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Abstract

In this paper hybrid functions which consist of Block-Pulse functions plus Leg-

endre polynomials are developed to approximate the solution of the linear Volterra

integral equations system that arises in the elastodynamic problems. Properties of

these hybrid functions are first presented, the operational matrix of integration and

the product operational matrix are utilized to reduce the computation of Volterra

integral equations system to some algebraic equations. Finally numerical results

which we compared them with some existed method are given to showing the profit

and efficiency of the proposed method.
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1 Introduction

Mathematical modeling for many problems in different disciplines, such as engineer-

ing, chemistry, physics and biology leads to integral equation, or system of integral

equations. It’s the reason of great interest for solving these equations.
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We consider the following system of linear Volterra integral equations:

G(x)U(x) +
∫ x

0
K(x, s)U(s)ds = F(x); i = 1, 2, ..., q, (1)

where

U(x) = [u1(x), ..., uq(x)]T ,F(x) = [f1(x), ..., fq(x)]T , (2)

and

G(x) =




g11(x) · · · g1q(x)
...

. . .
...

gq1(x) · · · gqq(x)




,

K(x, s) =




k11(x, s) · · · k11(x, s)
...

. . .
...

kq1(x, s) · · · kqq(x, s)




,

where the functions gij(t), fi(x) ∈ L2[0, 1) and the kernels kij(x, s) ∈ L2([0, 1)× [0, 1))

for i, j = 1, 2, ..., q are known and ui(x) for i = 1, 2, ..., q are the solutions to be de-

termined. The theory on existence and uniqueness of a continuous solution for such

equations was already established by Volterra and Brunner [1, 2].

For some specific problems that lead to the system of linear Volterra integral equations,

we can mention mathematical model of linear quasi-static visco-elasticity problem [2],

magneto-electro-elastic dynamic problems [3] and the elastodynamic problems of piezo-

electric [4]. Some existed numerical methods for approximating the solution of Eq.(1)

are as follows. Maleknejad, Rabbani and Aghazadeh in [5] used expansion method to

solve Volterra integral equations system of the second kind, in [6] Mirzaee obtained

a numerical solution of these equations by using rationalized Haar functions, Saeed

and Ahmed in [7] produced a method for numerical solution of the System of linear

Volterra Integral equations of the second kind using Monte-Carlo method , in [8] Biazar

and Pourabd solved these system of integral equations numerically based on Adomian

www.sid.ir


www.SID.ir

Arc
hive

 of
 S

ID

Hashemizadeh E. and Basirat B. 357

decomposition method, Maleknejad and Salimi Shamloo in [9] solved singular Volterra

integral equations system of convolution type by using operational matrices of Block-

Pulse functions.

In this paper we use hybrid functions which consists of Block-Pulse functions and

Legendre polynomials as basis. Beforehand this method has been used for system of

Fredholm integral equations [10]. The main advantage of this basis is their efficiency

and simple applicability that is based on some useful properties of hybrid functions,

such as operational matrix, a special product matrix and a related coefficient matrix.

These matrices are applied to convert these system of linear Volterra integral equations

into linear algebraic equations and in this way, the solution procedures are either re-

duced or simplified, accordingly. The other advantage of hybrid functions is that the

values of n and m are adjustable as well as being able to yield more accurate numerical

solutions than the other function’s method [11, 12].

The paper is organized as follows. In Section 2 we presented some properties of hybrid

Legendre and Block-Pulse function and introduced some useful operational matrices

of these functions. In Section 3 we implemented the hybrid function method on the

system of linear Volterra integral equations and convert them to a linear algebraic sys-

tem of equations. In Section 4 we give some computable error bounds for system of

linear Volterra integral equations. Section 5 presents numerical examples that shows

the efficiency and accuracy of proposed method in analogy to some existed method.

Finally Section 6 concludes the paper.
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2 Some properties of hybrid functions

2.1 Definition of hybrid function of Legendre and Block-Pulse

Consider the Legendre polynomials Lm(x) on the interval [−1, 1]: L0(x) = 1, L1(x) =

x,

Lm+1(x) =
2m + 1
m + 1

xLm(x)− m

m + 1
Lm−1(x), m = 1, 2, ....

