$\emph{Mathematical Sciences} \qquad \qquad \boxtimes$ $\qquad \qquad \boxtimes$ $\qquad \qquad \text{Vol. 5, No. 1 (2011) 61-74}$

Periodicity of the Clifford Algebras

 $\rm{B.~Askari^1,~F.~Fattahi}$

Department of Mathematics, Ghorveh Branch, Islamic Azad University, Ghorveh, Iran.

Abstract

B. Assari, **F.** rattam
 **Archive of Mathematics, Ghorveh Branch, Islamic Azad University, Ghorveh, Iran.

Abstract**
 Abstract
 Abstract
 Abstract
 Abstract
 Abstract
 Abstract
 Abstract
 Abstract
 Abst In this paper we study the structure of Clifford Algebras $Cl_{p,q}$ associated with a non degenerate symmetric bilinear form of signature (p, q) , where p, q are positive integer. Also we present a description of these algebras as matrix algebras, and then we will discuss the periodicity of these algebras completely. As a consequence, We create the related algebra matrix tables for these algebras, when $0 \le p \le 8$ and $8 \le q \le 13$. We also present an isomorphism between $Cl_{q,p}^0$ and $Cl_{p,q}^0$.

Keywords: Tensor algebra, Exterior algebra, Clifford algebra, Quadratic form, Bilinear form.

c 2011 Published by Islamic Azad University-Karaj Branch.

1 Introduction

Given any vector space, V, over a field, K, there is a special K-algebra, $T(V)$, together with a linear map, $i: V \to T(V)$, following the universal mapping property [1]. The algebra, $T(V)$, is the *tensor algebra* of V. It may be constructed as the direct sum $T(V) = \bigoplus$ $i \geq 0$ $V^{\otimes i}$, Where $V^0 = K$, and $V^{\oplus i}$ is the *i*-fold tensor product of V with itself. For every $i \geq 0$, there is a natural injection $\iota_n : V^{\otimes n} \to T(V)$ and in particular, an injection $\iota_0 : K \to T(V)$. The multiplicative unit, 1, of $T(V)$ is the image, $\iota_0(1)$, in $T(V)$ of the unit, 1, of the field K. Since every $v \in T(V)$ can be expressed as a finite

¹Corresponding author. E-mail: Bahman Askari2003@yahoo.com

sum $v = v_1 + v_2 + \ldots + v_k$, where $v_i \in V^{\otimes n_i}$ and n_i the are natural numbers with $n_i \neq n_j$ if $i \neq j$, to define multiplication in $T(V)$, using bilinearity [1], it is enough to define the multiplication $V^{\otimes m} \times V^{\otimes n} \to V^{\otimes (m+n)}$. Of course, this is defined by:

$$
(v_1 \otimes \ldots \otimes v_m) . (w_1 \otimes \ldots \otimes w_n) = v_1 \otimes \ldots \otimes v_m \otimes w_1 \otimes \ldots \otimes w_n.
$$

It is important to note that multiplication in $T(V)$ is not commutative. Also, the unit, 1, of $T(V)$ is not equal to 1, the unit of the field K. However, in view of the injection $\iota_0 : K \to T(V)$, for the sake of notational simplicity, we will denote 1 by 1. More generally, in view of the injections $\iota_n: V^{\otimes n}\to T(V)$, we identify elements of $V^{\otimes n}$ with their images in $T(V)$.

is important to note that multiplication in $T(V)$ is not commutative. *A*
 A, of $T(V)$ is not equal to 1, the unit of the field *K*. However, in vie-

on $\iota_0: K \to T(V)$, for the sake of notational simplicity, we will de Most algebras of interest arise as well-chosen quotients of the tensor algebra $T(V)$. This is true for the *exterior algebra*, $\Lambda^* V$ (also called Grassmann algebra), where we take the quotient of $T(V)$ modulo the ideal generated by all elements of the form $v \otimes v$, where $v \in V$, and for the symmetric algebra, Sym V, where we take the quotient of $T(V)$ modulo the ideal generated by all elements of the form $v \otimes w - w \otimes v$, where $v, w \in V$. A *Clifford algebra* may be viewed as a refinement of the exterior algebra, in which we take the quotient of $T(V)$ modulo the ideal generated by all elements of the form $v \otimes v - \Phi(v)$. where Φ is the *quadratic form* associated with a symmetric bilinear form, $\varphi: V \times V \to K$, and $\cdot: K \times T(V) \to T(V)$ denotes the scalar product of the algebra $T(V)$. For simplicity, let us assume that we are now dealing with real algebras.

