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Abstract

The present investigation is concerned with two problems. (i) Reflection and

transmission of thermoelastic waves between two thermoelastic half-spaces with

two temperature at an imperfect interface; and (ii) Propagation of Rayleigh waves

at the free surface of thermoelastic solid with two temperature. In problem (i)

the amplitude ratios for reflection and transmission coefficients are obtained and

deduced for normal force stiffness, transverse force stiffness, thermal contact con-

ductance and perfect bonding. The numerical results obtained have been illus-

trated graphically to understand the behavior of amplitude ratios versus angle of

incidence of longitudinal wave (P-wave), thermal wave (T-wave) and SV-wave. It

is found that the amplitude ratios of various reflected and transmitted waves are

affected by the stiffness and two temperature effects. In problem (ii) the phase ve-

locity and attenuation coefficient are obtained and presented graphically to depict

the effect of two temperatures. Some special cases of interest have been deduced

from the two problems also.
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1 Introduction

The generalized theories of thermoelasticity have been developed to overcome the phys-

ically unrealistic prediction of the coupled dynamical theory (CDT) of thermoelasticity

that thermal signal propagates with infinite speed. Lord and Shulman theory (LST)

[1] of thermoelasticity is well-established theory of generalized thermoelasticity, which

introduce the thermal relaxation parameters in the basic equations of the coupled dy-

namical thermoelasticity theory and admit the finite value of heat propagation speed.

The finiteness of the speed of thermal signal has been found to have experiment evi-

dence too. The generalized thermoelasticity theories are, therefore, more realistic and

have aroused much interest in recent research.

Thermoelasticity with two temperature is one of the non-classical theories of ther-

moelasticity of elastic solids. The main difference of this theory with respect to classical

one is in thermal dependence. Chen and Gurtin [2] and Chen, Gurtin and Willam [3]

have formulated a theory of heat conduction in deformable bodies, which depend on two

distinct temperature, the conductive temperature φ and the thermodynamic tempera-

ture θ. For time independent situations, the difference between these two temperature is

proportional to the heat supply, the two temperature are identical. For time dependent

problems, however and for wave propagation problem in particular, the two temper-

atures are in general different, regardless of the presence of a heat supply. The two

temperature and the strain are found to have representation in the form of a traveling

wave pulse a response, which occur instantaneously throughout the body [4].

Warren and Chen [5] investigated the wave propagation in the two temperature the-

ory of thermoelasticity. Quitanilla [6,7] proved some theorems in thermoelasticity with

two temperature. Yousseff [8] presented a new theory of generalized thermoelasticity by

taking into account the theory of heat conduction in deformable bodies, which depends

on two distinct temperatures, the conductive temperature and the thermodynamics

temperature. The difference between these two temperatures is proportional to the

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

Kaushal et al. 127

heat supply. He also established a uniqueness theorem for equation of two temperature

generalized linear thermoelasticity for a homogeneous and isotropic body.Recently,Puri

and Jordan[9] studied the propagation of plane waves under two temperature.

Imperfect bonding considered in the present investigation is to mean that the stress

components are continuous and small displacement field is not. The small vector dif-

ference in the displacement is assumed to depend linearly on the traction vector. More

precisely ,jumps in the displacement components are assumed to be proportional (in

terms of ”spring-factor-type”interface parameters) to their respective interface com-

ponents. The infinite values of interface parameters imply vanishing of displacement

jumps and therefore corresponds to perfect interface conditions.

On the other hand, zero values of the interface parameters imply vanishing of the

corresponding interface tractions which corresponds to complete debonding. Any finite

positive values of the interface parameters define an imperfect interface. Such inter-

face parameters may be present due to the presence of an interphase layer or perhaps

interface bond deterioration caused by, for example, fatigue damage or environmental

and chemical effects. The values of interface parameters depend upon the material

properties of the medium i.e microstructure as well as the bi-material properties.

Significant work has been done to describe the physical conditions on the interface

by different mechanical boundary conditions by different investigators. Notable among

them are (Jones [10],Murty[11],Nayfeh and Nassar[12], Rokhlin et.al.[13], Rokhlin[14],

Baik and Thomson[15], Achenbach et.al.[16] , Lavrentyev and Rokhlin[17]).

