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Abstract

In this paper, the variational iteration and the homotopy perturbation methods

are adopted to obtain the solution of the one-dimensional wave equation. The

solutions procedure reveal that the applied methods are very efficient. In addition,

the result obtained is the same as the D’Alembert’s formula for the wave equation.
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1 Introduction

Variational iteration method (VIM) is an analytical method which was established

by He [1-10]. This method has been successfully used by many authors [11-26] as

a powerful mathematical tool for solving many problems. The basic idea of VIM is

to construct a correction functional with a general Lagrange multiplier which can be

identified optimally via variational theory. The method can solve the problems without

any need to discrete the variables, therefore there is no need to compute the round off

errors and one does not require a large computer memory and a lot of time.
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Another type of analytical methods namely the homotopy perturbation method

(HPM) also exists which is a powerful and efficient technique to find the solutions

of the linear and non-linear equations. The method was first introduced by He [27].

In this method, the non-linear problem is transferred to an infinite number of sub-

problems and then the solution is approximated by the sum of solutions of the first

few sub-problems. HPM is a combination of the perturbation and homotopy methods.

This method can take the advantages of the conventional perturbation method while

eliminating its restrictions. In general, this method has been successfully applied to

solve many types of linear and non-linear equations in science and engineering by many

authors [28-35].

In the present article, we aim to achieve D’Alembert’s formula for the wave equation

using the variational iteration and the homotopy perturbation methods. To accomplish

this goal, consider the following one-dimensional wave equation

∂2u(x, t)

∂t2
= c2

∂2u(x, t)

∂x2
,

where u(x, t) is a unknown function and c is a constant. The variables x and t are

the independent variables as well. This equation is also known as the equation of

vibration of a string. Mathematically, the above equation is a linear second order

partial differential equation of hyperbolic type. The wave equation is often encountered

in different fields such as elasticity, aerodynamics, acoustics, and electrodynamics.

The mathematical model of a physical process includes not only the governing

differential equation but also the side conditions to be imposed. Therefore, we solve

the wave equation for the special case when we clamp the string ends at x = 0 and

x = L. Factually, we find the solution of the wave equation

∂2u(x, t)

∂t2
= c2

∂2u(x, t)

∂x2
, t > 0, 0 < x < L, (1)

with the initial conditions

u(x, 0) = f(x),
∂u(x, 0)

∂t
= g(x), 0 ≤ x ≤ L, (2)
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and the boundary conditions

u(0, t) = 0, u(L, t) = 0, t ≥ 0, (3)

also it is necessary to express that f(x) and g(x) are the initial displacement and

velocity, respectively.

D’Alembert in 1747, employed the method of change of variable for solving Eq.(1)

with the initial conditions and obtained the following formula

u(x, t) =
1

2
[f(x+ ct) + f(x− ct)] +

1

2
[G(x+ ct)−G(x− ct)],

where G(x) = 1
c

∫
g(x)dx. This is also known as D’Alembert’s formula and gives the

solution of the wave equation (1) subject to the initial conditions [36].

The rest of this article has been organized as follows: in section two, the basic ideas

of VIM are explained. In section three, the basic concepts of HPM are illustrated. In

section four, both methods are used for obtaining the solution of the wave equation

and finally, a comparison between the employed methods and D’Alembert’s method is

provided in section five.

2 Variational iteration method (VIM)

Consider the following functional equation, L(u) +N(u) = g(x, t),

where L is a linear operator, N is a non-linear operator and g(x, t) is a specific analytical

function. As usual in this method, we consider the following correction functional

un+1(x, t) = un(x, t) +

∫ t

0
λ(τ)[Lun(x, τ) +Nũn(x, τ)− g(x, τ)]dτ,

where λ is a general Lagrange multiplier and can be identified optimally via variational

theory. Also ũn is considered as a restricted variation [5,6], i.e. δũn = 0. In this method,

we first determine the Lagrange multiplier λ that will be identified optimally via inte-

gration by parts. The successive approximations un+1, n ≥ 0, of the solution u will be

readily obtained upon using the determined Lagrange multiplier and by using the initial

approximation u0. Consequently, the solution is given by u(x, t) = limn→∞ un(x, t).
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3 Homotopy perturbation method (HPM)

To illustrate the basic ideas of this method, consider the following general non-linear

differential equation

A(u)− f(r) = 0, r ∈ Ω, (4)

with the following boundary conditions

B(u,
∂u

∂n
) = 0, r ∈ Γ,

where A is a general differential operator, B is a boundary operator, f(r) is a known

analytical function and Γ is the boundary of the domain Ω.