2 Preliminaries

Definition 2.1 Let V be a real finite-dimensional vector space. A quadratic form on V is a mapping $\Phi: V \to \mathbb{R}$ such that

1.
$$
\Phi(\lambda v) = \lambda^2 \Phi(v)
$$
 for all $\lambda \in \Re$, $v \in V$.

2. the mapping $(x, y) \rightarrow (\Phi(x + y) - \Phi(x) - \Phi(y)) = \varphi(x, y)$ of $V \times V$ into \Re is bilinear.

Then φ is called the bilinear form associated to Φ .

It is obvious from the definition that φ is symmetric:

$$
\varphi(x, y) = \varphi(y, x)
$$

and $\varphi(x, x) = \Phi(x)$.

Two elements x, y of V such that $\varphi(x, y) = 0$ are said to be orthogonal to each other.

 $\varphi(x, y) = \varphi(y, x)$
 $\varphi(x, y) = \varphi(y, x)$

(*x, x*) = $\Phi(x)$.

Hennents *x, y* of *V* such that $\varphi(x, y) = 0$ are said to be orthogonal to each

finition 2.2 Let *V* be a real finite-dimensional vector space together with

bili **Definition 2.2** Let V be a real finite-dimensional vector space together with a symmetric bilinear form $\varphi: V \times V \to \Re$, and associated quadratic form, $\Phi(x) = \varphi(x, x)$. A Clifford algebra associated with V and Φ is a real algebra, $Cl(V, \Phi)$, together with a linear map, $i: V \to Cl(V, \Phi)$ satisfying the condition $(i(v))^2 = \Phi(v)$. I for all $v \in V$ and so that for every real algebra, A, and every linear map, $f: V \to A$, with

$$
(f(v))^2 = \Phi(v).1 \quad \text{for all} \quad v \in V,
$$

there is a unique algebra homomorphism, \bar{f} : $Cl(V, \Phi) \rightarrow A$ so that

$$
f = \bar{f}oi,
$$

as in the diagram below:

$$
V \xrightarrow{i } Cl(V, \Phi) \xrightarrow[\
$$

We use the notation, λu , for the product of a scalar, $\lambda \in \Re$ and of an element, u, in the algebra $Cl(V, \Phi)$ and juxtaposition, uv, for the multiplication of two elements, $u, v \in Cl(V, \Phi)$.

By a familiar argument, any two Clifford algebras associated with V and Φ are isomorphic.

To show the existence of $Cl(V, \Phi)$, observe that $T(V)/U$ does the job, where U is the ideal of $T(V)$ generated by all elements of the form $v \otimes v - \Phi(v)$.1, where $v \in V$ The map $i: V \to Cl(V, \Phi)$ is the composition

$$
V \xrightarrow{\iota_1} T(V) \xrightarrow{\pi} \frac{T(V)}{U}
$$

where π is the natural quotient map. We often denote the Clifford algebra $Cl(V, \Phi)$ simply by $Cl(\Phi)$.

Observe that when $\Phi \equiv 0$ is the quadratic form identically zero everywhere, then the Clifford algebra $Cl(V, 0)$ is just the exterior algebra, $\Lambda^* V$.

 $V\xrightarrow{u_1}T(V)\xrightarrow{\pi} \frac{T(V)}{U}$
 T is the natural quotient map. We often denote the Clifford algebra v by $Cl(\Phi)$.

we that when $\Phi \equiv 0$ is the quadratic form identically zero everywhere, it algebra $Cl(V,0)$ is just the ext **Remark:** As in the case of the tensor algebra, the unit of the algebra $Cl(\Phi)$ and the unit of the field \Re are not equal.

