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Abstract

In this paper we study the structure of Clifford Algebras Clp,q associated with

a non degenerate symmetric bilinear form of signature (p, q), where p, q are positive

integer. Also we present a description of these algebras as matrix algebras, and

then we will discuss the periodicity of these algebras completely. As a consequence,

We create the related algebra matrix tables for these algebras, when 0 ≤ p ≤ 8 and

8 ≤ q ≤ 13. We also present an isomorphism between Cl0q,p and Cl0p,q.
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1 Introduction

Given any vector space, V ,over a field, K, there is a special K-algebra, T (V ), together

with a linear map, i : V → T (V ), following the universal mapping property [1]. The

algebra, T (V ), is the tensor algebra of V . It may be constructed as the direct sum

T (V ) =
⊕
i≥0

V ⊗i, Where V 0 = K, and V ⊕i is the i-fold tensor product of V with itself.

For every i ≥ 0, there is a natural injection ιn : V ⊗n → T (V ) and in particular, an

injection ι0 : K → T (V ). The multiplicative unit, 1, of T (V ) is the image, ι0(1), in

T (V ) of the unit, 1, of the field K. Since every v ∈ T (V ) can be expressed as a finite
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sum v = v1 + v2 + . . . + vk, where vi ∈ V ⊗ni and ni the are natural numbers with

ni 6= nj if i 6= j, to define multiplication in T (V ), using bilinearity [1], it is enough to

define the multiplication V ⊗m × V ⊗n → V ⊗(m+n). Of course, this is defined by:

(v1 ⊗ . . .⊗ vm).(w1 ⊗ . . .⊗ wn) = v1 ⊗ . . .⊗ vm ⊗ w1 ⊗ . . .⊗ wn.

It is important to note that multiplication in T (V ) is not commutative. Also, the

unit, 1, of T (V ) is not equal to 1, the unit of the field K. However, in view of the

injection ι0 : K → T (V ), for the sake of notational simplicity, we will denote 1 by 1.

More generally, in view of the injections ιn : V ⊗n → T (V ), we identify elements of V ⊗n

with their images in T (V ).

Most algebras of interest arise as well-chosen quotients of the tensor algebra T (V ).

This is true for the exterior algebra, Λ∗V (also called Grassmann algebra), where we

take the quotient of T (V ) modulo the ideal generated by all elements of the form v⊗v,

where v ∈ V , and for the symmetric algebra, Sym V , where we take the quotient of

T (V ) modulo the ideal generated by all elements of the form v ⊗ w − w ⊗ v, where

v, w ∈ V . A Clifford algebra may be viewed as a refinement of the exterior algebra,

in which we take the quotient of T (V ) modulo the ideal generated by all elements of

the form v ⊗ v − Φ(v).1, where Φ is the quadratic form associated with a symmetric

bilinear form, ϕ : V × V → K, and · : K × T (V ) → T (V ) denotes the scalar product

of the algebra T (V ). For simplicity, let us assume that we are now dealing with real

algebras.

2 Preliminaries

Definition 2.1 Let V be a real finite-dimensional vector space. A quadratic form

on V is a mapping Φ : V → < such that

1. Φ(λv) = λ2Φ(v) for all λ ∈ <, v ∈ V .
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2. the mapping (x, y) → (Φ(x + y) − Φ(x) − Φ(y)) = ϕ(x, y) of V × V into < is

bilinear.

Then ϕ is called the bilinear form associated to Φ.

It is obvious from the definition that ϕ is symmetric:

ϕ(x, y) = ϕ(y, x)

and ϕ(x, x) = Φ(x).

Two elements x, y of V such that ϕ(x, y) = 0 are said to be orthogonal to each other.

Definition 2.2 Let V be a real finite-dimensional vector space together with a sym-

metric bilinear form ϕ : V × V → <, and associated quadratic form, Φ(x) = ϕ(x, x).

