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Approximation by complex
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Abstract

Purpose: The purpose of the present paper is to study the Stancu-type generalization of complex
Favard-Szász-Mirakjan operators and establish some approximation results in complex domain.

Methods: It is observed that the complex Favard-Szász-Mirakjan-Stancu operators can be written in the form of
divided differences. Thus, it is possible to study such operators in complex domain. We use analytical method to
obtain our results.

Results: We have estimated the order of simultaneous approximation, Voronovskaja-type results with quantitative
estimates for the complex Favard-Szász-Mirakjan-Stancu operators attached to analytic functions on compact disks.
Also, some estimates on the rate of convergence are given.

Conclusions: The results proposed here are new and have better rate of convergence.

Keywords: Complex Favard-Szász-Mirakjan-Stancu operators, Voronovkaja-type result, Exact order of approximation
in compact disks, Simultaneous approximation
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Introduction
The Favard-Szász-Mirakjan operators are important and
have been studied intensively, in connection with dif-
ferent branches of analysis, such as numerical analysis,
approximation theory statistics etc. For a real function f
of real variable f :[ 0, ∞) → R, the Favard-Szász-Mirakjan
operators are defined as follows:

Sn(f , x) = e−nx
∞∑

ν=0

(nz)ν

ν!
f
(ν

n

)
, x ∈[ 0, ∞),

where the convergence of Sn(f , x) → f (x) under the expo-
nential growth condition on f that is |f (x)| ≤ CeBx for all
x ∈[ 0, +∞), with C, B > 0 was established in [1]. The
actual construction of the Szász-Mirakyan operators and
its various modifications require estimations of infinite
series which, in a certain sense, restrict their usefulness
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from the computational point of view. Recently Walczak
[2] proposed and studied the Szász-Mirakyan operators by
considering a finite sum.

Recently, Gal in his famous book [3] estimated
Voronovskaja-type results with quantitative estimates for
several complex operators. He also established exact order
of simultaneous approximation by such complex opera-
tors. The Durrmeyer-type operators in complex domain
were recently established in [4-12], etc. In [13], a Stancu-
type generalization of the complex Durrmeyer operator
was treated.

Also, Gal et. al [14] introduced complex Baskakov-
Stancu operators and studied exact quantitative estimates
and quantitative Voronovskaja-type results for these oper-
ators. Motivated by the recent study on this important
topic, here, we deal with the following complex form for
the Favard-Szász-Mirakjan-Stancu operator

Sα,β
n (f , z) =

∞∑
ν=0

[
α

n + β
,

α + 1
n + β

, ...,
α + ν

n + β
; f

]
zν ,
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Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
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which for α = 0 = β was studied in [3]. Here,
[ x0, x1, ..., xm; f ] denotes the divided difference of the
function f on the knots x0, x1, ..., xm. We may note here
that such a formula was first established by Lupas [15] for
the special case α = β = 0 and for functions of real
variable. This formula holds for complex setting too, since
only algebraic calculations were used in [15].

The aim of the present paper is to study the rate of
approximation of analytic functions without exponen-
tial growth conditions and the Voronovskaja-type result
for the Favard-Szász-Mirakjan-Stancu operator Sα,β

n (f , z).
Also, the exact order of approximation by this operator is
obtained.

Methods
The principal methods used in the present work involve
application of the theory of functions to analyze and study
the order of simultaneous approximation, Voronovskaja-
type results with quantitative estimates for the complex
Favard-Szász-Mirakjan-Stancu operators attached to ana-
lytic functions on compact disks.

Results and discussion
In the sequel, we need the following auxiliary results:

Lemma 1. For all n, k ∈ N ∪ {0}, 0 ≤ α ≤ β , z ∈ C, let
us define

Sα,β
n (ek , z) =

∞∑
ν=0

[
α

n + β
,

α + 1
n + β

, ...,
α + ν

n + β
; ek

]
zν ,

where ek(z) = zk. Then, Sα,β
n (e0, z) = 1, and we have the

following recurrence relation

Sα,β
n (ek+1, z) = z

n + β
(Sα,β

n (ek , z))′+nz + α

n + β
Sα,β

n (ek , z).

