [7x4 − 2x − 7], with exact solution y(x) = 2x, Table 3 shows the

numerical results for N=8 and N=10.
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Table 3. The Numerical results in Example 5.3.

xi Exact solution Approximation solution Approximation solution

in N=8 in N=10

-1 -2 -1.95641 -2.00093

-0.75 -1.5 -1.46166 -1.50076

-0.5 -1 -0.96692 -1.00059

-0.25 -0.5 -0.47217 -0.50042

0 0 -0.02258 -0.00025

0.25 0.5 0.51733 0.49992

0.5 1 1.01208 1.00009

0.75 1.5 1.50683 1.50026

1 2 2.00158 2.00043

Example 5.4 Consider the following nonlinear Volterra-Fredholm integral equation:

y(x)−
∫ x

−1
(2x− t)y(t) dt−

∫ 1

−1
(2xt+ 3x2t)[y(t)]2 dt = f(x), (26)

where f(x) = −2
3 x

3 + 11
2 x

2 + 20
3 x−

1
6 .

For N=12, the method gives the exact solution y(x) = x−1. Table 4 shows the numerical

results for N=10 and N=11.
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Table 4. The Numerical results in Example 5.4.

xi Exact solution Approximation solution Approximation solution

in N=10 in N=11

-1 -2 -2.07704 -1.99995

-0.75 -1.75 -1.78054 -1.74994

-0.5 -1.5 -1.50994 -1.50005

-0.25 -1.25 -1.25609 -1.25008

0 -1 -1.00574 -1.00008

0.25 -0.75 -0.75589 -0.75007

0.5 -0.5 -0.50348 -0.50004

0.75 -0.25 -0.23144 -0.24996

1 0 0.12992 0.00009

6 Conclusion

In this work, we solved linear and nonlinear Volterra-Fredholm integral equations

by using Chebyshev polynomials. Nonlinear integral equations are usually difficult to

solve analytically. In many cases, it is required to obtain the approximate solution, for

this purpose the presented method can be proposed.

This method can be extended and applied to the system of linear and nonlinear integral

equations, but some modifications are required.
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