Recently various authors have used the imperfect conditions at an interface to study

various types of problems (Chen et al.[18], Shodja et al.[19], Samsam Shariat[20], Mitra

and Krishanan S [21], Kumar and Rupender[22], Kumar and Chawala[23])

In the present investigation, we studied the reflection and transmission of ther-

moelastic waves between two thermoelastic half-spaces with two temperatures at an

imperfect boundary and propagation of thermoelastic waves with two temperature at

the free surface.
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2 Basic equations

Following Youseff [8], the field equations and constitutive relations in thermoelastic

body with two temperatures having one relaxation time can be written as:

(λ+ 2µ)∇(∇ · −→u )− µ(∇×∇×−→u )− β∇θ = ρ
∂2−→u
∂t2

, (1)

K∗∇2φ = ρC∗(1 + τ0
∂

∂t
)
∂θ

∂t
+ βθ0(

∂

∂t
+ τ0

∂2

∂t2
)∇.−→u , (2)

tij = λ uk,kδij + µ(ui,j + uj,i)− βθδij , (3)

where

θ = (1− a∇2)φ, (4)

λ, µ- Lame’s constants, t-time, β = (3λ + 2µ)αt, αt- coefficient of linear thermal

expansion, ρ-density, C∗-specific heat, K∗- thermal conductivity, φ-conductive temper-

ature, θ-Temperature distribution, tij -components of stress tensor, τ0- the relaxation

time, δij- Kronecker delta, −→u - displacement vector, a-two temperature parameter, θ0-

reference temperature.

and

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
, ∇2 =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

3 Formulation and solution of the problem

We consider two homogeneous, isotropic thermally conducting elastic half-spaces with

two temperature being in contact with each other at a plane surface which we designate

as the plane x3 = 0 of a rectangular cartesian co-ordinate Ox1x2x3. We consider

thermoelastic plane wave in x1x3-plane with wave front parallel to x2-axis and all the

field variables depend only on x1, x3 and t. For two dimensional problem, we take

−→u = (u1, 0, u3) (5)
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To facilitate the solution, following dimensionless quantities are introduced:

x′1 =
ω1

c2
x1, x

′
3 =

ω1

c2
x3, u

′
1 =

ω1

c2
u1, u

′
3 =

ω1

c2
u3, t

′
33 =

t33

λ
, t′31 =

t31

λ
, φ′ =

φ

θ0
,

θ′ =
θ

θ0
, t′ = ω1t, a

′ =
ω2

1

c2
2

a, Ḱn =
c2

λω1
Kn, Ḱt =

c2

λω1
Kt, Ḱφ =

c2

K∗ω1
Kφ, τ

′
o = ω1τo,

(6)

where

c2
2 =

µ

ρ
and ω1 =

ρC∗c2
2

K∗

The components of displacement u1 and u3 are related by the potential functions

q(x1, x3, t) and ψ(x1, x3, t) as

u1 =
∂q

∂x1
− ∂ψ

∂x3
, u3 =

∂q

∂x3
+
∂ψ

∂x1
. (7)

Making use of equations (5)-(7) in equation (1) and (2) along with equation (4) (sup-

pressing the primes for convenience), we obtain

(a1∇2 − ∂2

∂t2
)q − a2(1− a∇2)φ = 0 (8)

(∇2 − a4(
∂

∂t
− τ0

∂2

∂t2
))(1− a∇2)φ = a5(

∂

∂t
+ τ0

∂2

∂t2
)∇2q (9)

a3∇2ψ − ∂2ψ

∂t2
= 0 (10)

where

a1 =
(λ+ 2µ)

ρc2
2

, a2 =
βθ0

ρc2
2

, a3 =
µ

ρc2
2

, a4 =
ρC∗c2

2

K∗ω1
, a5 =

βc2
2

K∗ω1
.

Equation (10) is uncoupled, whereas equation (8) and (9) are coupled in φ and q.

Solutions of equations (8)-(10) are sought in the form of harmonic traveling wave

(q, φ, ψ) = (q0, φ0, ψ0)eιk(x1 sin θ−x3 cos θ+vt) (11)

Where v is the phase speed, k is the wave number and (sin θ0, cos θ0) denote the pro-

jection of the normal onto xz-plane. Inserting equation (11) in equations (8)-(10) and

eliminating φ from (8)and (9), we obtain

(v4 + v2A+B)q = 0 (12)
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(v2
3 − a3)ψ = 0 (13)

where

A =
aa4τ11ω

2 − 1− a1a4τ11 + a2a5τ11

a4τ11
, B =

aa2a5τ11ω
2 − a1 − a1a4τ11

a4τ11
, τ11 = τ0−

ι

ω
.