(1)

Consequently,

Sα,β
n (e1, z) = nz + α

n + β
, Sα,β

n (e2, z)

= n2z2

(n + β)2 + nz(1 + 2α)

(n + β)2 + α2

(n + β)2 .

(2)

Proof. First, note that we have

Sα,β
n (ek , z) =

k∑
ν=0

[
α

n + β
,

α + 1
n + β

, ...,
α + ν

n + β
; ek

]
zν .

Simple calculation shows that the recurrence relation in
the statement is equivalent to[

α

n + β
,
α + 1
n + β

, ...,
α + ν

n + β
; ek+1

]

= α + ν

n + β
·
[

α

n + β
,
α + 1
n + β

, ...,
α + ν

n + β
; ek

]

+
[

α

n + β
,
α + 1
n + β

, ...,
α + ν − 1

n + β
; ek

]
,

(3)

which is an immediate consequence of the well-known
relation (see [16], Exercise 4.9)

[ x0, x1, ..., xm; f · g] =
m∑

i=0
[ x0, x1, ..., xi; f ] ·[ xi, ..., xm; g] ,

by taking m = ν, f = ek , g = e1 and xi = α+i
n+β

.

Lemma 2. Let α, β be satisfying 0 ≤ α ≤ β . Denoting
ej(z) = zj and S0,0

n (ej) by Sn(ej) for all n, k ∈ N∪{0}, the fol-
lowing recursive relation for the images of the monomials
ek under Sα,β

n in terms of Sn(ej), j = 0, 1, 2..., k,

Sα,β
n (ek , z) =

k∑
j=0

(
k
j

)
njαk−j

(n + β)k Sn(ej, z).

Lemma 3. For all n, k ∈ N ∪ {0}, 0 ≤ α ≤ β and |z| ≤
r, r ≥ 1, we have ∣∣∣Sα,β

n (ek , z)
∣∣∣ ≤ (2r)k .

Proof. Denoting ek(z) = zk for any k ∈ N, we have

Sα,β
n (ek , z) =

k∑
ν=0

[
α

n + β
,

α + 1
n + β

, ...,
α + ν

n + β
; ek

]
zν .

Using the mean value theorem in complex analysis, we
get

∣∣∣Sα,β
n (ek , z)

∣∣∣ ≤
k∑

ν=1

k(k − 1)...(k − ν + 1)

ν!
rk−νrν

≤ rk
k∑

ν=1

k(k − 1)...(k − ν + 1)

ν!

= rk
k∑

ν=1

(
k
ν

)
≤ (2r)k ,

which proves the lemma.

Main results
Our first main result is the following theorem for upper
estimates:
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Theorem 1. For 2 < R < +∞, let f :[ R, +∞)∪DR → C

be bounded on [ 0, +∞) and analytic in DR, that is f (z) =∑∞
k=0 ckzk, for all z ∈ DR.

(a) Suppose that 0 ≤ α ≤ β and 1 ≤ r < R
2 are arbitrarily

fixed. Then, for all |z| ≤ r and n ∈ N, we have
∣∣∣Sα,β

n (f , z) − f (z)
∣∣∣ ≤ α + βr

n + β

∞∑
k=1

|ck|rk−1

+ Ar(f )
n + β

+ αBr(f )
n + β

+ βCr(f )
n + β

,

(4)

where
∑∞

k=1 |ck|rk−1 < +∞,
Br(f ) = ∑∞

k=1 |ck|krk−1 < +∞,
Cr(f ) = ∑∞

k=1 |ck|krk < +∞ and
Ar(f ) = 2

∑∞
k=1 |ck|(k − 1)(2r)k−1 < +∞.

(b) Suppose that 0 ≤ α ≤ β and 1 ≤ r < r1 < R
2 , then

for all |z| ≤ r and n ∈ N, we have∣∣∣[ Sα,β
n (f , z)](p) −f (p)(z)

∣∣∣ ≤ p! r1
(r1 − r)p+1 · Mr1(f )

n + β
,

where Mr1(f ) =
(α + βr1)

∑∞
k=1 |ck| · rk−1

1 + Ar1(f ) + Br1(f ) + Cr1(f ).