Since

$$
\Phi(u+v) - \Phi(u) - \Phi(v) = 2\varphi(u,v)
$$

and

$$
(i(u + v))^2 = i(u)^2 + i(v)^2 + i(u)i(v) + i(v)i(u),
$$

using the fact that

$$
(i(u))^2 = \Phi(u).1,
$$

We get:

$$
i(u)i(v) + i(v)i(u) = 2\varphi(u, v).1.
$$

As a consequence, if (u_1, \ldots, u_n) is an orthogonal basis w.r.t. φ (which means that $\varphi(u_j, u_k) = 0$ for all $j \neq k$), we have:

$$
i(u_j)i(u_k) + i(u_k)i(u_j) = 0 \quad \text{for all} \quad j \neq k.
$$

Proposition 2.3 For every vector space, V, of finite dimension n, the map $i: V \rightarrow$ $Cl(\Phi)$ is injective. Given a basis (e_1, e_2, \ldots, e_n) of V the $2^n - 1$ products

$$
i(e_1)i(e_2)\cdots i(e_k), \qquad 1 \leq i_1 < i_2 < \ldots < i_k \leq n,
$$

and 1 form a basis of $Cl(\Phi)$. Thus, $Cl(\Phi)$ has dimension 2^n .

Proof. See[4].

Remark: Since i is injective, for simplicity of notation, from now on, we write u for $i(u)$ Proposition 2.3 implies that if (e_1, e_2, \ldots, e_n) is an orthogonal basis of V, then $Cl(\Phi)$ is the algebra presented by the generators (e_1, e_2, \ldots, e_n) and the relations

$$
e_j^2 = \Phi(e_j).1, \quad 1 \le j \le n, \quad and \quad e_j e_k = -e_k e_j, \quad 1 \le j, \ k \le n, \quad j \ne k.
$$

In other words, Clifford algebra $Cl(\Phi)$ consists of certain kinds of "polynomials," linear combinations of monomials of the form $\sum_{J} \lambda_J e_J$, where $J = \{i_1, i_2, \ldots, i_k\}$ is any subset (possibly empty) of $\{1, ..., n\}$ with $1 \leq i_1 < i_2 < \cdots < i_k \leq n$, and the monomial e_j is the "product" $e_{i_1}e_{i_2}\ldots e_{i_k}$.

F. See[4].
 Ark: Since *i* is injective, for simplicity of notation, from now on, we
 AP (*P*) Proposition 2.3 implies that if $(e_1, e_2, ..., e_n)$ is an orthogonal basis of

is the algebra presented by the generators $(e_$ **Definition 2.4** The even-graded elements (the elements of $Cl^0(\Phi)$) are those generated by 1 and the basis elements consisting of an even number of factors, $e_{i_1}e_{i_2} \ldots e_{i_2k}$, and the odd-graded elements (the elements of $Cl^1(\Phi)$) are those generated by the basis elements consisting of an odd number of factors, $e_{i_1}e_{i_2} \ldots e_{i_{2k+1}}$.

Remark: we assume that Φ is the quadratic form on \mathbb{R}^n defined by

$$
\Phi(x_1, \dots, x_n) = -(x_1^2 + \dots + x_n^2)
$$

Let Cl_n denote the Clifford algebra $Cl(\Phi)$.

Example 2.5 Cl_1 is spanned by the basis $(1, e_1)$. We have

$$
e_1^2 = -1.
$$

Under the bijection

 $e_1 \mapsto i$

 $Cl₁$ is isomorphic to the algebra of complex numbers, \mathcal{C} .

Archive 2.6 Let (e_1, e_2) be the canonical basis of \Re^2 , then Cl_2 is spanne

by $(1, e_1, e_2, e_1e_2)$. Furthermore, we have:
 $e_2e_1 = -e_1e_2$, $e_1^2 = -1$, $e_2^2 = -1$, $(e_1e_2)^2 = -1$.

the bijection
 $e_1 \mapsto i$, e_2 **Example 2.6** Let (e_1, e_2) be the canonical basis of \mathbb{R}^2 , then Cl_2 is spanned by the basis by $(1, e_1, e_2, e_1e_2)$. Furthermore, we have:

$$
e_2e_1 = -e_1e_2
$$
, $e_1^2 = -1$, $e_2^2 = -1$, $(e_1e_2)^2 = -1$.

Under the bijection

$$
e_1 \mapsto i, \qquad e_2 \mapsto j, \qquad e_1 e_2 \mapsto k,
$$

it is easily checked that the quaternion identities

$$
i^2 = j^2 = k^2 = -1
$$
 $ij = -ji = k$, $jk = -kj = i$, $ki = -ik = j$.

hold, and thus, Cl_2 , is isomorphic to the algebra of quaternions, $#$.

