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Abstract

This paper presents an efficient method for solving free vibration problems for

an Euler-Bernoulli beam under various supporting conditions. The method is based

on the implementation of the sixth-order compact finite difference method (CFDM)

for discretizing the governing differential equation to obtain the natural frequencies

of beam corresponding to two commonly used boundary conditions namely simply

supported-simply supported and clamped-free. A very good agreement is found

between the natural frequencies obtained using the sixth-order compact finite dif-

ference scheme and exact natural frequencies, which confirms the validity of the

present sixth-order discretization.

Keywords: Euler-Bernoulli beam, Free vibration, Sixth-order compact finite dif-

ference method, Natural frequencies.
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1 Introduction

In recent years, many approaches have been adopted for solving vibration problems

for an Euler-Bernoulli beam under various supporting conditions. For example, Liu

et al. [1] presented a way of using He’s variational iteration method [2-6] to solve
1Corresponding Author. E-mail Address: kamyar hosseini@yahoo.com (K. Hosseini)
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free vibration problems for an Euler-Bernoulli beam corresponding to various sets of

boundary conditions. By applying this technique, the beam’s natural frequencies and

mode shapes was obtained and a rapidly convergent sequence was derived during the

solution. The authors of [7] also presented an innovative eigenvalue problem solver for

free vibration of Euler-Bernoulli beam by using the Adomian decomposition method [8-

10]. Similarly, using this method the beam’s natural frequencies and mode shapes was

successfully obtained. The compact finite difference method is a numerical technique

with excellent capability and resolution leading to it being in demand for application

in different kinds of engineering problems. To mention just some of the engineering ap-

plications of this well-established numerical technique, Sari [11] utilized a sixth-order

compact finite difference method in space and a low-storage total variation diminish-

ing third-order Runge-Kutta scheme in time for solving the porous media equation.

Dehghan and Mohebbi [12] used a compact finite difference approximation of fourth

order to discretize spatial derivatives and a boundary value method of fourth order for

the time integration of the resulting linear system of ordinary differential equations for

solving the two-dimensional unsteady convection-diffusion equation. They also applied

a compact finite difference approximation of fourth order for discretizing the spatial

derivative and a fourth order A-stable DIRKN method for the time integration of the

resulting nonlinear second-order system of ordinary differential equations for solving the

one-dimensional nonlinear sine-Gordon equation [13]. In general, this method has been

successfully applied for solving a wide variety of problems [14-22]. Therefore, in the

present paper, a sixth-order compact finite difference method is utilized to obtain the

beam’s natural frequencies corresponding to two commonly used boundary conditions

namely simply supported-simply supported and clamped-free. The rest of this paper

has been organized as follows: In Section 2, the sixth-order compact finite difference

scheme is employed for discretizing the Euler-Bernoulli beam equation under various

supporting conditions. In Section 3, the matrix form of the difference scheme is given.

In Section 4, the numerical results are illustrated to demonstrate the efficiency of the

www.sid.ir


www.SID.ir

Arc
hive

 of
 S

ID

Ansari et al. 309

method and finally conclusion is provided in Section 5.

2 Euler-Bernoulli beam and compact finite difference method

Ignoring shear deformation and rotary inertia effect, the equation of motion for

lateral vibrations of a uniform Euler-Bernoulli beam can be written as [1]

EI
∂4y(x, t)

∂x4
+ ρA

∂2y(x, t)
∂t2

= 0, 0 < x < l, (1)

with the following boundary conditions

[cr3
∂3y(x, t)

∂x3
+ cr2

∂2y(x, t)
∂x2

+ cr1
∂y(x, t)

∂x
+ cr0y(x, t)]|x=0 = 0, r = 1, 2 (2)

[dr3
∂3y(x, t)

∂x3
+ dr2

∂2y(x, t)
∂x2

+ dr1
∂y(x, t)

∂x
+ dr0y(x, t)]|x=l = 0, r = 1, 2 (3)

where y(x, t) is the lateral deflection at distance x along the length of the beam and

time t. EI, ρ and A are the flexural rigidity, the density and the cross-sectional area

of the beam, respectively. cri and dri are constants coming from different boundary

conditions for Euler-Bernoulli beams, where i = 0, 1, 2, 3 and r = 1, 2. For any mode

of vibration, the lateral deflection y(x, t) can be written in the form

y(x, t) = Y (x)h(t),

where Y (x) is the model deflection and h(t) is a harmonic function of time. If ω denotes

the frequency of h(t), then one has

∂2y(x, t)
∂t2

= −ω2Y (x)h(t).