Proof. (a) Using the recurrence (1) in Lemma 1, we get

Sα,β
n (ek , z) − zk = z

n + β
(Sα,β

n (ek−1, z))′

+ nz + α

n + β

(
Sα,β

n (ek−1, z) − zk−1
)

+ nz + α

n + β
zk−1 − zk

(5)

and

|Sα,β
n (ek , z) − zk| ≤ |z|

n + β
|(Sα,β

n (ek−1, z))′|

+ n|z| + α

n + β

∣∣∣Sα,β
n (ek−1, z) − zk−1

∣∣∣
+ α

n + β
|z|k−1 + β

n + β
|z|k .

(6)

Clearly, Sα,β
n (e0, z) − e0 = 0 and

∣∣∣Sα,β
n (e1, z) − e1(z)

∣∣∣= ∣∣∣∣nz+β

n + β
− z

∣∣∣∣=
∣∣∣∣α − βz

n + β

∣∣∣∣ ≤ α + βr
n + β

.

(7)

Using Lemma 3 and Bernstein’s inequality for the poly-
nomial Sα,β

n (ek−1, z) of degree ≤ k − 1, we have∣∣∣(Sα,β
n (ek−1, z))′

∣∣∣ ≤ k − 1
r

max{|Sα,β
n (ek−1, z)| : |z| ≤ r}

≤ k − 1
r

(2r)k−1 = 2(k − 1)(2r)k−2.

Therefore, it follows∣∣∣Sα,β
n (ek , z) − zk

∣∣∣

≤ k − 1
n + β

(2r)k−1 + nr + α

n + β

∣∣∣Sα,β
n (ek−1, z) − zk−1

∣∣∣
+ α

n + β
rk−1 + β

n + β
rk

(8)

≤ r
∣∣∣Sα,β

n (ek−1, z) − zk−1
∣∣∣ + k

n + β
(2r)k−1

+ α

n + β
rk−1 + β

n + β
rk .

(9)

Taking above k = 2, we obtain∣∣∣Sα,β
n (e2, z) − e2(z)

∣∣∣ ≤ r · α + βr
n + β

+ 1
n + β

(2r)

+ α

n + β
r1 + β

n + β
r2.

(10)

Then, for k = 3, it follows

∣∣∣Sα,β
n (e3, z) − e3(z)

∣∣∣ ≤ r2 · α + βr
n + β

+ 1 · 21

n + β
r2 + α

n + β
r2

+ β

n + β
r3+ 2 · 22

n + β
r2+ α

n + β
r2

+ β

n + β
r3 = r2 · α + βr

n + β

+ 1
n + β

[ (1 · 21) + (2 · 22)] r2

+ 2α

n + β
r2 + 2β

n + β
r3.

(11)

Reasoning by recurrence for any k ≥ 2, we finally get

∣∣∣Sα,β
n (ek , z)−ek(z)

∣∣∣ ≤ rk−1 · α+βr
n+β

+ 1
n + β

·
⎡
⎣k−1∑

j=1
j · 2j

⎤
⎦ · rk−1

+ (k − 1)α

n + β
rk−1 + (k − 1)β

n + β
rk

≤ rk−1 · α + βr
n + β

+ 2(k − 1)

n + β
· (2r)k−1

+ kα

n + β
rk−1 + kβ

n + β
rk .

(12)

Since the formula
∑k−1

j=1 j2j = (k −2)2k +2 can easily be
proved by mathematical induction, clearly, this inequality
is valid for k = 1 too.
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Now, reasoning exactly as in the case of complex Favard-
Szász-Mirakjan operators in Remark 2 in [3], we can write

Sα,β
n (f , z) =

∞∑
k=0

ckSα,β
n (ek , z),

which implies

∣∣∣Sα,β
n (f , z) − f (z)

∣∣∣ ≤
∞∑

k=1
|ck| · |Sα,β

n (ek , z) − zk|

≤ α + βr
n + β

∞∑
k=1

|ck| · rk−1

+ 2
n + β

∞∑
k=1

|ck|(k − 1) · (2r)k−1

+ α

n+β

∞∑
k=1

|ck|krk−1+ β

n+β

∞∑
k=1

|ck|krk

= α + βr
n + β

∞∑
k=1

|ck| · rk−1

+ Ar(f )
n + β

+ αBr(f )
n + β

+ βCr(f )
n + β

.