Since equation (12) is quadratic in v2 so it has two positive values of v i.e.v1 and v2

corresponds to the velocities of P-wave and T-wave, respectively whereas the root of

equation (13) correspond to SV-wave having velocity v3.

4 Reflection and Transmission

We consider thermoelastic plane wave(P-or T- or-SV- Wave) propagating through the

medium M which we designate as the region x3 > 0 and incident at the plane x3 = 0

with its direction of propagating with angle θ0 normal to the surface. Corresponding

to each incident wave, we get waves in the medium M as reflected P-wave, T-wave and

SV-wave and transmitted P-wave, T-wave and SV-wave in medium Ḿ . We write all

the variables without a prime in the region x3 > 0 (medium M) and attach a prime to

denote the variables in the region x3 < 0 (medium Ḿ) as shown in Figure (0) (geometry

of the problem).

5 Boundary Conditions

We consider two thermically conducting elastic half spaces with two temperature as

shown in the figure(a) (Geometry of the problem). If the bonding is imperfect and

the size and spacing between the imperfection is much smaller than the wave length

then at the interface, these can be described by using boundary condition at x3 = 0

Lavrentyev and Rokhlin [17] as

(i)(t33)Ḿ = Kn[(u3)M − (u3)Ḿ ] , (14)

(ii)(t31)Ḿ = Kt[(u1)M − (u1)Ḿ ] , (15)

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

Kaushal et al. 131

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 0) Geometry of the problem 
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(iii)K∗
′
(
∂φ

∂x3
)Ḿ = Kφ[(φ)M − (φ)Ḿ ] , (16)

(iv)(t33)M = (t33)Ḿ , (17)

(v)(t31)M = (t31)Ḿ , (18)

(vi)K∗(
∂φ

∂x3
)M = K∗

′
(
∂φ

∂x3
)Ḿ , (19)

where Kn, Kt, Kφ are normal force stiffness, transverse force stiffness and thermal

contact conductance coefficients of a unit layer thickness and have dimension N
m3 , N

m3

and W
m2c0

. Appropriate potentials satisfying the boundary equations (14)-(19) in M and

M’ can be written as

Medium M

q = A0 exp[ιk1(x1 sin θ0 − x3 cos θ0) + ιωt] +A1 exp[ιk1(x1 sin θ1 + x3 cos θ1) + ιωt]

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

132 Mathematical Sciences Vol. 5, No. 2 (2011)

+B0 exp[ιk1(x1 sin θ0 − x3 cos θ0) + ιωt]+B1 exp[ιk1(x1 sin θ2 + x3 cos θ2) + ιωt], (20)

φ = d1A0 exp[ιk1(x1 sin θ0 − x3 cos θ0) + ιωt] +d1A1 exp[ιk1(x1 sin θ1 + x3 cos θ1) + ιωt]

+d2B0 exp[ιk1(x1 sin θ0 − x3 cos θ0) + ιωt] + d2B1 exp[ιk1(x1 sin θ2 + x3 cos θ2) + ιωt],

(21)

ψ = D0 exp[ιk1(x1 sin θ0 − x3 cos θ0) + ιωt] +D1 exp[ιk1(x1 sin θ3 + x3 cos θ3) + ιωt]

(22)

Medium M
′

q
′

= A
′
1 exp[ιk

′
1(x1 sin θ

′
1 − x3 cos θ

′
1) + ιωt] +B

′
1 exp[ιk

′
2(x1 sin θ

′
2 − x3 cos θ2)

′
+ ιωt]

(23)

φ
′

= d
′
1A

′
1 exp[ιk

′
1(x1 sin θ

′
1 − x3 cos θ

′
1) + ιωt]+d

′
2B

′
1 exp[ιk

′
2(x1 sin θ

′
2 − x3 cos θ

′
2) + ιωt]

(24)