A Clifford algebra associated with V and Φ is a real algebra, Cl(V,Φ), together with a

linear map, i : V → Cl(V,Φ) satisfying the condition (i(v))2 = Φ(v).1 for all v ∈ V

and so that for every real algebra, A, and every linear map, f : V → A, with

(f(v))2 = Φ(v).1 for all v ∈ V,

there is a unique algebra homomorphism, f̄ : Cl(V,Φ)→ A so that

f = f̄oi,

as in the diagram below:

V -

@
@

@@R

Cl(V,Φ)
i

?
A

f f̄

We use the notation, λu, for the product of a scalar, λ ∈ < and of an element, u,

in the algebra Cl(V,Φ) and juxtaposition, uv, for the multiplication of two elements,

u, v ∈ Cl(V,Φ).
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By a familiar argument, any two Clifford algebras associated with V and Φ are

isomorphic.

To show the existence of Cl(V,Φ), observe that T (V )/U does the job, where U is

the ideal of T (V ) generated by all elements of the form v ⊗ v − Φ(v).1, where v ∈ V

The map i : V → Cl(V,Φ) is the composition

V
ι1−→ T (V )

π−→ T (V )

U

where π is the natural quotient map. We often denote the Clifford algebra Cl(V,Φ)

simply by Cl(Φ).

Observe that when Φ ≡ 0 is the quadratic form identically zero everywhere, then the

Clifford algebra Cl(V, 0) is just the exterior algebra, Λ∗V .

Remark: As in the case of the tensor algebra, the unit of the algebra Cl(Φ) and

the unit of the field < are not equal.

Since

Φ(u+ v)− Φ(u)− Φ(v) = 2ϕ(u, v)

and

(i(u+ v))2 = i(u)2 + i(v)2 + i(u)i(v) + i(v)i(u),

using the fact that

(i(u))2 = Φ(u).1,

We get:

i(u)i(v) + i(v)i(u) = 2ϕ(u, v).1.

As a consequence, if (u1, . . . , un) is an orthogonal basis w.r.t. ϕ(which means that

ϕ(uj , uk) = 0 for all j 6= k ), we have:

i(uj)i(uk) + i(uk)i(uj) = 0 for all j 6= k.
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Proposition 2.3 For every vector space, V , of finite dimension n, the map i : V →

Cl(Φ) is injective. Given a basis (e1, e2, . . . , en) of V the 2n − 1 products

i(e1)i(e2) · · · i(ek), 1 ≤ i1 < i2 < . . . < ik ≤ n,

and 1 form a basis of Cl(Φ). Thus, Cl(Φ) has dimension 2n.

Proof. See[4].

Remark: Since i is injective, for simplicity of notation, from now on, we write u

for i(u) Proposition 2.3 implies that if (e1, e2, . . . , en) is an orthogonal basis of V, then

Cl(Φ) is the algebra presented by the generators (e1, e2, . . . , en) and the relations

e2j = Φ(ej).1, 1 ≤ j ≤ n, and ejek = −ekej , 1 ≤ j, k ≤ n, j 6= k.

In other words, Clifford algebra Cl(Φ) consists of certain kinds of ”polynomials,” linear

combinations of monomials of the form
∑
J λJeJ , where J = {i1, i2, . . . , ik} is any subset

(possibly empty) of {1, . . . , n} with 1 ≤ i1 < i2 < · · · < ik ≤ n, and the monomial ej is

the ”product”ei1ei2 . . . eik .

Definition 2.4 The even-graded elements (the elements of Cl0(Φ) ) are those gen-

erated by 1 and the basis elements consisting of an even number of factors, ei1ei2 . . . ei2k,

and the odd-graded elements (the elements of Cl1(Φ)) are those generated by the basis

elements consisting of an odd number of factors, ei1ei2 . . . ei2k+1
.

Remark: we assume that Φ is the quadratic form on <ndefined by

Φ(x1, . . . , xn) = −(x21 + . . .+ x2n)

Let Cln denote the Clifford algebra Cl(Φ).

Example 2.5 Cl1 is spanned by the basis (1, e1). We have

e21 = −1.
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Under the bijection

e1 7→ i

Cl1 is isomorphic to the algebra of complex numbers, /C.

Example 2.6 Let (e1, e2) be the canonical basis of <2, then Cl2 is spanned by the

basis by (1, e1, e2, e1e2). Furthermore, we have:

e2e1 = −e1e2, e21 = −1, e22 = −1, (e1e2)
2 = −1.