(13)

Note here that by the analyticity of f, we clearly get∑∞
k=1 |ck|rk−1 < +∞, Br(f ) < +∞, Cr(f ) < +∞ and

Ar(f ) = 2
∑∞

k=1 |ck|·(k−1)·(2r)k−1 < +∞, which proves
(a).

(b) Denoting by γ , the circle of radius r1 > r with center
0. For any |z| ≤ r and v ∈ γ , we have |v − z| ≥ r1 − r and
by Cauchy’s formula for all |z| ≤ r, it follows

∣∣∣[ Sα,β
n (f , z)](p) −f (p)(z)

∣∣∣ = p!
2π

∣∣∣∣∣
∫

γ

Sα,β
n (f , z) − f (z)
(v − z)p+1

∣∣∣∣∣
≤ p! r1

(r1 − r)p+1

·
[

α+βr1
n+β

∞∑
k=1

|ck| · rk−1
1 + Ar1(f )

n + β

+αBr1(f )
n + β

+ βCr1(f )
n + β

]
,

(14)

which proves (b) and the theorem.

The next main result is a Voronovskaja-type asymptotic
formula.

Theorem 2. For 2 < R < +∞, let f :[ R, +∞)∪DR → C

be bounded on [ 0, +∞) and analytic in DR, that is f (z) =∑∞
k=0 ckzk, for all z ∈ DR. Also, let 1 ≤ r < R

2 and 0 ≤ α ≤
β . Then, for all |z| ≤ r and n ∈ N, we have the following

Voronovskaja-type result∣∣∣∣Sα,β
n (f , z) − f (z) − α − βz

n + β
f ′(z)

z
2n

f ′′(z)
∣∣∣∣ ≤ M1,r(f )

n2 +
∑6

j=2 Mj,r(f )
(n + β)2 ,

(15)

where

M1,r(f ) = 26
∞∑

k=3
|ck |(k − 1)2(k − 2)(2r)k−2 < +∞, M2,r(f )

=
(

α2

2
+ 2α

)
·

∞∑
k=2

|ck | · k(k − 1)(2r)k−2 < +∞,

M3,r(f ) = β2

2

∞∑
k=2

|ck |k(k − 1)(2r)k < +∞, M4,r(f )

= β

∞∑
k=2

|ck |k(k − 1)(2r)k−1 < +∞,

M5,r(f ) = αβ

∞∑
k=0

|ck |k(k − 1)rk−1 < +∞, M6,r(f )

= β2
∞∑

k=0
|ck |k(k − 1)rk < +∞.

(16)

Proof. For all z ∈ DR, let us consider

Sα,β
n (f , z) − f (z) − α − βz

n + β
f ′(z) − z

2n
f ′′(z)

= Sn(f,z)−f (z)− z
2n

f ′′(z)+Sα,β
n (f,z)−Sn(f,z)− α−βz

n+β
f ′(z).

(17)

Taking f (z) = ∑∞
k=0 ckzk , we get

Sα,β
n (f , z) − f (z) − α − βz

n + β
f ′(z) − z

2n
f ′′(z)

=
∞∑

k=2
ck

(
Sn(ek , z) − zk − z

2n
k(k − 1)zk−2

)

+
∞∑

k=2
ck

(
Sα,β

n (ek , z) − Sn(ek , z) − α − βz
n + β

kzk−1
)

.

To estimate the first sum, we use the Voronovskaja-type
result for the Favard-Szász-Mirakjan operators obtained
in [3], Theorem 1.8.5.
∣∣∣Sn(f,z)−f (z)− z

2n
f ′′(z)

∣∣∣≤ 26
n2

∞∑
k=3

|ck|(k−1)2(k−2)(2r)k−2.