Therefore, Eq. (1) is reduced to the following differential equation

d4Y (x)
dx4

− αY (x) = 0, 0 < x < l, (4)

where α = ρAω2

EI is the eigenvalue for this problem.
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Similarly, the boundary conditions (Eqs. (2) and (3)) can be expressed as follows

[cr3
d3Y (x)

dx3
+ cr2

d2Y (x)
dx2

+ cr1
dY (x)

dx
+ cr0Y (x)]|x=0 = 0, r = 1, 2

[dr3
d3Y (x)

dx3
+ dr2

d2Y (x)
dx2

+ dr1
dY (x)

dx
+ dr0Y (x)]|x=l = 0, r = 1, 2.

Now, a sixth-order compact finite difference method is applied for Eq. (4) under

various supporting conditions.

Case 1. Consider Eq. (4) with the simply supported-simply supported boundary

conditions

x = 0 : Y (x) = 0,
d2Y (x)

dx2
= 0,

x = l : Y (x) = 0,
d2Y (x)

dx2
= 0.

We discretize the region S = {x|x ∈ [0, l]} with grid points located at xi = ih,

i = 0, 1, . . . , N + 1, where h = l
N+1 is the space grid step size. To solve the problem

above, we apply the following sixth-order compact finite difference formula

1
h4

Yi−2 − 4
h4

Yi−1 +
6
h4

Yi − 4
h4

Yi+1 +
1
h4

Yi+2

−α(− 1
720

Yi−2 +
31
180

Yi−1 +
79
120

Yi +
31
180

Yi+1 − 1
720

Yi+2) = 0, (5)

i = 3, . . . , N − 2 for interior points. Also, when i = 1, i = 2, i = N − 1 and i = N , we

utilize the following formulae, respectively

60
11h4

Y1 − 48
11h4

Y2 +
12

11h4
Y3 − α(

29
44

Y1 +
19
110

Y2 − 1
660

Y3) = 0, (6)

− 4
h4

Y1 +
6
h4

Y2 − 4
h4

Y3 +
1
h4

Y4 − α(
31
180

Y1 +
79
120

Y2 +
31
180

Y3 − 1
720

Y4) = 0, (7)

1
h4

YN−3− 4
h4

YN−2+
6
h4

YN−1− 4
h4

YN−α(− 1
720

YN−3+
31
180

YN−2+
79
120

YN−1+
31
180

YN ) = 0,

(8)
12

11h4
YN−2 − 48

11h4
YN−1 +

60
11h4

YN − α(− 1
660

YN−2 +
19
110

YN−1 +
29
44

YN ) = 0. (9)
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The details of the derivation of above formulae have been shown in Appendix A.

Case 2. Consider Eq. (4) with the clamped-free boundary conditions

x = 0 : Y (x) = 0,
dY (x)

dx
= 0,

x = l :
d2Y (x)

dx2
= 0,

d3Y (x)
dx3

= 0.

We discretize the region S = {x|x ∈ [0, l]} with grid points located at xi = ih,

i = 0, 1, . . . , N, where h = l
N is the space grid step size. Similarly, to solve the

boundary value problem above, we implement the following sixth-order compact finite

difference formula

1
h4

Yi−2 − 4
h4

Yi−1 +
6
h4

Yi − 4
h4

Yi+1 +
1
h4

Yi+2

−α(− 1
720

Yi−2 +
31
180

Yi−1 +
79
120

Yi +
31
180

Yi+1 − 1
720

Yi+2) = 0, (10)

i = 3, . . . , N − 2 for interior points. Moreover, when i = 1, i = 2, i = N − 1 and i = N ,

we employ the following formulae, respectively

12
h4

Y1 − 6
h4

Y2 +
4

3h4
Y3 − α(

13
20

Y1 +
7
40

Y2 − 1
540

Y3) = 0, (11)