ψ
′

= D
′
1 exp[ιk

′
3(x1 sin θ

′
3 − x3 cos θ

′
3) + ιωt] (25)

where

B0 = D0 = 0, θ0 = θ1 for incident P-wave

A0 = D0 = 0, θ0 = θ2 for incident T-wave

A0 = B0 = 0, θ0 = θ3 for incident SV-wave

Snell’s law is given as

sin θ0

v0
=

sin θ1

v1
=

sin θ2

v2
=

sin θ3

v3
=

sin θ
′
1

v
′
1

=
sin θ

′
2

v
′
2

=
sin θ

′
3

v
′
3

(26)

where

k1v1 = k2v2 = k3v3 = k
′
1v

′
1 = k

′
2v

′
2 = k

′
3v

′
3 = ω at x3 = 0 (27)

v0 =


v1, for incident P− wave

v2, for incident T− wave

v3, for incident SV −Wave
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Making use of potentials given by equations (20)-(25) in boundary conditions (14)-

(19) and with the help of equations (3)-(7), we get a system of six non homogeneous

equation, which can be written as

6∑
m=1

amnZn = Ym(n = 1, 2...6), (28)

where

a1i = ιkiS1Kn
υi
υ0

[(
υ0

υi
)2 − sin2 θ0]

1
2 , a13 = ιk3S1Kn

υ3

υ0
sin θ0,

a1j = h1k
′2
i [1−(

υ
′
i

υ0
)2 sin2 θ

′
0]+k

′2
i (
υ

′
i

υ0
)2 sin2 θ

′
0+ιk

′
iS1S2Kn

υ
′
i

υ0
[(
υ0

υ
′
i

)2−sin2 θ
′
0]

1
2 +g3(1+ak

′2
i )d

′
i

a16 = −k′2
3 (h1 − 1)(

υ
′
3

υ0
)2[(

υ0

υ
′
3

)2 − sin2 θ0]
1
2 sin θ0, a2i = −ιkiS1Kt

υi
υ0

sin θ0,

a23 = ιk3S1Kt
υ3

υ0
[(
υ0

υ3
)2−sin2 θ0]

1
2 , a2j = h2k

′2
i (
υ

′
i

υ0
)2[(

υ0

υ
′
i

)2−sin2 θ0]
1
2 sin θ0+ιk

′
iS1S2Kt

υi
υ0

sin θ0

a26 = h2k
′2
3 [1−2(

υ
′
3

υ0
)2 sin2 θ0]−ιk′

3S1S2Kt
υ3

υ0
[(
υ0

υ3
)2−sin2 θ0]

1
2 , a3i = −S3Kθdi, a33 = 0

a3j = −[ιk
′
id

′
i

υ
′
i

υ0
[(
υ0

υ
′
i

)2 − sin2 θ0]
1
2 − S3S4kθd

′
1], a36 = 0

a4i = −S1[g1k
2
i [1− (

υi
υ0

)2 sin2 θ0] + k2
i (
υi
υ0

)2 sin2 θ0 + g2di(1 + ak2
i )]

a43 = k2
3(1 + g1)(

υ3

υ0
)2[(

υ0

υ3
)2 − sin2 θ0]

1
2 sin θ0

a4j = h1k
′2
1 [1− (

υ
′
i

υ0
)2 sin2 θ0] + k

′2
1 (
υ

′
i

υ0
)2 sin2 θ0 + g3d

′
1(1 + ak

′2
i )

a46 = −k′2
3 (h1−1)(

υ
′
3

υ0
)2[(

υ0

υ
′
3

)2−sin2 θ0]
1
2 sin θ0, a5i = 2g4k

2
i S1(

υi
υ0

)2[(
υ0

υi
)2−sin2 θ0]

1
2 sin θ0,

a53 = −g4k
2
3S1[1− 2(

υ3

υ0
)2 sin2 θ0], a5j = 2h2k

′2
i (
υ

′
i

υ0
)2[(

υ0

υ
′
i

)2 − sin2 θ0]
1
2 sin θ0,

a56 = h2k
′2
3 [1− 2(

υ
′
3

υ0
)2 sin2 θ0], a6i = −diS3

υi
υ0

[(
υ0

υi
)2 − sin2 θ0]