(18)

Next, to estimate the second sum, using Lemma 2,
we obtain
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Sα,β
n (ek , z) − Sn(ek , z) − α−βz

n+β
kzk−1

=
k−1∑
j=0

(
k
j

)
njαk−j

(n + β)k Sn(ej, z) +
(

nk

(n + β)k − 1
)

Sn(ek , z) − α − βz
n + β

kzk−1

=
k−2∑
j=0

(
k
j

)
njαk−j

(n + β)k Sn(ej, z) + knk−1α

(n + β)k Sn(ek−1, z)

−
k−1∑
j=0

(
k
j

)
njβk−j

(n+β)k Sn(ek , z)

− α − βz
n + β

kzk−1

=
k−2∑
j=0

(
k
j

)
njαk−j

(n+β)k Sn(ej, z)+ knk−1α

(n+β)k [Sn(ek−1, z)−zk−1]

−
k−2∑
j=0

(
k
j

)
njβk−j

(n+β)k Sn(ek , z)

− knk−1β

(n + β)k [ Sn(ek , z) − zk]

+
(

nk−1

(n+β)k−1 −1
)

kα

n+β
zk−1

+
(

1− nk−1

(n+β)k−1

)
kβ

n+β
zk .

(19)

Now, using the inequalities

1 − nk

(n + β)k ≤
k∑

j=1

(
1 − n

n + β

)
= kβ

n + β
, (20)

k−2∑
j=0

(
k − 2

j

)
njαk−2−j

(n + β)k−2 =
k−2∑
j=0

(
k − 2

j

)
nj

(n + β)j

· αk−2−j

(n+β)k−2−j =
(

n+α

n+β

)k−2
≤ 1,

(21)

|Sn(ej, z)| ≤ (2r)k (see Lemma 3 for α = β = 0),

|Sn(ek , z) − zk| ≤ k − 1
n

· (2r)k−1,

for this last inequality take α = β = 0 in the proof of
the above Theorem 1

and

∣∣∣∣∣∣
k−2∑
j=0

(
k
j

)
njαk−j

(n + β)k Sn(ej, z)

∣∣∣∣∣∣ ≤
k−2∑
j=0

(
k
j

)
njαk−j

(n + β)k |Sn(ej, z)|

=
k−2∑
j=0

k(k − 1)

(k − j)(k − j − 1)

(
k − 2

j

)
njαk−j

(n + β)k |Sn(ej, z)|

≤ k(k−1)

2
· α2

(n+β)2 (2r)k−2
k−2∑
j=0

(
k − 2

j

)
njαk−2−j

(n + β)(k−2)

≤ k(k − 1)

2
· α2

(n + β)2 (2r)k−2,

(22)

it follows

∣∣∣∣Sα,β
n (ek , z) − Sn(ek , z) − α − βz

n + β
kzk−1

∣∣∣∣
≤

∣∣∣∣∣∣
k−2∑
j=0

(
k
j

)
njαk−j

(n + β)k Sn(ej, z)

∣∣∣∣∣∣
+ knk−1α

(n + β)k

∣∣∣Sn(ek−1, z) − zk−1
∣∣∣

+
∣∣∣∣∣∣
k−2∑
j=0

(
k
j

)
njβk−j

(n + β)k Sn(ek , z)

∣∣∣∣∣∣
+ knk−1β

(n + β)k |Sn(ek , z) − zk|

+
∣∣∣∣∣
(

nk−1

(n + β)k−1 − 1
)∣∣∣∣∣ kα

n + β
|z|k−1

+
∣∣∣∣∣
(

1 − nk−1

(n + β)k−1

)∣∣∣∣∣ kβ

n + β
|z|k

≤ k(k − 1)α2

2(n + β)2 (2r)k−2 + knk−1α

(n + β)k · (2r)k−2(k − 2)

n

+ (2r)k ·
k−2∑
j=0

(
k
j

)
njβk−j

(n + β)k

+ knk−1β

(n + β)k · (2r)k−1(k − 1)

n
+ k(k − 1)αβ

(n + β)2 rk−1

+ k(k − 1)β2

(n + β)2 rk ,
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≤ k(k − 1)α2

2(n + β)2 (2r)k−2

+ k(k − 2)α

(n + β)2 · (2r)k−2

+ β2k(k − 1)