The set {Lm(x) : m = 0, 1, ...} in Hilbert space L2[−1, 1] is a complete orthogonal

set. A set of Block-Pulse functions φi(x), i = 1, 2, ..., n and the orthogonal set of hybrid

functions hij(x), i = 1, 2, ..., n and j = 0, 1, ..., m − 1, that produces by Legendre

polynomials and Block-Pulse functions on [0, 1) are defined as follows:

φi(x) =
{ 1, i−1

n ≤ x < i
n

0, otherwise
, (3)

hij(x) =
{

Lj(2nx− 2i + 1), i−1
n ≤ x < i

n

0, otherwise
, (4)

where n and m are the order of Block-Pulse functions and Legendre polynomials, re-

spectively, and x is the normalized time.

2.2 Function approximation

Any function u(x) ∈ L2[0, 1) can be expanded in hybrid functions as

u(x) =
∞∑

i=1

∞∑

j=0

cijhij(x), (5)

where the hybrid coefficients are given by cij = (u(x),hij(x))
(hij(x),hij(x)) for i = 1, 2, ...,∞, j =

0, 1, ...,∞, so that, (·, ·) denotes the inner product.

Usually, the series expansion Eq.(5) contains an infinite number of terms for a

smooth u(x). If u(x) is piecewise constant or may be approximated as piecewise con-
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stant, then the sum in Eq.(5) may be terminated after nm terms, that is

u(x) '
n∑

i=1

m−1∑

j=0

cijhij(x) = CTh(x), (6)

where

C = [c10, ..., c1,m−1, c20, ..., c2,m−1, ..., cn0, ..., cn,m−1]T , (7)

h(x) = [h10(x), ..., h1m−1(x), h20(x), ..., h2m−1(x), ..., hnm−1(x)]T . (8)

We can also approximate the function k(x, s) ∈ L2([0, 1)× [0, 1)) as follows

k(x, s) ' hT (x)Kh(s), (9)

where K is an nm × nm matrix that Kij =

(
h(i)(x),(k(x,s),h(j)(s))

)

(h(i)(x),h(i)(x))(h(j)(s),h(j)(s))
for i, j =

1, 2, ..., nm.

2.3 Operational matrix of integration

The integration of the vector h(x) defined in Eq.(8) is given by
∫ x

0
h(x′)dx′ ' Ph(x), (10)

where P is the nm× nm operational matrix for integration and is given in [13] as

P =




E H H . . . H

O E H . . . H

O O E . . . H
...

...
...

. . .
...

O O O . . . E




, (11)

that E and H are m×m matrices that have the following shapes,

H =
1
n




1 0 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0




, (12)
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E =
1
2n




1 1 0 0 0 · · · 0 0 0 0 0

−1
3 0 1

3 0 0 · · · 0 0 0 0 0

0 −1
5 0 1

5 0 · · · 0 0 0 0 0

0 0 −1
7 0 1

7 · · · 0 0 0 0 0

0 0 0 −1
9 0 · · · 0 0 0 0 0

...
...

...
...

...
. . .

...
...

...
...

...

0 0 0 0 0 · · · 0 1
2m−9 0 0 0

0 0 0 0 0 · · · −1
2m−7 0 1

2m−7 0 0

0 0 0 0 0 · · · 0 −1
2m−5 0 1

2m−5 0

0 0 0 0 0 · · · 0 0 −1
2m−3 0 1

2m−3

0 0 0 0 0 · · · 0 0 0 −1
2m−1 0




. (13)

2.4 Product operational matrix

It is always necessary to evaluate the product of h(x) and hT (x), that is called the

product matrix of hybrid functions. Let

H(x) = h(x)hT (x), (14)

where H(x) is an nm × nm matrix. By multiplying the matrix H(x) in the vector C

that defined in Eq.(7) we obtain

H(x)C = C̃h(x), (15)

where C̃ is an nm×nm matrix and is called the coefficient matrix. Basic multiplication

properties of arbitrary two hybrid function hij(x) and hkl(x) are described in [13].