− 4
h4

Y1 +
6
h4

Y2 − 4
h4

Y3 +
1
h4

Y4 − α(
31
180

Y1 +
79
120

Y2 +
31
180

Y3 − 1
720

Y4) = 0, (12)

1
h4

YN−3 − 27
7h4

YN−2 +
33
7h4

YN−1 − 13
7h4

YN

−α(− 1
720

YN−3 +
289
1680

YN−2 +
1109
1680

YN−1 +
853
5040

YN ) = 0, (13)

12
7h4

YN−2 − 24
7h4

YN−1 +
12
7h4

YN − α(
3

140
YN−2 − 3

70
YN−1 +

143
140

YN ) = 0. (14)

The details of the derivation of above formulae have been shown in Appendix B.
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3 Matrix form of the difference scheme

If we consider the relations (5)-(9) and (10)-(14), then two systems of linear equations

will be obtained as follows

([A]− α[B]){Y } = 0, (15)

([C]− α[D]){Y } = 0, (16)

where {Y } = [Y1, Y2, . . . , YN−1, YN ]T and A, B, C and D are the diagonal matrices.

To obtain a non-trivial solution of (15) and (16), it is required that the determinant of

the coefficients matrix of (15) and (16) vanish, namely

det([A]− α[B]) = 0, (17)

det([C]− α[D]) = 0, (18)

thus, one can determine the eigenvalues from (17) and (18) and then obtain the beam’s

natural frequencies for the cases of 1 and 2.

4 Numerical results and discussion

In this section, comparisons are made to illustrate the performance of the proposed

method. The computations associated with the cases of 1 and 2 have been performed

using Matlab software. It is assumed that

ρ = 1.2, A = 0.2× 0.1, E = 3× 107, I =
0.1× (0.2)3

12
.

The natural frequencies generated by the CFDM for the case of 1, have been shown

in Table 1. Also, Table 2 demonstrates the percentage of the relative errors of the

natural frequencies obtained by the CFDM and exact natural frequencies for the case

of 1. From Table 1, it can be observed that the natural frequencies obtained by the

CFDM are in good agreement with the exact natural frequencies. Moreover, Table 2

reveals that the percentage of the relative errors of the natural frequencies obtained

www.sid.ir


www.SID.ir

Arc
hive

 of
 S

ID

Ansari et al. 313

by the CFDM and the exact natural frequencies lie within the interval [0.0012,1.6922].

In particular, when N = 20 the percentage of relative errors of the natural frequen-

cies obtained by the CFDM and the exact natural frequencies restrict to the interval

[0.0176,1.2394]. This subject shows that the CFDM is reliable, even for a small number

of nodes. Similarly, Table 3 indicates the natural frequencies generated by the CFDM

for the case of 2. Also, the percentage of the relative errors of the natural frequen-

cies obtained by the CFDM and exact natural frequencies for the case of 2, have been

demonstrated in Table 4. From Table 3, it is clearly seen that the natural frequencies

generated by the CFDM are in good agreement with the exact natural frequencies.

Besides, Table 4 illustrates that the percentage of the relative errors of the natural

frequencies obtained via the CFDM and the exact natural frequencies lie in the inter-

val [0.0257,4.5390]. Especially, when N = 20 the percentage of relative errors of the

natural frequencies obtained by the CFDM and the exact natural frequencies restrict

to the interval [0.1724,1.3226]. This reveals that the CFDM is reliable, even for a small

number of nodes.

5 Conclusion

In this paper, a sixth-order compact finite difference method was adopted for solving

free vibration problems for an Euler-Bernoulli beam under various supporting condi-

tions. By making use of this method, the natural frequencies of beam corresponding to

two commonly used boundary conditions namely simply supported-simply supported

and clamped-free were successfully obtained. From the results, it was obsereved that

1) The natural frequencies obtained by the CFDM are in good agreement with the

exact natural frequencies.