Definition 2.7 For every non degenerate quadratic form Φ over \Re there is an orthogonal basis with respect to which Φ is given by

$$
\Phi(x_1, \ldots, x_{p+q}) = x_1^2 + \cdots + x_p^2 - (x_{p+1}^2 + \cdots + x_{p+q}^2)
$$

where p and q only depend on Φ . The quadratic form corresponding to (p, q) is denoted $\Phi_{p,q}$ and we call (p,q) the signature of $\Phi_{p,q}$. Let $n=p+q$ We denote the Clifford algebra associated with \mathbb{R}^n and $\Phi_{p,q}$ where has $\Phi_{p,q}$ signature (p,q) by $Cl_{p,q}$. Note that with this new notation, $Cl_n = Cl_{0,n}$.

Example 2.8 Let $Cl_{p,q} = Cl(\mathbb{R}^{p+q}, \Phi_{p,q})$, where Φ has signature (p,q) , and orthonormal basis is written as $\{e_1,\ldots,e_p,\varepsilon_1,\ldots,\varepsilon_q\}$ where $e_1^2 = \cdots = e_p^2 = 1, \varepsilon_1^2 =$ $\cdots = \varepsilon_q^2 = -1$. Thus, we have: $Cl_{1,0} = \Re \oplus \Re$ with $e_1 = \pm 1;$ $Cl_{0,1} = \mathcal{C},$ with $\varepsilon_1 = i;$ $Cl_{2,0} = M_2(\Re), \quad with \quad e_1 =$ $\sqrt{ }$ $\overline{ }$ 0 1 1 0 \setminus $\Big\},\quad e_2=$ $\sqrt{ }$ $\overline{ }$ 1 0 $0 -1$ \setminus $\Big\}, \quad e_1e_2 =$ $\sqrt{ }$ $\overline{ }$ 0 1 1 0 \setminus \vert $Cl_{0,2} = H$, with $\varepsilon_1 = i$ $\varepsilon_2 = j$, $\varepsilon_1 \varepsilon_2 = k$; $Cl_{1,1} = M_2(\Re), \quad with \quad e_1 =$ $\sqrt{ }$ $\overline{ }$ 0 1 1 0 \setminus $\Big\}, \quad \varepsilon_1 =$ $\sqrt{ }$ $\overline{}$ $0 -1$ 1 0 \setminus $\int_0^1 e_1 \varepsilon_1 =$ \overline{I} \downarrow 1 0 $0 -1$ \setminus $\vert \cdot$

3 Main Results

Archive $\varepsilon_1 = i \quad \varepsilon_2 = j, \quad \varepsilon_1 \varepsilon_2 = k;$ *
* $= M_2(\Re)$ *, with* $\varepsilon_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ *,* $\varepsilon_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ *,* $\varepsilon_1 \varepsilon_1 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ *,* $\varepsilon_1 \varepsilon_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ *.
 Arain Resu* It turns out that the real algebras $Cl_{p,q}$ can be build up as tensor products of the basic algebras \Re , \mathcal{C} and \sharp . According to [6], the description of the real algebras $Cl_{p,q}$ as matrix algebras and the 8-periodicity was first discovered by Elie Cartan in 1908. Of course, Cartan used a very different notation. These facts were rediscovered independently by [2] in the 1960's (see Raoul Bott's comments in Volume 2 of his Collected papers.).

As mentioned in Example 2.3, we have:

$$
Cl_{0,1} = \mathcal{C}, \quad Cl_{0,2} = \mathcal{H}, \quad Cl_{1,0} = \mathfrak{R} \oplus \mathfrak{R}, \quad Cl_{2,0} = M_2(\mathfrak{R}),
$$

And

$$
Cl_{1,1}=M_2(\Re).
$$

The key to the classification is the following lemma:

Lemma 3.1 We have the isomorphisms

$$
Cl_{0,n+2} \approx Cl_{n,0} \otimes Cl_{0,2}
$$

$$
Cl_{n+2,0} \approx Cl_{0,n} \otimes Cl_{2,0}
$$

$$
Cl_{p+1,q+1} \approx Cl_{p,q} \otimes Cl_{1,1}
$$

for all $n, p, q \geq 0$.