When n = 2 and m = 8 we have the components of C̃ as follows

C̃ =




C̃1 O

O C̃2


 ,

where Ci, i = 1, 2 are 8× 8 matrices given by
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C̃i =




ci0 ci1 ci2 · · · ci7

1/3ci1

ci0

+2/5ci2

2/3ci1

+3/7ci3

· · · 7/13ci6

1/5ci2

2/5ci1

+9/35ci3

ci0

+2/7ci2

+2/7ci4

· · · 63/143ci5

+56/221ci7

...
...

... · · · ...

1/15ci7 7/65ci6

21/143ci5

+56/663ci7

· · ·

ci0

+56/221ci2

+6804/46189ci4

+5000/46189ci6




. (16)

3 Implementation of hybrid function method on system

of linear Volterra integral equations

Consider the system of linear Volterra integral equation (1), we can present that equa-

tion by the following form:

q∑

j=1

gij(x)ui(x) +
q∑

j=1

∫ x

0
kij(x, s)uj(s)ds = fi(x); i = 1, 2, ..., q. (17)

We put

ui(x) ' UT
i h(x), i = 1, ..., q, (18)

where Ui for i = 1, ..., q are unknown nm–vectors and h(x) is given by Eq.(8). Likewise,

gij(x), kij(x, s) and fi(x) for i, j = 1, ..., q are expanded into the hybrid functions as

follows

kij(x, s) ' hT (x)Kijh(s), gij(x) ' GT
ijh(x), i, j = 1, ..., q, (19)

fi(x) ' F T
i h(x), i = 1, ..., q, (20)
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where Kij for i, j = 1, ..., q are known nm× nm–matrices and Gij , Fi for i, j = 1, ..., q,

are known nm–vectors.

After substituting the approximate equations (18), (19), (20) in (17) we get

q∑

j=1

(
GT

ijh(x)hT (x)Uj

)
+

q∑

j=1

∫ x

0
hT (x)Kijh(s)hT (s)Ujds = hT (x)Fi, i = 1, ..., q, (21)

by using Eqs.(10) and (15) we can convert Eqs.(21) to the following equations,

q∑

j=1

hT (x)G̃ijUj +
q∑

j=1

hT (x)KijŨjPh(x) = hT (x)Fi, i = 1, ..., q, (22)

now we have q equations with q× n×m unknowns U1, U2, ..., Uq (each of these vectors

have nm unknowns).

In order to find Ui for i = 1, ..., q we collocate each of Eqs.(22) in nm points

xp, p = 1, ..., nm in the interval [0, 1] that are roots of shifted Legendre polynomial

Lnm(2x− 1) [14]. Then we have following system of linear equations

q∑

j=1

hT (xp)G̃ijUj +
q∑

j=1

hT (xp)KijŨjPh(xp) = hT (xp)Fi, i = 1, ..., q, p = 1, . . . , nm.

(23)

After solving above linear system we can achieve Ui for i = 1, ..., q, then we will have

our unknown ui(x) as UT
i h(x) for i = 1, ..., q, that are the approximate solution for our

system of linear Volterra integral equations (1).

4 Error analysis

We assume throughout this paper, all functions are continuously differentiable finitely

or infinitely.

Theorem 4.1 Let u(x) ∈ Hk(−1, 1) (Sobolev space), uJ(x) =
∑J

i=0 aiLi(x) be the

best approximation polynomial of u(x) in L2, then

‖u(x)− uJ(x)‖L2[−1,1] ≤ C0J
−k‖u(x)‖Hk(−1,1), (24)
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where C0 is a positive constant, which depends on the selected norm and is independent

of u(x) and J , see [15].

We denote the unm(x) and u(x) show the approximate and exact solutions of the

integral equations respectively.

Theorem 4.2 Let u(x) ∈ Hk(0, 1), Ii = [ i−1
n , i

n ] then

‖u(x)− unm(x)‖L2[0,1] ≤ C0(mn)−kmax0≤i≤n‖u(x)‖Hk(Ii), (25)

Proof By using Theorem 4.1 it is obvious.