The operator A can be decomposed into a linear part and a non-linear one, desig-

nated as L and N respectively. Hence Eq.(4) can be written as the following form

L(u) +N(u)− f(r) = 0.

Using the homotopy technique, we construct a homotopy v(r, p) : Ω × [0, 1] −→ R

which satisfies

H(v, p) = (1− p)[L(v)− L(u0)] + p[A(v)− f(r)] = 0, (5)

where p ∈ [0, 1] is an embedding parameter and u0 is an initial approximation of Eq.(4)

which satisfies the boundary conditions. Obviously, from Eq.(5) we will have

H(v, 0) = L(v)− L(u0) = 0,

H(v, 1) = A(v)− f(r) = 0.

By changing the value of p from zero to unity, v(r, p) changes from u0(r) to u(r),

in topology this is called deformation and L(v) − L(u0) and A(v) − f(r) are called

homotopic. Due to the fact that p ∈ [0, 1] can be considered as a small parameter,

therefore we consider the solution of Eq.(5) as a power series in p as the following

v =
∞∑
n=0

vnp
n, (6)
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setting p = 1 results in the approximate solution for Eq.(4)

u = lim
p→1

v = v0 + v1 + v2 + · · · .

4 Applying VIM and HPM to the wave equation

VIM: Consider Eq.(1) with (2) and (3), according to variational iteration method,

we derive a correct functional as follows

un+1(x, t) = un(x, t) +

∫ t

0
λ(τ)[

∂2un(x, τ)

∂τ2
− c2∂

2ũn(x, τ)

∂x2
]dτ. (7)

Making the above correction functional stationary, we have

δun+1(x, t) = δun(x, t) + δ

∫ t

0
λ(τ)[

∂2un(x, τ)

∂τ2
]dτ,

thus, we have

δun+1(x, t) = δun(x, t)−δλ′(τ)un(x, τ)|τ=t+δλ(τ)
∂un(x, τ)

∂τ
|τ=t+

∫ t

0
δλ′′un(x, τ)dτ = 0.

This yields the following stationary conditions

δun : λ′′(τ) = 0,

δ
∂un
∂τ

: λ(τ)|τ=t = 0,

δun : 1− λ′(τ)|τ=t = 0.

Therefore, the Lagrange multiplier can be identified as λ = τ − t.

Substituting this value of the Lagrange multiplier into the functional (7) gives the

iteration formula

un+1(x, t) = un(x, t) +

∫ t

0
(τ − t)[∂

2un(x, τ)

∂τ2
− c2∂

2un(x, τ)

∂x2
]dτ. (8)

Consider u0(x, t) = f(x)+ tg(x) as an initial approximation that satisfies the initial

conditions. By the above iteration formula (8), one can obtain the following components

u1(x, t) = f(x) + tg(x) + c2[
t2

2!
f (2)(x) +

t3

3!
g(2)(x)],
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u2(x, t) = u1(x, t) + c4[
t4

4!
f (4)(x) +

t5

5!
g(4)(x)],

u3(x, t) = u2(x, t) + c6[
t6

6!
f (6)(x) +

t7

7!
g(6)(x)],

...

Therefore, the solution of Eq.(1) with the initial conditions will be as

u(x, t) = f(x) + tg(x) + c2[
t2

2!
f (2)(x) +

t3

3!
g(2)(x)] + c4[

t4

4!
f (4)(x) +

t5

5!
g(4)(x)]

+c6[
t6

6!
f (6)(x) +

t7

7!
g(6)(x)] + · · · ,

or

u(x, t) = [f(x)+c2
t2

2!
f (2)(x)+c4

t4

4!
f (4)(x)+· · ·]+[tg(x)+c2

t3

3!
g(2)(x)+c4

t5

5!
g(4)(x)+· · ·].