1
2 a63 = 0,

a6j = d
′
i

υ
′
i

υ0
[(
υ0

υ
′
i

)2 − sin2 θ0]
1
2 , a66 = 0, h1 =

λ
′
+ 2µ

′

λ′ , h2 =
µ

′

λ′ , g1 =
λ+ 2µ

λ
,
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g2 =
βθ0

λ
, g3 =

β
′
θ
′
0

λ′ , g4 =
µ

λ
, S1 =

λ

λ′ , S2 =
c
′
2ω1

c2ω
′
1

, S3 =
K∗c

′
2ω1θ0

K∗′c2ω
′
1θ

′
0

S4 =
θ
′
0

θ0

i = 1, 2 & j = 3, 4

Considering the phase of the reflected waves can easily write using equations (24)-(25)

cos θi
υi

= [(
υ0

υi
)2 − sin2 θ0]

1
2 ,

cos θj
υj

= [(
υ0

υj
)2 − sin2 θ0]

1
2 i = 1, 2 & j = 3, 4

Following Schoenberg [24], if we write

cos θi
υi

=
cos θ′i
υ′i

+ ι
ci

2πυ0
(i = 1, 2, 3, 4, 5) then

cos θ′i
υ′i

=
1

υ0
Re{[(

υ0

υi
)2 − sin2 θ0]

1
2 }, ci = 2πIm{[(

υ0

υi
)2 − sin2 θ0]

1
2 }

where υ′i, the real phase speed and θ′i, the angle of reflection are given by

υ′i
υ0

=
sin θ′i
sin θ0

[sin2 θ0 + [Re{[(υ0/υ5)2 − sin2 θ0]
1
2 }]2]−

1
2

and ci, the attenuation in a depth is equal to the wavelength of incident wave i.e.

(2πυ0)/ω

Z1 =
A1

B∗
, Z2 =

B1

B∗
, Z3 =

D1

B∗
, Z4 =

A
′
1

B∗
, Z5 =

B
′
1

B∗
, Z6 =

D
′
1

B∗
(29)

For incident P-wave B∗ = A0

Y1 = a11, Y2 = −a21, Y3 = −a31, Y4 = −a41, Y2 = a51, Y6 = −a61 (30)

For incident T-wave B∗ = B0

Y1 = a12, Y2 = −a22, Y3 = −a32, Y4 = −a42, Y2 = a52, Y6 = a62 (31)

For incident SV-wave B∗ = D0

Y1 = a13, Y2 = a23, Y3 = a33, Y4 = a43, Y2 = −a53, Y6 = −a63 (32)

Where Z1, Z2,Z3 are the amplitude ratio’s of reflected P-wave, T-wave, SV-wave making

angle θ1, θ2, θ3 and Z4, Z5,Z6 are amplitude ratio’s of reflected P-wave, T-wave, SV-

wave making angle θ
′
1, θ

′
2, θ

′
3
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6 Particular cases

We obtain the corresponding expressions for different boundaries by letting

CASE I: Kn 6= 0, Kt →∞, Kφ →∞ for Normal Force Stiffness

CASE II: Kn →∞, Kt 6= 0, Kφ →∞ for Transverse Force Stiffness

CASE III: Kn →∞, Kt →∞, Kφ 6= 0 for Thermal contact conductance

CASE IV: Kn →∞, Kt →∞, Kφ →∞ for Perfect bonding .

7 Special case

(i)If two temperature parameter vanishes i.e a = 0 in equations (8)-(10), we obtain the

reflection and transmission coefficients in thermoelasticity with one temperature.

(ii)In the absence of medium M,our results result reduces to free surface i.e. x3=0. The

vanishing of normal force stress,tangential force stress and thermal contact conductance

and hence the boundary conditions reduces to

(i) t33 = 0, (ii) t31 = 0, (iii)
∂φ

∂x3
= 0. (33)

Adopting the same procedure,we obtain three non-homogeneous equations

6∑
m=1

cmnZn = Ym(n = 1, 2...6), (34)

where

c1i = g1k
2
i [1− (

υi
υ0

)2 sin2 θ0] + k2
i (
υi
υ0

)2 sin2 θ0 + g2d1,

c13 = k2
3(1+g1)(

υ3

υ0
)2[(

υ0

υ3
)2−sin2 θ0]

1
2 sin θ0, c21 = −2k2

i (
υ

′
3

υ0
)2[(

υ0

υ
′
3

)2−sin2 θ0]
1
2 sin θ0,

c23 = k2
3(sin2 θ3 + cos2 θ3), c3i = di

υi
υ0

[(
υ0

υi
)2 − sin2 θ0]