If u(x) is approximated by unm(x) ' ∑n
i=1

∑m−1
j=0 cijhij(x) and we compute cij so

that cij is approximation of cij and unm(x) ' ∑n
i=1

∑m−1
j=0 cijhij(x), then for x ∈ [ i−1

n , i
n ]

we get

‖u(x)−unm(x)‖ = ‖u(x)−unm(x)+unm(x)−unm(x)‖ ≤ ‖u(x)−unm(x)‖+‖unm(x)−unm(x)‖,
(26)

We have

‖unm(x)−unm(x)‖ =
[ ∫ 1

0
(unm(x)−unm(x))2dx

] 1
2 =

[ ∫ 1

0
(

n∑

i=1

m−1∑

j=0

(cij−cij)hij(x))2dx
] 1

2 .

(27)

The hybrid functions set {hij(x)} is an orthogonal set and

D =
∫ 1

0
h(x)hT (x)dx =




L 0 . . . 0

0 L . . . 0
...

...
. . .

...

0 0 . . . L




, (28)

where L is a m×m diagonal matrix that is given by

L =
1
n




1 0 . . . 0

0 1
3 . . . 0

...
...

. . .
...

0 0 . . . 1
2m−1




. (29)
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Then from Eq.(27)and (28) we get

‖unm(x)− unm(x)‖ ≤
[ n∑

i=1

m−1∑

j=0

1
n(2j + 1)

(cij − cij)
] 1

2 . (30)

If we use the Gaussian points that are the roots of shifted Legendre polynomials for

approximation of cij [16, 17], we have

|cij − cij | ≤ C1(nm)−(k−1), (31)

we have the sum of
∑m−1

j=0
1

(2j+1) as

ln 2 +
1
2
(γ + ψ(

1
2

+ m)),

where γ is the Euler’s constant and its approximate solution is about 0.577216 and the

function ψ is the logarithmic derivative of the gamma function that is defined as follows

ψ(x) =
d

dx
ln Γ(x) +

Γ′(x)
Γ(x)

,

and its maximum value on the interval [0, 1], is one. So we have

n∑

i=1

m−1∑

j=0

1
n(2j + 1)

=
n∑

i=1

1
n

m−1∑

j=0

1
(2j + 1)

=
m−1∑

j=0

1
(2j + 1)

≤ ln 2+
1
2
(0.575216+1) = 1.48176,

so by use of above relation and Eq. (30) we have

‖unm(x)− unm(x)‖ ≤ C2(nm)
−k+1

2 (1.48176)
1
2 , (32)

then from Eqs.(25), (26) and (32) we found the error bound

‖u(x)− unm(x)‖ ≤ C3(nm)
−k+1

2 + C0(mn)−kmax0≤i≤n‖u(x)‖Hk(Ii). (33)

Let ei
nm(x) = ‖ui(x)−ui

nm(x)‖ be the error function of approximate solution ui
nm(x)

to the exact solution ui(x), then we consider

q∑

j=1

gij(x)ui
nm(x) +

q∑

j=1

∫ x

0
kij(x, s)uj

nm(s)ds = fi(x) + Ri
nm(x); i = 1, 2, ..., q, (34)
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Ri
nm(x) is the perturbation functions that depends only on ui

nm(x) and we can obtain

it by subtracting Eqs.(34) form (1),
q∑

j=1

gij(x)ei
nm(x) +

q∑

j=1

∫ x

0
kij(x, s)ej

nm(s)ds = Ri
nm(x); i = 1, 2, ..., q. (35)

If we assume Mij = sup0≤x,s≤1 | kij(x, s) |< ∞ and Wij = sup0≤x≤1 | gij(x) |< ∞
then each perturbation function Ri

nm(x) is bounded

‖Ri
nm(x)‖ ≤

q∑

j=1

Wij(x)ei
nm(x) +

q∑

j=1

Mije
j
nm(s); i = 1, 2, ..., q. (36)

and for i = 1, 2, ..., q

‖Ri
nm(x)‖ ≤

q∑

j=1

(Wij +Mij)
(
C3(nm)

−k+1
2 + C0(mn)−kmax0≤i≤n‖u(x)‖Hk(Ii)

)
. (37)

5 Numerical illustrations

Example 5.1 For the first example, consider the following Volterra system of inte-

gral equations:
{

u1(x)− ∫ x
0 u2(s)ds = 1− x2

u2(x)− ∫ x
0 u1(s)ds = x

,

the exact solution is u1(x) = 1, u2(x) = 2x. Table 1 given the absolute errors for u1(x)

and u2(x) by hybrid function method with comparison by absolute errors of rationalized

Haar function method [6].