Proof. Let $\Phi_{0,n+2}(x) = -||x||^2$, where $||x||$ is the standard Euclidean norm on \Re^{n+2} , and let (e_1, \ldots, e_{n+2}) be an orthonormal basis for \mathbb{R}^{n+2} under the standard Euclidean inner product. We also let (e'_1, \ldots, e'_n) be a set of generators for $Cl_{n,0}$ and (e''_1, e''_2) be a set of generators for $Cl_{0,2}$. We can define a linear map $f: \mathbb{R}^{n+2} \to Cl_{n,0} \otimes Cl_{0,2}$ by its action on the basis (e_1, \ldots, e_{n+2}) as follows:

$$
f(e_i) = \begin{cases} e'_i \oplus e''_1 e''_2 & 1 \leq i \leq n \\ 1 \oplus e''_{i-n} & n+1 \leq i \leq n+2 \end{cases}
$$

Observe that for $1 \leq i, j \leq n$ we have

$$
f(e_i) f(e_j) + f(e_j) f(e_i) = (e'_i e'_j + e'_j e'_i) \otimes (e''_1 e''_2)^2 = -2\delta_{ij} 1 \otimes 1,
$$

 $\label{eq:2.1} \begin{split} f(e_i) &= \left\{ \begin{array}{ll} e_i' \oplus e_1''e_2'' & 1 \leq i \leq n \\ 1 \oplus e_{i-n}' & n+1 \leq i \leq n+2 \\ \end{array} \right. \\ \text{We that for } 1 \leq i,j \leq n \text{ we have} \\ f(e_i) \ f(e_j) + f(e_j) \ f(e_i) &= (e_i'e_j' + e_j'e_i') \otimes (e_1''e_2'')^2 = -2\delta_{ij}1 \otimes 1, \\ (e_2'')^2 &= (e_1'')^2 = -1, \ e_1''e_2'' = -e_2''e_1'' \text$ Since $(e''_2)^2 = (e''_1)^2 = -1$, $e''_1e''_2 = -e''_2e''_1$ and $e'_i e'_j = -e'_j e'_i$, for all $i \neq j$, and $(e'_i)^2 = 1$, for all *i* with $1 \le i \le n$. Also for $n + 1 \le i$, $j \le n + 2$ we have

$$
f(e_i) f(e_j) + f(e_j) f(e_i) = 1 \otimes (e''_{i-n}e''_{j-n} + e''_{j-n}e''_{i-n}) = -2\delta_{ij}1 \otimes 1,
$$

and

$$
f(e_i) f(e_k) + f(e_k) f(e_i) = 2e'_i \otimes (e''_1 e''_2 e''_{k-n} + e''_{k-n} e''_1 e''_2) = 0,
$$

for all $1 \le i, j \le n$ and $n+1 \le k \le n+2$ (since $e''_{k-n} = e''_1$ or $e''_{k-n} = e''_2$). Thus, we have:

$$
f(x)^2 = - ||x||^2 .1 \otimes 1
$$
 for all $x \in \mathbb{R}^{n+2}$,

and by the universal mapping property of $Cl_{0,n+2}$, we get an algebra map:

$$
\tilde{f}: Cl_{0,n+2} \to Cl_{n,0} \otimes Cl_{0,2}.
$$

Since \tilde{f} maps onto a set of generators, it is surjective. However,

$$
dim(Cl_{0,n+2}) = 2^{n+2} = 2^n \cdot 2 = dim(Cl_{n,0}) dim(Cl_{0,2}) = dim(Cl_{n,0} \otimes Cl_{0,2})
$$

and \tilde{f} is an isomorphism.

