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Abstract

The collocation methods based on cubic B-spline, are developed to approximate

solution of the second and first kind Fredholm integral equations.First we collocate

the solution by B-spline and the Newton-Cotes formula is used to approximate in-

tegral. Convergence analysis has been investigated and proved that the quadratur

rule is fourth order convergent. The presented methods are tested to the problem,

and the absolute error in the solution are compared with existing methods [1, 2,

7, 10] to verify the accuracy and convergent nature of proposed methods.

Keywords: Fredholm integral equations, Cubic B-spline, Newton-Cotes, Colloca-

tion, Convergence analysis, Regularization.
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1 Introduction

We consider the following non homogeneous Fredholm integral equations of the first

kind

y(x) =

∫ b

a
k(x, t)f(t)dt, a ≤ x ≤ b (1)

1Corresponding Author. E-mail Address: rashidinia@iust.ac.ir
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and the second kind

f(x) =

∫ b

a
k(x, t)f(t)dt+ y(x), a ≤ x ≤ b (2)

where k and y(x) are given continuous and known functions.

The numerical solution of (1) and (2) by using various methods have been investi-

gated by several authors who rely on the approximation of the integral appearing in

(1) and (2) by some quadrature. In [6], the problem is solved by using the rationalized

wavelets spline functions. Haar wavelets are also applied for solving these problems in

[7]. The hybrid functions are also used in [4].The sinc-Galerlin method is applied for

solving problem in [12] and the sinc-collocation method for Fredholm integral equations

is used in [11]. Using of a global approximation to the solution of a linear Fredholm

integral equation of the second kind is constructed by means of the cubic spline quadra-

ture in [8]. In [13] is used the Taylor series expansions for unknown function and kernel

of linear and nonlinear integral equations of the second kind. In this paper, we use cubic

B-spline collocation for approximation unknown function and use of the Newton-Cotes

rules for approximating integral, moreover for solving Fredholm integral equation first

kind, at first, we converted the first kind to the second kind by regularization method

by using [3].

2 The method

To develop the collocation methods Based on cubic B-spline for solutions of Fredholm

integral equations first and second, Let π be an uniform partition in the interval [a, b]

π : {a = t0 < t1 < ... < tn+2 = b}, where h = b−a
n+2 , ti = a+ih, ti = xi, i = 0, ..., n+2.

We introduce the spline space S3(π) = v ∈ C2[a, b]; v|[ti,ti+1] ∈ P3, i = 0, 1, ..., n+ 2,

where P3 is the class of cubic polynomials. By introducing knots t−2 < t−1 < t0 and

tn+2 < tn+3 < tn+4 and the functions Bi(t) defined by
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Bi(t) =
1

h3



(t− ti−2)3, if t ∈ [ti−2, ti−1]

h3 + 3h2(t− ti−1) + 3h(t− ti−1)2 − 3(t− ti−1)3, if t ∈ [ti−1, ti]

h3 + 3h2(ti+1 − t) + 3h(ti+1 − t)2 − 3(ti+1 − t)3, if t ∈ [ti, ti+1]

(ti+2 − t)3, if t ∈ [ti+1, ti+2]

0, otherwise.

(3)

S(t) =
n+2∑
i=−2

ciBi(t),

(4)

Following regularization method in [3], the given integral equation (1) can be converted

to ∫ b

a

∫ b

a
k(x, z)k(z, t)f(t)dzdt+ αf(x) =

∫ b

a
k(x, t)y(t)dt. (5)

For some α the solution of problem (5) is identical to that of problem (1).

By using (3) and Newton-Cotes methods we get a system of equation as follows

h
n+1∑
i=−1

[wi

n+2∑
j=−2

cjBj(ti)

∫ b

a
k(xl, z)k(z, ti)dz] + α

n+2∑
j=−2

cjBj(xl) =

∫ b

a
k(xl, t)y(t)dt, (6)

where zl = a+ lh, h = b−a
n+2 l = 0, ..., n+ 2 tl = xl = zl+1 l = −1, ..., n+ 1.

By solving the system (6) we obtain the vector cj and also we set c−2 = cn+2 = 0 in

order to have the cubic B-spline relations,then the approximate solution can be obtain

by (4).

In case of the second kind integral equation (2), by using cubic B-spline (3) we can

approximated the solution and also we can approximate the integral in (2) by Newton-

Cotes type methods, when n is even then we have h = b−a
n+2 the Simpson rule can be

used and when n is odd we have to use the three-eighth rule.

n+2∑
i=−2

ciBj(xj)−h
n+2∑
i=−2

ci[wj,−1k(xj , t−1)Bi(t−1)+wj,0k(xj , t0)Bi(t0)+. . .+wj,n+1k(xj , tn+1)×Bi(tn+1)] = y(xj), j = −1, . . . , n+1.