Under the bijection

e1 7→ i, e2 7→ j, e1e2 7→ k,

it is easily checked that the quaternion identities

i2 = j2 = k2 = −1 ij = −ji = k, jk = −kj = i, ki = −ik = j.

hold, and thus, Cl2, is isomorphic to the algebra of quaternions, /H.

Definition 2.7 For every non degenerate quadratic form Φ over < there is an or-

thogonal basis with respect to which Φ is given by

Φ(x1, . . . , xp+q) = x21 + · · ·+ x2p − (x2p+1 + · · ·+ x2p+q)

where p and q only depend on Φ . The quadratic form corresponding to (p, q) is denoted

Φp,q and we call (p, q) the signature of Φp,q. Let n = p+q We denote the Clifford algebra

associated with <n and Φp,q where has Φp,q signature (p, q) by Clp,q. Note that with

this new notation, Cln = Cl0,n.

Example 2.8 Let Clp,q = Cl(<p+q,Φp,q), where Φ has signature (p, q), and or-

thonormal basis is written as {e1, . . . , ep, ε1, . . . , εq} where e21 = · · · = e2p = 1, ε21 =
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· · · = ε2q = −1. Thus, we have:

Cl1,0 = <⊕ < with e1 = ±1;

Cl0,1 = /C, with ε1 = i;

Cl2,0 = M2(<), with e1 =

 0 1

1 0

 , e2 =

 1 0

0 −1

 , e1e2 =

 0 1

1 0

 ;

Cl0,2 = /H, with ε1 = i ε2 = j, ε1ε2 = k;

Cl1,1 = M2(<), with e1 =

 0 1

1 0

 , ε1 =

 0 −1

1 0

 , e1ε1 =

 1 0

0 −1

 .

3 Main Results

It turns out that the real algebras Clp,q can be build up as tensor products of the

basic algebras < , /C and /H. According to [6], the description of the real algebras

Clp,q as matrix algebras and the 8-periodicity was first discovered by Elie Cartan in

1908. Of course, Cartan used a very different notation. These facts were rediscovered

independently by [2] in the 1960’s (see Raoul Bott’s comments in Volume 2 of his

Collected papers.).

As mentioned in Example 2.3, we have:

Cl0,1 = /C, Cl0,2 = /H, Cl1,0 = <⊕ <, Cl2,0 = M2(<),

And

Cl1,1 = M2(<).

The key to the classification is the following lemma:

Lemma 3.1 We have the isomorphisms

Cl0,n+2 ≈ Cln,0 ⊗ Cl0,2

Cln+2,0 ≈ Cl0,n ⊗ Cl2,0

Clp+1,q+1 ≈ Clp,q ⊗ Cl1,1

for all n, p, q ≥ 0.
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Proof. Let Φ0,n+2(x) = − ‖x‖2, where ‖x‖ is the standard Euclidean norm on <n+2,

and let (e1, . . . , en+2) be an orthonormal basis for <n+2 under the standard Euclidean

inner product. We also let (e′1, . . . , e
′
n) be a set of generators for Cln,0 and (e′′1, e

′′
2) be

a set of generators for Cl0,2. We can define a linear map f : <n+2 → Cln,0 ⊗ Cl0,2 by

its action on the basis (e1, . . . , en+2) as follows:

f(ei) =

 e′i ⊕ e′′1e′′2 1 ≤ i ≤ n

1⊕ e′′i−n n+ 1 ≤ i ≤ n+ 2

Observe that for 1 ≤ i, j ≤ n we have

f(ei) f(ej) + f(ej) f(ei) = (e′ie
′
j + e′je

′
i)⊗ (e′′1e

′′
2)2 = −2δij1⊗ 1,

Since (e′′2)2 = (e′′1)2 = −1, e′′1e
′′
2 = −e′′2e′′1 and e′ie

′
j = −e′je′i, for all i 6= j, and (e′i)

2 = 1,

for all i with 1 ≤ i ≤ n. Also for n+ 1 ≤ i, j ≤ n+ 2 we have

f(ei) f(ej) + f(ej) f(ei) = 1⊗ (e′′i−ne
′′
j−n + e′′j−ne

′′
i−n) = −2δij1⊗ 1,

and

f(ei) f(ek) + f(ek) f(ei) = 2e′i ⊗ (e′′1e
′′
2e
′′
k−n + e′′k−ne

′′
1e
′′
2) = 0,

for all 1 ≤ i, j ≤ n and n + 1 ≤ k ≤ n + 2 (since e′′k−n = e′′1 or e′′k−n = e′′2). Thus, we

have:

f(x)2 = − ‖x‖2 .1⊗ 1 for all x ∈ <n+2,

and by the universal mapping property of Cl0,n+2, we get an algebra map:

f̃ : Cl0,n+2 → Cln,0 ⊗ Cl0,2.