The proof of the second identity is analogous. For the third identity, we have:

$$
\Phi_{p,q}(x_1,\ldots,x_{p+q})=x_1^2+\cdots+x_p^2-(x_{p+1}^2+\cdots+x_{p+q}^2),
$$

<www.SID.ir>

B. Askari and F. Fattahi 69

And let $(e_1,\ldots,e_{p+1},\varepsilon_1,\ldots,\varepsilon_{q+1})$ be an orthogonal basis for \Re^{p+q+2} so that $\Phi_{p+1,q+1}(e_i)$ +1 and $\Phi_{p+1,q+1}(\varepsilon_j) = -1$ for $i = 1, ..., p+1$ and $j = 1, ..., q+1$. Also, let $(e'_1,\ldots,e'_p,\varepsilon'_1,\ldots,\varepsilon'_q)$ be a set of generators for $Cl_{p,q}$ and (e''_1,ε''_1) be a set of generators for $Cl_{1,1}$. We define a linear map $f: \mathbb{R}^{p+q+2} \to Cl_{p,q} \otimes Cl_{1,1}$ by its action on the basis as follows:

$$
f(e_i) = \begin{cases} e'_i \otimes e''_1 e''_1 & 1 \le i \le p \\ 1 \otimes e''_1 & i = p + 1 \end{cases}, \quad f(\varepsilon_j) = \begin{cases} \varepsilon'_j \otimes e''_1 e''_1 & 1 \le j \le q \\ 1 \otimes \varepsilon''_1 & j = q + 1 \end{cases}
$$

We can check that

$$
f(x)^2 = \Phi_{p+1,q+1}(x).1 \otimes 1 \quad \text{for all} \quad x \in \Re^{p+q+2},
$$

and we finish the proof as in the first case.

To apply this lemma, we need some further isomorphisms among various matrix algebras.

Proposition 3.2 The following isomorphisms hold:

$$
f(e_i) = \begin{cases} e'_i \otimes e''_1 \varepsilon''_1 & 1 \leq i \leq p \\ 1 \otimes e''_1 & i = p + 1 \end{cases}, \quad f(\varepsilon_j) = \begin{cases} \varepsilon'_j \otimes e''_1 \varepsilon''_1 & 1 \leq j \leq q \\ 1 \otimes \varepsilon''_1 & j = q + 1 \end{cases}
$$

n check that

$$
f(x)^2 = \Phi_{p+1,q+1}(x).1 \otimes 1 \quad \text{for all} \quad x \in \Re^{p+q+2},
$$

e finish the proof as in the first case.
ply this lemma, we need some further isomorphisms among various mat
opposition 3.2 The following isomorphisms hold:

$$
M_m(\Re) \otimes M_n(\Re) \approx M_{mn}(\Re) \quad \text{for all } m, n \geq 0
$$

$$
M_n(\Re) \otimes_R k \approx M_n(k) \quad \text{for all } K = \emptyset \text{ or } K = \text{H} \text{ and all } n \geq 0
$$

$$
\emptyset \otimes_R \emptyset \approx \emptyset \oplus \emptyset
$$

$$
\emptyset \otimes_R \mathbb{H} \approx M_4(\emptyset)
$$

f.s. See[5].

Proof. See[5].

Proposition 3.3 *(Cartan/Bott)* For all $n \geq 0$ we have the following isomorphisms:

$$
Cl_{0,n+8} \approx Cl_{0,n} \otimes Cl_{0,8}
$$

$$
Cl_{n+8,0} \approx Cl_{n,0} \otimes Cl_{8,0}
$$

Furthermore,

$$
Cl_{0,8} = Cl_{8,0} = M_{16}(\Re).
$$

Proof. By Lemma 3.1 we have the isomorphisms:

$$
Cl_{0,n+2} \approx Cl_{n,0} \otimes Cl_{0,2}, \qquad Cl_{n+2,0} \approx Cl_{0,n} \otimes Cl_{2,0},
$$

and thus,

$$
Cl_{0,n+8} \approx Cl_{n+6,0} \otimes Cl_{0,2} \approx Cl_{0,n+4} \otimes Cl_{2,0} \otimes Cl_{0,2} \approx \cdots \approx Cl_{0,n} \otimes Cl_{2,0} \otimes Cl_{0,2} \otimes Cl_{2,0} \otimes Cl_{0,2}.
$$