(9)

Using the Taylor series, we have

f(x) + c2
t2

2!
f (2)(x) + c4

t4

4!
f (4)(x) + · · · = 1

2
[f(x+ ct) + f(x− ct)], (10)

on the other hand, by assuming G(x) = 1
c

∫
g(x)dx, we will have

tg(x) + c2
t3

3!
g(2)(x) + c4

t5

5!
g(4)(x) + · · · = 1

2
[G(x+ ct)−G(x− ct)], (11)

now substituting (10, 11) into (9), gives the solution of the wave equation with (2)

u(x, t) =
1

2
[f(x+ ct) + f(x− ct)] +

1

2
[G(x+ ct)−G(x− ct)],

which is similar to the solution obtained by D’Alembert’s method.

Now using the first boundary condition, we will have

u(0, t) =
1

2
[f(ct) + f(−ct)] +

1

2
[G(ct)−G(−ct)] = 0,

we assume f(−ct) = −f(ct), G(−ct) = G(ct),

also applying the second boundary condition, yields

u(L, t) =
1

2
[f(L+ ct) + f(L− ct)] +

1

2
[G(L+ ct)−G(L− ct)] = 0,
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we suppose

f(L+ ct) + f(L− ct) = 0, G(L+ ct)−G(L− ct) = 0, (12)

now by substituting ct = L+ α into (12), we will obtain

f(2L+ α) = −f(−α) = f(α), G(2L+ α) = G(−α) = G(α).

Thus, the solution of problem can be expressed as follows

u(x, t) =
1

2
[f∗(x+ ct) + f∗(x− ct)] +

1

2
[G∗(x+ ct)−G∗(x− ct)],

where f∗(x) and G∗(x) are the odd and even extensions of functions f(x) and G(x)

with period 2L, respectively.

HPM: Consider the wave equation (1) with the indicated initial and boundary

conditions. Using HPM, one can construct a homotopy in the following form

(1− p)[∂
2v

∂t2
− ∂2u0

∂t2
] + p[

∂2v

∂t2
− c2 ∂

2v

∂x2
] = 0. (13)

Substituting (6) into (13) and equating the terms with the identical powers of p,

gives

p0 :
∂2v0
∂t2
− ∂2u0

∂t2
= 0, v0(x, 0) = f(x),

∂v0(x, 0)

∂t
= g(x),

p1 :
∂2v1
∂t2

+
∂2u0
∂t2

− c2∂
2v0
∂x2

= 0, v1(x, 0) = 0,
∂v1(x, 0)

∂t
= 0, (14)

p2 :
∂2v2
∂t2
− c2∂

2v1
∂x2

= 0, v2(x, 0) = 0,
∂v2(x, 0)

∂t
= 0,

...

Consider u0(x, t) = f(x) + tg(x) as an initial approximation for the solution that

satisfies the initial conditions. Successive solving of Eqs.(14) leads to

v0(x, t) = f(x) + tg(x),

v1(x, t) = c2[
t2

2!
f (2)(x) +

t3

3!
g(2)(x)],
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v2(x, t) = c4[
t4

4!
f (4)(x) +

t5

5!
g(4)(x)],

v3(x, t) = c6[
t6

6!
f (6)(x) +

t7

7!
g(6)(x)],

...

Therefore, the solution when p→ 1 will be as

u(x, t) = f(x) + tg(x) + c2[
t2

2!
f (2)(x) +

t3

3!
g(2)(x)] + c4[

t4

4!
f (4)(x) +

t5

5!
g(4)(x)]

+c6[
t6

6!
f (6)(x) +

t7

7!
g(6)(x)] + · · · ,

or

u(x, t) = [f(x)+c2
t2

2!
f (2)(x)+c4

t4

4!
f (4)(x)+· · ·]+[tg(x)+c2

t3

3!
g(2)(x)+c4

t5

5!
g(4)(x)+· · ·].

Now proceeding as before, the solution of problem will be obtained as follows

u(x, t) =
1

2
[f∗(x+ ct) + f∗(x− ct)] +

1

2
[G∗(x+ ct)−G∗(x− ct)],

where f∗(x) and G∗(x) are the odd and even extensions of functions f(x) and G(x)

with period 2L, respectively. This solution is the same as that obtained by VIM.

5 Conclusion

In this paper, the variational iteration and the homotopy perturbation methods

were successfully applied to obtain D’Alembert’s formula for the wave equation. It

was clearly shown that these methods are very efficient in deriving D’Alembert’s for-

mula. However, a comparison between the used methods and D’Alembert’s method

shows that the use of VIM and HPM is much easier and more convenient to obtain

D’Alembert’s formula.
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