Since f̃ maps onto a set of generators, it is surjective. However,

dim(Cl0,n+2) = 2n+2 = 2n.2 = dim(Cln,0)dim(Cl0,2) = dim(Cln,0 ⊗ Cl0,2)

and f̃ is an isomorphism.

The proof of the second identity is analogous. For the third identity, we have:

Φp,q(x1, . . . , xp+q) = x21 + · · ·+ x2p − (x2p+1 + · · ·+ x2p+q),
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And let (e1, . . . , ep+1, ε1, . . . , εq+1) be an orthogonal basis for <p+q+2 so that Φp+1,q+1(ei) =

+1 and Φp+1,q+1(εj) = −1 for i = 1, . . . , p + 1 and j = 1, . . . , q + 1. Also, let

(e′1, . . . , e
′
p, ε
′
1, . . . , ε

′
q) be a set of generators for Clp,q and (e′′1, ε

′′
1) be a set of gener-

ators for Cl1,1.We define a linear map f : <p+q+2 → Clp,q ⊗ Cl1,1 by its action on the

basis as follows:

f(ei) =

 e′i ⊗ e′′1ε′′1 1 ≤ i ≤ p

1⊗ e′′1 i = p+ 1
, f(εj) =

 ε′j ⊗ e′′1ε′′1 1 ≤ j ≤ q

1⊗ ε′′1 j = q + 1

We can check that

f(x)2 = Φp+1,q+1(x).1⊗ 1 for all x ∈ <p+q+2,

and we finish the proof as in the first case.

To apply this lemma, we need some further isomorphisms among various matrix alge-

bras.

Proposition 3.2 The following isomorphisms hold:

Mm(<)⊗Mn(<) ≈Mmn(<) for all m, n ≥ 0

Mn(<)⊗R k ≈Mn(k) for all K = /C or K = /H and all n ≥ 0

/C ⊗< /C ≈ /C ⊕ /C

/C ⊗< /H ≈M4(/C)

Proof. See[5].

Proposition 3.3 (Cartan/Bott) For all n ≥ 0 we have the following isomorphisms:

Cl0,n+8 ≈ Cl0,n ⊗ Cl0,8

Cln+8,0 ≈ Cln,0 ⊗ Cl8,0

Furthermore,

Cl0,8 = Cl8,0 = M16(<).
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Proof. By Lemma 3.1 we have the isomorphisms:

Cl0,n+2 ≈ Cln,0 ⊗ Cl0,2, Cln+2,0 ≈ Cl0,n ⊗ Cl2,0,

and thus,

Cl0,n+8 ≈ Cln+6,0⊗Cl0,2 ≈ Cl0,n+4⊗Cl2,0⊗Cl0,2 ≈ · · · ≈ Cl0,n⊗Cl2,0⊗Cl0,2⊗Cl2,0⊗Cl0,2.

Since Cl0,2 = /H and Cl2,0 = M2(<), by Proposition 3.1, we get:

Cl2,0 ⊗ Cl0,2 ⊗ Cl2,0 ⊗ Cl0,2 ≈ /H ⊗ /H ⊗M2(<)⊗M2(<) ≈M4(<)⊗M4(<) ≈M16(<).

The second isomorphism is proved in a similar fashion.

Lemma 3.4 Clp+4,q ≈ Clp,q ⊗M2(/H) ≈ Clp,q+4.

Proof. We will prove the first isomorphism. Take A = Clp,q ⊗M2(/H), define

f : <p+4,q → A

f(er) = e′r⊗

 0 −k

k 0

 r = 1, . . . , p, f(εs) = ε′s⊗

 0 −k

k 0

 , s = 1, . . . , q,

and on the remaining four basic vectors, define

f(ep+1) = 1⊗

 0 −i

i 0

 , f(ep+2) = 1⊗

 0 −j

j 0

 ,

f(ep+3) = 1⊗

 0 1

1 0

 , f(ep+4) = 1⊗

 1 0

0 −1

 .