 $A \approx Cl_{n+6,0} \otimes Cl_{0,2} \approx Cl_{0,n+4} \otimes Cl_{2,0} \otimes Cl_{0,2} \approx \cdots \approx Cl_{0,n} \otimes Cl_{2,0} \otimes Cl_{0,2} \otimes Cl_{0,2}$
 $Cl_{0,2} \otimes Cl_{0,2} \otimes Cl_{0,2} \approx H \otimes H \otimes M_2(\Re) \otimes M_2(\Re) \approx M_4(\Re) \otimes M_4(\Re) \approx$
 $A \otimes Cl_{0,2} \otimes Cl_{2,0} \otimes Cl_{0,2} \approx H \otimes H \otimes M_2(\Re) \otimes M_2(\Re) \approx M_4$ Since $Cl_{0,2} = H$ and $Cl_{2,0} = M_2(\Re)$, by Proposition 3.1, we get: $Cl_{2,0}\otimes Cl_{0,2}\otimes Cl_{2,0}\otimes Cl_{0,2}\approx H\otimes H\otimes M_2(\Re)\otimes M_2(\Re)\approx M_4(\Re)\otimes M_4(\Re)\approx M_{16}(\Re).$ The second isomorphism is proved in a similar fashion.

Lemma 3.4
$$
Cl_{p+4,q} \approx Cl_{p,q} \otimes M_2(\#) \approx Cl_{p,q+4}
$$
.

Proof. We will prove the first isomorphism. Take $A = Cl_{p,q} \otimes M_2(\#)$, define $f: \Re^{p+4,q} \to A$

$$
f(e_r) = e'_r \otimes \left(\begin{array}{cc} 0 & -k \\ k & 0 \end{array}\right) \qquad r = 1, \ldots, p, \qquad f(\varepsilon_s) = \varepsilon'_s \otimes \left(\begin{array}{cc} 0 & -k \\ k & 0 \end{array}\right), \qquad s = 1, \ldots, q,
$$

and on the remaining four basic vectors, define

$$
f(e_{p+1}) = 1 \otimes \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad f(e_{p+2}) = 1 \otimes \begin{pmatrix} 0 & -j \\ j & 0 \end{pmatrix},
$$

$$
f(e_{p+3}) = 1 \otimes \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad f(e_{p+4}) = 1 \otimes \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
$$

From all this, we can deduce the following Theorem:

Theorem 3.5 For $0 \le p \le 8$ and $8 \le q \le 13$ matrix representations of the Clifford

B. Askari and F. Fattahi 71

algebras $Cl_{p,q}$ are exhibited in the following table:

$$
\begin{array}{ll}\n & q \rightarrow \\
 p \quad M_{16}(\Re) \quad M_{16}(\Re) \quad M_{16}(\Re) \quad M_{16}(\Re) \quad M_{16}(\Re) \oplus M_{16}(\Re) \quad M_{22}(\Re) \quad M_{23}(\Re) \quad M_{32}(\Re) \quad M_{32}(\Re) \oplus M_{32}(\Re) \quad M_{32}(\Re) \oplus M_{
$$

Remark: A table of the Clifford algebras $Cl_{p,q}$ for $0 \leq p, q \leq 7$ can be found in [7].

Lemma 3.6 We have the isomorphisms

$$
Cl_{p,q} \approx Cl_{p,q+1}^0
$$

$$
Cl_{p+1,q}^0 \approx Cl_{q,p}
$$

$$
Cl_{p+1,q} \approx Cl_{q+1,p}
$$

for all $p, q \geq 0$.

Proof. Let $(e_1, \ldots, e_p, \varepsilon_1, \ldots, \varepsilon_p)$ be an orthonormal basis for \Re^{p+q} , We also let $(e'_1,\ldots,e'_p,\varepsilon'_1,\ldots,\varepsilon'_{q+1})$ be a set of generators for $Cl_{p,q+1}$. We can define a linear map $f: \Re^{p+q} \to Cl_{p,q+1}^0$ by its action on the basis $(e_1,\ldots,e_n,\varepsilon_1,\ldots,\varepsilon_q)$ as follows:

$$
f(e_i) = e'_i \varepsilon'_{q+1} \quad i = 1, \dots, p,
$$

$$
f(\varepsilon_j) = \varepsilon'_j \varepsilon'_{q+1} \quad j = 1, \dots, q.
$$

We have

$$
f(e_i) f(e_j) + f(e_j) f(e_i) = e'_i e'_{q+1} e'_j e'_{q+1} + e'_j e'_{q+1} e'_i e'_{q+1} = e'_i e'_j + e'_j e'_i = 2\delta_{ij},
$$