2) The CFDM is reliable, even for a small number of nodes.
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Table 1: Natural frequencies obtained by CFDM in comparison with the exact natural

frequencies for the case of 1

Length N ω(1) ω(2) ω(3) ω(4)

10 2852.541 11447.08 25864.45 46150.74

20 2849.612 11404.3 25680.29 45700.35

1 (m) 30 2849.266 11398.92 25654.34 45623.83

50 2849.145 11397 25644.81 45594.61

Exact 2849.11 11396.44 25641.98 45585.75

10 114.1016 457.883 1034.578 1846.029

20 113.9845 456.1719 1027.212 1828.014

5 (m) 30 113.9706 455.9568 1026.173 1824.953

50 113.9658 455.88 1025.793 1823.784

Exact 113.9644 455.8575 1025.679 1823.43

10 28.52541 114.4708 258.6445 461.5074

20 28.49612 114.043 256.8029 457.0035

10 (m) 30 28.49266 113.9892 256.5434 456.2383

50 28.49145 113.97 256.4481 455.9461

Exact 28.4911 113.9644 256.4198 455.8575

Appendix A

Let’s consider the Eq. (4) with the simply supported-simply supported boundary

conditions. We discretize the region S = {x|x ∈ [0, l]} with grid points located at

xi = ih, i = 0, 1, . . . , N + 1, where h = l
N+1 is the space grid step size. If we apply

the central difference approximation, we can obtain the following relation for Eq. (4)

at the point xi

δ4
xYi − αYi = τi, (19)

www.sid.ir


www.SID.ir

Arc
hive

 of
 S

ID

Ansari et al. 315

Table 2: Percentage of the relative errors of the natural frequencies obtained by CFDM

and exact natural frequencies for the case of 1

Length N ω(1) ω(2) ω(3) ω(4)

10 0.1204 0.4443 0.8676 1.6922

1 (m) 20 0.0176 0.0690 0.1494 1.2394

30 0.0058 0.0218 0.0482 0.0835

50 0.0012 0.0049 0.0110 0.0194

Table 3: Natural frequencies obtained by CFDM in comparison with the exact natural

frequencies for the case of 2

Length N ω(1) ω(2) ω(3) ω(4)

10 1008.0697 6215.1073 17179.092 33317.2018

20 1013.2438 6323.1512 17639.2858 34439.7797

1 (m) 30 1014.2108 6343.9813 17733.4189 34691.2597

50 1014.7069 6354.7359 17782.5657 34824.9567

Exact 1014.9862 6360.8098 17810.4517 34901.3769

10 40.3228 248.6043 687.1637 1332.6881

20 40.5298 252.9260 705.5714 1377.5912

5 (m) 30 40.5684 253.7593 709.3368 1387.6504

50 40.5883 254.1894 711.3026 1392.9983

Exact 40.5994 254.4324 712.4181 1396.0551

10 10.0807 62.1511 171.7909 333.1720

20 10.1324 63.2315 176.3929 344.3978

10 (m) 30 10.1421 63.4398 177.3342 346.9126

50 10.1471 63.5474 177.8257 348.2496

Exact 10.1499 63.6081 178.1045 349.0138
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Table 4: Percentage of the relative errors of the natural frequencies obtained by CFDM

and exact natural frequencies for the case of 2

Length N ω(1) ω(2) ω(3) ω(4)

10 0.6818 2.2906 3.5449 4.5390

1 (m) 20 0.1724 0.5921 0.9610 1.3226

30 0.0764 0.2646 0.4325 0.6020

50 0.0257 0.0955 0.1565 0.2190

which

δ4
xYi =

Yi−2 − 4Yi−1 + 6Yi − 4Yi+1 + Yi+2

h4
,

and τi is the truncation error and can be shown as follows

τi = α(
h4

80
δ4
xYi +

h2

6
δ2
xYi) + O(h6),

where

δ2
xYi =

−Yi−2 + 16Yi−1 − 30Yi + 16Yi+1 − Yi+2

12h2
.