From all this, we can deduce the following Theorem:

Theorem 3.5 For 0 ≤ p ≤ 8 and 8 ≤ q ≤ 13 matrix representations of the Clifford

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

B. Askari and F. Fattahi 71

algebras Clp,q are exhibited in the following table:

q →

p M16(<) M16(/C) M16(/H) M16(/H)⊕M16(/H) M32(/H) M64(/C)

↓ M16(<)⊕M16(<) M32(<) M32(/C) M32(/H) M32(/H)⊕M32(/H) M64(/H)

M32(<) M32(<)⊕M32(<) M64(<) M64(/C) M64(/H) M64(/H)⊕M64(/H)

M32(/C) M64(<) M64(<)⊕M64(<) M128(<) M128(/C) M128(/H)

M32(/H) M64(/C) M128(<) M128(<)⊕M128(<) M256(<) M512(/C)

M32(/H)⊕M32(/H) M64(/H) M128(/C) M256(<) M256(<)⊕M256(<) M512(<)

M64(/H) M64(/H)⊕M64(/H) M128(/H) M256(/C) M512(<) M512(<)⊕M512(<)

M128(/C) M128(/H) M128(/H)⊕M128(/H) M256(/H) M512(/C) M1024(<)

M256(<) M256(/C) M256(/H) M256(/H)⊕M256(/H) M512(/H) M1024(/C)

Remark: A table of the Clifford algebras Clp,q for 0 ≤ p, q ≤ 7 can be found in [7].

Lemma 3.6 We have the isomorphisms

Clp,q ≈ Cl0p,q+1

Cl0p+1,q ≈ Clq,p

Clp+1,q ≈ Clq+1,p

for all p, q ≥ 0.

Proof. Let (e1, . . . , ep, ε1, . . . , εp) be an orthonormal basis for <p+q, We also let

(e′1, . . . , e
′
p, ε
′
1, . . . , ε

′
q+1) be a set of generators for Clp,q+1. We can define a linear map

f : <p+q → Cl0p,q+1 by its action on the basis (e1, . . . , en, ε1, . . . , εq) as follows:

f(ei) = e′iε
′
q+1 i = 1, . . . , p,

f(εj) = ε′jε
′
q+1 j = 1, . . . , q.

We have

f(ei) f(ej) + f(ej) f(ei) = e′iε
′
q+1e

′
jε
′
q+1 + e′jε

′
q+1e

′
iε
′
q+1 = e′ie

′
j + e′je

′
i = 2δij ,

And

f(εi) f(εj) + f(εj) f(εi) = ε′iε
′
q+1ε

′
jε
′
q+1 + ε′jε

′
q+1ε

′
iε
′
q+1 = ε′iε

′
j + ε′jε

′
i = −2δij ,
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And also

f(ei) f(εj) + f(εj) f(ei) = e′iε
′
q+1ε

′
jε
′
q+1 + ε′jε

′
q+1e

′
iε
′
q+1 = e′iε

′
j + ε′je

′
i = 0.

Thus, by the universal mapping property of Clp,q, we get an algebra map:

f̃ : Clp,q → Cl0p,q+1.

Since f̃ maps onto a set of generators, it is surjective. However,

dim(Cl0p,q+1) =
2p+q+1

2
= 2p+q = dim(Clp,q)

and f̃ is an isomorphism.

For the second identity we define f : <q+p → Cl0p+1,q on basic vectors by:

f(er) = e′re
′
p+1 r = 1, . . . , q,

f(εs) = ε′se
′
p+1 s = 1, . . . , p.

Then

f(er)
2 = e′re

′
p+1e

′
re
′
p+1 = −e′2re′

2
p+1 = −e′2r = −1,

f(es)
2 = ε′se

′
p+1ε

′
se
′
p+1 = −ε′2se′

2
p+1 = −ε′2s = +1,

The rest of the proof is like the previous part. For the third identity, according to the

previous parts, we have:

Clp+1,q ≈ Cl0p+1,q+1 ≈ Clq+1,p.

Corollary: Cl0p,q ≈ Cl0q,p.
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