Example 5.2 For the second example, consider the following Volterra system of

integral equations:

{ u1(x)− ∫ x
0 (s2 − x)(u1(s) + u2(s))ds = x + 1

2x3 + 1
12x4 − 1

5x5

u2(x)− ∫ x
0 s(u1(s) + u2(s))ds = x2 − 1

3x3 − 1
4x4

,

with the exact solution u1(x) = x, u2(x) = x2. Table 2 shows the absolute errors for our

proposed method and the comparison with absolute errors by rationalized Haar function

method.
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Table 1. Absolute errors for example 1.
Absolute errors for u1(x) Absolute errors for u2(x)

x Present method Method in [6] Present method Method in [6]

with n = 2, m = 8 with k = 32 with n = 2, m = 8 with k = 32

0.0 0.0× 10−16 0.0× 10−4 0.0× 10−16 0.0× 10−4

0.1 0.0× 10−16 0.9× 10−4 0.0× 10−16 0.1× 10−4

0.2 0.0× 10−16 0.6× 10−4 0.0× 10−16 0.7× 10−4

0.3 0.0× 10−16 0.2× 10−4 0.0× 10−16 0.4× 10−4

0.4 0.0× 10−16 0.3× 10−4 0.0× 10−16 0.5× 10−4

0.5 0.0× 10−16 0.2× 10−4 0.0× 10−16 0.1× 10−4

0.6 0.0× 10−16 0.6× 10−4 0.0× 10−16 0.2× 10−4

0.7 0.0× 10−16 0.9× 10−4 0.0× 10−16 0.8× 10−4

0.8 0.0× 10−16 0.1× 10−4 0.0× 10−16 0.8× 10−4

0.9 0.0× 10−16 0.9× 10−4 0.0× 10−16 0.2× 10−4

1.0 0.0× 10−16 0.1× 10−4 0.0× 10−16 0.8× 10−4

Table 2. Absolute errors for example 2.
Absolute errors for u1(x) Absolute errors for u2(x)

x Present method Method in [6] Present method Method in [6]

with n = 2, m = 8 with k = 32 with n = 2, m = 8 with k = 32

0.0 0.0× 10−16 0.0× 10−4 0.0× 10−16 0.0× 10−4

0.1 0.0× 10−16 0.8× 10−4 0.0× 10−16 0.8× 10−4

0.2 0.0× 10−16 0.8× 10−4 0.0× 10−16 0.2× 10−4

0.3 0.0× 10−16 0.8× 10−4 0.0× 10−16 0.2× 10−4

0.4 0.0× 10−16 0.8× 10−4 0.0× 10−16 0.8× 10−4

0.5 0.0× 10−16 0.9× 10−4 0.0× 10−16 0.5× 10−4

0.6 0.0× 10−16 0.8× 10−4 0.0× 10−16 0.9× 10−4

0.7 0.0× 10−16 0.8× 10−4 0.0× 10−16 0.5× 10−4

0.8 0.0× 10−16 0.8× 10−4 0.0× 10−16 0.5× 10−4

0.9 0.0× 10−16 0.8× 10−4 0.0× 10−16 0.9× 10−4

1.0 0.0× 10−16 0.1× 10−4 0.0× 10−16 0.3× 10−4

6 Conclusion

In this work we solved a system of linear Volterra integral equations via hybrid legendre

and Block-Pulse functions. By some useful properties of these hybrid functions such

as, operational matrix, product matrix and coefficient matrix together with collocation

method, a Volterra system of integral equations can be transformed to a linear system
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of algebraic equations. Illustrative examples are given to demonstrate the high validity

and applicability of proposed method and our answers compared with the answers of

some existed method.
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