(7)
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where zj = a+ jh, h = b−a
n+2 j = 0, ..., n+ 2 tj = xj = zj+1 j = −1, ..., n+ 1.

By solving the system (7) we obtain the vector ci and also we set c−2 = cn+2 = 0 in

order to have the cubic B-spline relations,then with substituting ci in (4) we obtain the

approximate solution of (2).

3 Error analysis: convergence of the approximate solution

To study the convergence analysis, first we need to recall the following basic theorem

in [3].

Remark 3.1 The most immediate error analysis for spline approximates S to a

given function f defined on an interval [a, b] follows from the first and second integral

relations. Throughout our discussion π : {a = t0 < t1 < ... < tn+2 = b} is partition in

[a, b] and h = b−a
n+2 is the mesh of our partition.

If f ∈ C4[a, b], then ‖Dj(f − S)‖∞ ≤ γjh4−j , j = 0, 1, 2, 3, 4

Where ‖f‖∞ = max0≤i≤n+2 supti−1≤t≤ti |f(t)| and Dj the j − th derivative (see [9],

P.112).

The numerical method is said to be convergent if the solution of the approximating set

of equations converges to the solution of the exact problem as the step length h tends to

zero; that is, if limh→0 |xi+1 − xi| = 0. Consider the equation

f(x) =

∫ b

a
k(x, t)f(t)dt+ y(x), a ≤ x ≤ b (8)

and suppose that at x = xi, where zi = a + ih, i = 0, ..., n + 2, xi = ti = zi+1, i =

−1, ..., n+ 1 the quadrature formula

∫ a+ih

a
k(xi, t)f(t)dt = h

n+1∑
j=−1

wijk(xi, tj)f(tj) + Ei,t(k(xi, t)f(t)). (9)
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At x = xi, i = −1, ..., n+ 1, by substituting (9)in(8) we have

f(xi) = y(xi) + h
n+1∑
j=−1

wijk(xi, tj)f(tj) + Ei,t(k(xi, t)f(t)) , i = −1, ..., n+ 1 (10)

and corresponding approximating function equations are

S(xi) = y(xi) + h
n+1∑
j=−1

wijk(xi, tj)S(tj) , i = −1, ..., n+ 1. (11)

Thus we have

f(xi)− S(xi) = h
n+1∑
j=−1

wijk(xi, tj)(f(tj)− S(tj)) + Ei,t(k(xi, t)f(t)), i = −1, ..., n+ 1.

(12)

We set ei = f(xi)− S(xi), it follows that

|ei| ≤ h
n+1∑
j=−1

|wij ||k(xi, tj)|‖ej‖+ Ei,t(k(xi, t)f(t)), i = −1, ..., n+ 1. (13)

Let w = maxi,j |wi,j | and e = max−1≤i≤n+1 |ei|, |ei| ≤ {|Ei,t(k(xi, t)f(t))| + hkw(n +

3)e}, hence |ei| → 0 as h → 0 , we may write equivalently ‖ei‖ = O(hp+1) +O(hq+1),

where the error in the quadrature rule is O(h5) and the error in the function approxi-

mate is O(h5). If we set r = min(p, q) = min(4, 4) then we say the quadrature rule is

convergent of order 4.

4 Numerical examples

To compare our computed results and justify the accuracy and efficiency of our pre-

sented methods we consider the following examples which are considered by [1, 2, 7,

10] . The solution of the given examples is obtained for different values of n. The RMS

errors solutions E = ( 1
n

∑n
i=0[f(xi) − S(xi)]

2)
1
2 where f(x) is the exact solution and

S(x) is the approximated solution of integral equation which are given by the suggested

methods.
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Example 4.1 Consider the following Fredholm integral equation of the first kind

with exact solution f(x) = ex

∫ 1

0
ex

β∗tf(t)dt =
ex

β+1 − 1

xβ + 1
, β = 1, 0 ≤ x ≤ 1.

Example 4.2 Consider the problem

∫ 1

0
(x2 + t2)

1
2 f(t)dt =

1

3
[(1 + x2)

3
2 − x3], 0 ≤ x ≤ 1

with the exact solution f(x) = x.