1
2 , c33 = 0 (i = 1, 2)

and

Z1 =
A1

B∗
, Z2 =

B1

B∗
, Z3 =

D1

B∗
. (35)
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For incident P-wave B∗ = A0

Y1 = −c11, Y2 = c21, Y3 = c31, (36)

For incident T-wave B∗ = B0

Y1 = −c12, Y2 = c22, Y3 = c32, (37)

For incident SV-wave B∗ = D0

Y1 = c13, Y2 = −c23, Y3 = a33, (38)

where Z1, Z2, Z3 are the amplitude ratio’s of reflected P-wave, T-wave, SV-wave making

angle θ1, θ2, θ3.

II Rayleigh waves in a thermoelastic half-space with two temperature

In this case,we assume the solutions of eqs.(8)-(10) of the form

q = (A1e
−δ1x3 +B1e

−δ2x3)eik(x1−ct), (39)

φ = (b1A1e
−δ1x3 + b2B1e

−δ2x3)eik(x1−ct), (40)

ψ = (D1e
−δ3x3)eik(x1−ct), (41)

where

δ2
i = k2(1− c2v2

i ) i = 1, 2, δ3 = k2(1− c2

a3
)

and coupling constants are given as

b1 =
a1(δ2

1 − k2) + k2c2

a2(1− a(δ2
1 − k2))

, b2 =
a1(δ2

2 − k2) + k2c2

a2(1− a(δ2
2 − k2))

Making use of potentials given by (39)-(41) in the boundary conditions (33) and elimi-

nating the unknowns A1, B1 and D1 from the resulting expressions, we obtain the wave

velocity equation for Rayleigh waves in the half-space with two temperature.

c2 = a3(2− EX3) (42)

where

EX3 =
2δ3(a3 − a6)(δ1b2 − δ2b1)

a6(δ2
2b1 − δ2

1b2)− a7k2(b1 − b2)− ab1b2(δ2
1 − δ2

2)

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

Kaushal et al. 137

Particular case

If a = 0, equation (42) reduce to the frequency equation in thermally conducting half-

space with one temperature.

8 Numerical results and discussion

In order to illustrate theoretical results obtained in the proceeding sections, we now

present some numerical results. Materials chosen for this purpose are Magnesium crys-

tal (medium M) (Eringen[25], Dhaliwal and Singh[26]) and copper material(medium

M
′
)(Sherief and Saleh[27] ) , the physical data for which are given as

MAGNESIUM

λ = 9.4 × 1010Nm−2, µ = 4.0 × 1010Nm−2, ρ = 1.74 × 103Kgm−3, ν = 2.68 ×

106Nm−2deg−1, T = 298K, K∗ = 1.7× 102Wm−1K−1, C∗ = 1.04× 103JKg−1deg−1.

COPPER

λ́ = 7.76 × 1010Nm−2, µ́ = 3.86 × 1010Nm−2, ρ́ = 8954 × 103Kgm−3, αt = 1.78 ×

10−5K−1, T́ = 293K, Ḱ∗ = 386Wm−1K−1, Ć∗ = 383.1JKg−1K−1.

with non-dimensional interface parameters and thermal relaxation times taken as Kn =

20 , Kt = 10, Kφ = 5, τ0=0.3s and τ́0=0.2s.

A computer programme has been developed and amplitude ratios of various re-

flected and transmitted waves has been computed. The variations of amplitude ratios

for normal force stiffness (NFS), transverse force stiffness(TFS) and thermal contact

conductance (TCC) for a = 0 and a = 0.0104 have been shown .The solid line, small

dashed line, dash dot dash line is for a = 0 and solid line with center symbol ’diamond’,

small dashed line with center symbol ’triangle’ ,dash dot dash line with center symbol

’circle’ for a = 0.0104 respectively. The variations of the amplitude ratios for NFS(a=0),

TFS(a=0), TCC(a=0), NFS(a=0.0104), TFS(a=0.0104) and TCC(a=0.0104), with an-

gle of incidence of the incident P-wave, T-wave and SV-wave are shown graphically in

figures 1-18. These variations are shown from normal incidence to grazing incidence
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i.e. 00 ≤ θ ≤ 900.