And

$$
f(\varepsilon_i) f(\varepsilon_j) + f(\varepsilon_j) f(\varepsilon_i) = \varepsilon_i' \varepsilon_{q+1}' \varepsilon_j' \varepsilon_{q+1}' + \varepsilon_j' \varepsilon_{q+1}' \varepsilon_i' \varepsilon_{q+1}' = \varepsilon_i' \varepsilon_j' + \varepsilon_j' \varepsilon_i' = -2\delta_{ij},
$$

And also

$$
f(e_i) f(\varepsilon_j) + f(\varepsilon_j) f(e_i) = e'_i \varepsilon'_{q+1} \varepsilon'_j \varepsilon'_{q+1} + \varepsilon'_j \varepsilon'_{q+1} e'_i \varepsilon'_{q+1} = e'_i \varepsilon'_j + \varepsilon'_j e'_i = 0.
$$

Thus, by the universal mapping property of $Cl_{p,q}$, we get an algebra map:

$$
\tilde{f}: Cl_{p,q} \to Cl_{p,q+1}^0.
$$

Since $\tilde f$ maps onto a set of generators, it is surjective. However,

$$
dim(Cl_{p,q+1}^{0}) = \frac{2^{p+q+1}}{2} = 2^{p+q} = dim(Cl_{p,q})
$$

and \tilde{f} is an isomorphism.

For the second identity we define $f: \Re^{q+p} \to Cl_{p+1,q}^0$ on basic vectors by:

$$
f(e_r) = e'_r e'_{p+1} \quad r = 1, \dots, q,
$$

$$
f(\varepsilon_s) = \varepsilon'_s e'_{p+1} \quad s = 1, \dots, p.
$$

Then

$$
\tilde{f}: Cl_{p,q} \to Cl_{p,q+1}^{0}.
$$
\n
$$
\tilde{f} \text{ maps onto a set of generators, it is surjective. However,}
$$
\n
$$
\dim(Cl_{p,q+1}^{0}) = \frac{2^{p+q+1}}{2} = 2^{p+q} = \dim(Cl_{p,q})
$$
\nis an isomorphism.\n\ne second identity we define $f: \Re^{q+p} \to Cl_{p+1,q}^{0}$ on basic vectors by:\n

\n
$$
f(e_r) = e'_r e'_{p+1} \quad r = 1, \ldots, q,
$$
\n
$$
f(\varepsilon_s) = \varepsilon'_s e'_{p+1} \quad s = 1, \ldots, p.
$$
\n
$$
f(e_r)^2 = e'_r e'_{p+1} e'_r e'_{p+1} = -e'_r e'_{p+1} = -e'_r e' = -1,
$$
\n
$$
f(e_s)^2 = \varepsilon'_s e'_{p+1} \varepsilon'_s e'_{p+1} = -\varepsilon'_s e'_{p+1} = -\varepsilon'_s = +1,
$$
\nest of the proof is like the previous part. For the third identity, according to the proof.

\n
$$
Cl_{p+1,q} \approx Cl_{p+1,q+1}^{0} \approx Cl_{q+1,p+1}^{0}.
$$

The rest of the proof is like the previous part. For the third identity, according to the previous parts, we have:

$$
Cl_{p+1,q} \approx Cl_{p+1,q+1}^0 \approx Cl_{q+1,p}.
$$

Corollary: $Cl_{p,q}^0 \approx Cl_{q,p}^0$.

References

[1] Atiyah M.F., Macdonald I.G., Introduction to Commutative Algebra, Addison Wesley, third edition, 1969.

- [2] Baker A., Matrix Groups: An Introduction to Lie Group Theory, SUMS, Springer, 2002.
- [3] Chevalley C., The Algebraic Theory of Spinors and Clifford Algebras, Collected Works, Vol. 2. Springer, first edition, 1997.
- [4] Lawson B.H., Michelsohn M.L., Spin Geometry, Princeton Math. Series, No. 38, Princeton University Press, 1989.
- [5] Lounesto P., Clifford Algebras and Spinors, LMS No. 286, Cambridge University Press, second edition, 2001.
- [6] Porteous I., Topological Geometry, Cambridge University Press, second edition, 1981.
- [7] Tavallaee H.A. (2010) "On Associated and Supported Primes," Mathematical Sciences, $4(1)$, $49-66$.

Archive of SID