We solved these examples by our presented method (5) and (6), we solved these prob-

lems with different values of h = 1
3 ,

1
4 , ...,

1
10 to compare our results with results in [1,

10] the RMS errors in the solutions are tabulated in table 1, 2 which shows that the

error in the solutions for our methods decreases by reducing the values of h, but in

[10] when h < 1
6 suddenly the error increased more over in [1] by reducing h error will

reduced and in comparison with [10] it is better but our is more accurate too.
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Table 1. The RMS errors for example 4.1 for different value of h.

h Methodof [10] Methodof [1] OurMethod α

1
3 2.6(-04)2 1.3(-01) 2.8(-03) 10−4

1
4 1.5(-05) 6.5(-02) 5.6(-04) 10−4

1
5 7.1(-07) 2.2(-02) 3.9(-04) 10−6

1
6 7.9(-07) 2.6(-03) 6.6(-05) 10−6

1
7 7.0(-04) 7.7(-05) 2.8(-05) 10−7

1
8 8.7(-02) 7.5(-05) 8.2(-06) 10−7

1
9 2.8(00) 6.4(-05) 4.5(-06) 10−7

1
10 2.5(00) 6.0(-05) 2.0(-06) 10−7
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Table 2. The RMS errors for example 4.2 for different value of h.

h Methodof [10] Methodof [1] OurMethod α

1
3 3.8(-04) 1.1(-01) 3.3(-03) 10−4

1
4 1.5(-04) 6.2(-02) 6.8(-04) 10−5

1
5 8.4(-05) 3.3(-02) 3.6(-04) 10−5

1
6 5.8(-05) 2.3(-02) 3.9(-04) 10−5

1
7 4.7(-05) 2.8(-02) 4.0(-04) 10−5

1
8 4.3(-05) 8.9(-03) 1.5(-04) 10−6

1
9 3.1(-05) 1.5(-02) 1.9(-04) 10−6

1
10 6.4(-06) 1.4(-02) 8.5(-05) 10−7

Example 4.3

f(x) = e2x+
1
3 − 1

3

∫ 1

0
e2x−

5t
3 f(t)dt, 0 ≤ x ≤ 1.

with the exact solution f(x) = e2x.

Example 4.4

f(x) = −e
x(Nπ − eNπ cos(Nπ) + e sin(Nπ))

1 +N2π2
+sin(Nπx)+

∫ 1

0
ex+tf(t)dt, 0 ≤ x ≤ 1.

with the exact solution f(x) = sin(Nπx).
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Now we consider the following second kind Fredholm integral equations.

We solved these examples by our presented method on (7), to compare our results with

results in [2, 7], we used n = 30 and h = 1
32 for example 4.3. The computed solutions are

compared with exact solution and the absolute error in particular points are tabulated

in table 3 which show that our results are more accurate in comparison with [2, 7].

And we solved problem 4.4 with different values of h = 1
3 , ...,

1
10 the RMS errors in

the solutions is tabulated in table 4 which shows that our method is comparison with

method in [7] is more accurate and also when h is decreasing the error in [7] increased

but our method in comparison with method in [2] are accurate.

Table 3. The errors ‖E‖ in solution of example 4.3 at particular points for h = 1
32 .

x Methodof [2] Methodof [7] OurMethod

0 1.65(-04) 3.18(-02) 1.85(-11)

0.1 1.95(-04) 2.32(-02) 2.38(-11)

0.2 4.69(-04) 9.48(-03) 2.87(-11)

0.3 5.65(-04) 1.11(-02) 3.46(-11)

0.4 3.39(-04) 4.11(-02) 4.17(-11)

0.5 4.24(-04) 8.65(-02) 5.04(-11)

0.6 5.31(-04) 6.31(-02) 6.47(-11)

0.7 1.27(-03) 2.57(-02) 7.80(-11)

0.8 1.53(-03) 3.04(-02) 9.41(-11)

0.9 9.20(-04) 1.11(-01) 1.13(-10)

1 1.10(-03) 2.26(-01) 1.37(-10)
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Table 4. The RMS errors in solution of example 4.4 with different values of h.

h Methodof [7] Methodof [2] OurMethod

1
3 4.162(-01) 4.508(-03) 1.797(-04)

1
4 5.547(-01) 2.806(-03) 1.914(-04)

1
5 6.930(-01) 7.627(-03) 1.296(-02)

1
6 8.310(-01) 4.242(-03) 1.293(-03)

1
7 9.686(-01) 1.073(-02) 1.122(-02)

1
8 1.105972 5.686(-03) 2.916(-03)

1
9 1.242802 1.383(-02) 8.348(-03)

1
10 1.379134 7.114(-03) 4.690(-03)

5 Conclusions

We have shown that approximations to Fredholm integral equations of the first and

second kind can be obtained by using certain simple numerical quadrature rules and

collocation spline. our computed results by the suggested methods are comparable

with the methods in [1, 2, 7, 10] and also we verified that the presented method can be

applied with large number of n,our methods are stable and also when h is decreasing

the error in the solution for our method is also decreasing.
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