8.1 Incident P-wave

Figs.1-6 show the variations of amplitude ratios |Zi| (i=1,...,6) with the angle of inci-

dence for P-wave. In the initial range,the variations of amplitude ratios |Zi| (i=1,2)

for all boundary stiffnesses are almost stationary or constant i.e.the effect of two tem-

perature is almost negligible near the normal incidence except for |Z1|, |Z4| and |Z6| in

case of TFS(a = .0104). As the angle of incidence increases further,the impact of TFS

is more as compare to NFS and TCC for both values of a and attain the peak value.

Near the grazing incidence,the trend of variations of |Zi| (i=1,...,6) is similar for all

distribution curves i.e. fluctuating.

8.2 Incident T-wave

The variations of amplitude ratios |Zi| (i=1,...,3) for NFS, TFS and TCC are same i.e

two temperature parameter a near the grazing incidence except for |Z1| it increases

in-case of TFS (a = 0) and decreases in-case of TFS (a = 0.0104). This shows that

the impact of two temperature is same on the amplitude ratios |Zi| (i=1,...,3) of NFS,

TFS, TCC irrespective of the value of two temperature parameter and are shown in

figures 7-9.

It is depicted from figures 10 and 11 that the values of |Z4| and |Z5| for NFS,

TFS and TCC is decreasing from normal incidence to grazing incidence except at some

pockets for |Z4| for both values of a.

The behavior of all distribution curves is similar for both a = 0 and a = 0.0104 i.e.

increasing from normal incidence to intermediate range and decreasing from interme-

diate range to grazing incidence(figure 12).
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8.3 Incident SV-wave

The values of |Zi| (i=1,...,6) for both values of two temperature parameter i.e a = 0

and a = 0.0104 in-case of NFS is small incomparable to other boundary stiffnesses. So,

the variations are not seen very clear due to scale of graph. Here the role of stiffness

seems more prominent than the impact of two temperature. As the disturbances travels

through different constituents of the medium, it suffers sudden changes, resulting in an

inconsistent/non-uniform pattern of curves. Therefore,the trend of curves exhibits the

properties of of the medium. These variations are shown in figures 13-18.

Discussion for problem II

In general ,wave number and phase velocity of waves are complex quantities,therefore,the

waves are attenuated in space.If we write

C−1 = V −1 + ιω−1Q (43)

then ξ = R+ ιQ,where R = ω
V and Q are real numbers.This shows that V is the propa-

gation speed and Q is attenuation coefficient of waves. Upon using the equation (41)in

secular equation (40), the value of propagation speed V and attenuation coefficient Q

for wave propagation can be obtained. Using the same parameters (COPPER), Fig-

ures 19 and 20 show the variations of phase velocity and attenuation coefficients versus

wave number respectively. It is evident from figure 19 that the values of phase veloc-

ity a = 0.0104 are more as compare to a = 0 whereas the the values of attenuation

coefficient are in the reverse order(figure 20). Further it is evident from fig.19 that in

the initial range, the values of phase velocity decreases sharply whereas decrease slowly

in the remaining for both values of two temperature parameter(i.e a). The values of

attenuation coefficient increasing almost constantly in the whole range for both a = 0

and a = 0.0104.
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9 Conclusion

Effect of two temperature and stiffness have significant impact on the amplitude ratios.

It is depicted from the figures that the behavior and trend of variations for NFS, TFS

and TCC is same for both values of a.In most of the figures the impact of TFS is

more than NFS and TCC. It is observed from figures 19 and 20 that the phase velocity

decreases with wave number whereas the attenuation coefficient increases with wave

number. The research work is supposed to be useful in further studies,both theoretical

and observational of wave propagation in more realistic models of the thermoelastic

solids present in the earth’s interior. The problem is of geophysical interest, particularly

investigations concerned with earthquake and other phenomenon in seismology and

engineering.
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Figs. 1-6: VARIATIONS OF AMPLITUDE RATIOS WITH ANGLE OF 

INCIDENCE FOR P-WAVE 
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Figs. 7-12: VARIATIONS OF AMPLITUDE RATIOS WITH ANGLE OF 
INCIDENCE FOR T-WAVE 
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Figs. 13-18: VARIATIONS OF AMPLITUDE RATIOS WITH ANGLE OF 

INCIDENCE FOR SV-WAVE 
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Figure 19) shows the variations of Phase velocity versus wave number 
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Figure 20) shows the variations of attenuation coefficient versus wave number 
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