Now, substituting τi into Eq. (19), yields the following relation

δ4
xYi − α(

h4

80
δ4
xYi +

h2

6
δ2
xYi + Yi) = 0. (20)

Also, by considering the grid point x0 and the fictitious point x−1, the boundary

conditions for the case of 1 can be written as

x = 0 : Y0 = 0,
11Y−1 − 20Y0 + 6Y1 + 4Y2 − Y3

12h2
= 0,

and therefore

Y−1 = − 6
11

Y1 − 4
11

Y2 +
1
11

Y3, Y0 = 0. (21)

Similarly, by considering the grid point xN+1 and the fictitious point xN+2, the

following relations can be obtained

x = l : YN+1 = 0, YN+2 =
1
11

YN−2 − 4
11

YN−1 − 6
11

YN . (22)
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Now, from (20) one has

1
h4

Yi−2 − 4
h4

Yi−1 +
6
h4

Yi − 4
h4

Yi+1 +
1
h4

Yi+2

−α(− 1
720

Yi−2 +
31
180

Yi−1 +
79
120

Yi +
31
180

Yi+1 − 1
720

Yi+2) = 0, i = 3, . . . , N − 2,

when i = 1 and i = 2, by considering (20) and (21) we will obtain

60
11h4

Y1 − 48
11h4

Y2 +
12

11h4
Y3 − α(

29
44

Y1 +
19
110

Y2 − 1
660

Y3) = 0,

− 4
h4

Y1 +
6
h4

Y2 − 4
h4

Y3 +
1
h4

Y4 − α(
31
180

Y1 +
79
120

Y2 +
31
180

Y3 − 1
720

Y4) = 0.

Similarly when i = N − 1 and i = N , from (20) and (22) we will obtain

1
h4

YN−3− 4
h4

YN−2+
6
h4

YN−1− 4
h4

YN−α(− 1
720

YN−3+
31
180

YN−2+
79
120

YN−1+
31
180

YN ) = 0,

12
11h4

YN−2 − 48
11h4

YN−1 +
60

11h4
YN − α(− 1

660
YN−2 +

19
110

YN−1 +
29
44

YN ) = 0.

Appendix B

Again consider the Eq. (4) with the clamped-free boundary conditions. We dis-

cretize the region S = {x|x ∈ [0, l]} with grid points located at xi = ih, i = 0, 1, . . . , N ,

where h = l
N is the space grid step size. By considering the grid point x0 and the

fictitious point x−1, the boundary conditions for the case of 2 can be written in the

form

x = 0 : Y0 = 0,
−3Y−1 − 10Y0 + 18Y1 − 6Y2 + Y3

12h
= 0,

and so

Y−1 = 6Y1 − 2Y2 +
1
3
Y3, Y0 = 0. (23)

Similarly, by considering the fictitious points xN+1 and xN+2, the following relations

can be obtained

YN+1 =
1
7
YN−2 − 9

7
YN−1 +

15
7

YN , (24)
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YN+2 =
9
7
YN−2 − 32

7
YN−1 +

30
7

YN . (25)

Now, from (20) one can obtain

1
h4

Yi−2 − 4
h4

Yi−1 +
6
h4

Yi − 4
h4

Yi+1 +
1
h4

Yi+2

−α(− 1
720

Yi−2 +
31
180

Yi−1 +
79
120

Yi +
31
180

Yi+1 − 1
720

Yi+2) = 0, i = 3, . . . , N − 2,

when i = 1 and i = 2, by considering (20) and (23) we will have

12
h4

Y1 − 6
h4

Y2 +
4

3h4
Y3 − α(

13
20

Y1 +
7
40

Y2 − 1
540

Y3) = 0,

− 4
h4

Y1 +
6
h4

Y2 − 4
h4

Y3 +
1
h4

Y4 − α(
31
180

Y1 +
79
120

Y2 +
31
180

Y3 − 1
720

Y4) = 0.

Also when i = N − 1, from (20) and (24) one has

1
h4

YN−3 − 27
7h4

YN−2 +
33
7h4

YN−1 − 13
7h4

YN

−α(− 1
720

YN−3 +
289
1680

YN−2 +
1109
1680

YN−1 +
853
5040

YN ) = 0,

and finally, when i = N from (20), (24) and (25) we obtain

12
7h4

YN−2 − 24
7h4

YN−1 +
12
7h4

YN − α(
3

140
YN−2 − 3

70
YN−1 +

143
140

YN ) = 0.
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