2(n + β)2 (2r)k

+ k(k − 1)β

(n + β)2 (2r)k−1

+ k(k − 1)αβ

(n + β)2 rk−1 + k(k − 1)β2

(n + β)2 rk

≤ k(k − 1)

(n + β)2

(
α2

2
+ 2α

)
(2r)k−2

+ β2k(k − 1)

2(n + β)2 (2r)k + k(k − 1)β

(n + β)2 (2r)k−1

+ k(k − 1)αβ

(n + β)2 rk−1 + k(k − 1)β2

(n + β)2 rk ,

(23)

which immediately proves the theorem.

Now, we will give the exact order of approximation by
the operators V α,β

n .

Theorem 3. For 2 < R < +∞, 1 ≤ r < R
2 , let f :

[ R, +∞) ∪ DR → C be bounded on [ 0, +∞) and analytic
in DR, that is f (z) = ∑∞

k=0 ckzk, for all z ∈ DR.
Let 0 < α ≤ β and suppose that f is not a polynomial of

degree ≤ 0. Then, for all n ∈ N and |z| ≤ r, we have∣∣∣Sα,β
n (f , z) − f (z)

∣∣∣ ≥ Cr(f )
n

,

where the constant Cr(f ) depends only on f, α, β and r.

Proof. For all |z| ≤ r and n ∈ N, we can write

Sα,β
n (f , z) − f (z) = 1

n

[
n

n + β
(α − βz)f ′(z) + z

2
f ′′(z)

+ 1
n

· n2
(

Sα,β
n (f , z) − f (z)

−α − βz
n + β

f ′(z) − z
2n

f ′′(z)
) ]

= 1
n

[
(α − βz)f ′(z) + z

2
f ′′(z)

+ 1
n

· n2
(

Sα,β
n (f )(z) − f (z)

−α − βz
n + β

f ′(z)

− z
2n

f ′′(z) − β(α − βz)f ′(z)
n(n + β)

)]
.

(24)

Applying the inequality

‖F + G‖ ≥ | ‖F‖ − ‖G‖ | ≥ ‖F‖ − ‖G‖,

we obtain

‖Sα,β
n (f ) − f ‖r ≥ 1

n

[∥∥∥(α − βe1)f ′ + e1
2

f ′′
∥∥∥

r

− 1
n

· n2
∥∥∥∥Sα,β

n (f ) − f − α − βe1
n + β

− e1
2n

f ′′ − β(α − βe1)f ′

n(n + β)

∥∥∥∥
r

]
.

(25)

Since f is not a polynomial of degree ≤ 0 in DR, we
get

∥∥(α − βe1)f ′ + e1
2 f ′′∥∥

r > 0. Indeed, supposing the
contrary, it follows that

(α − βz)f ′(z) + z
2

f ′′(z) = 0, for allz ∈ Dr .

Denoting y(z) = f ′(z), seeking y(z) in the form
y(z) = ∑∞

k=0 bkzk and replacing in the above differential
equation, we easily get bk = 0 for all k = 0, 1, ..., (we can
make here similar reasonings with those in [17]; see also
[3]). Thus, we get that f (z) is a constant function, which is
a contradiction.

Now, since by Theorem 2 it follows

n2
∥∥∥∥Sα,β

n (f ) − f − α − βe1
n + β

f ′ − e1
2n

f ′′ − β(α − βe1)f ′

n(n + β)

∥∥∥∥
r

≤ n2
∥∥∥∥Sα,β

n (f )−f − α−βe1
n+β

f ′− e1
2n

f ′′
∥∥∥∥

r
+‖β(α−βe1)f ′‖r

≤
6∑

j=1
Mj,r(f ) + β(α + βr)‖f ′‖r ,

(26)

there exists n1 > n0 (depending on f, α, β and r only)
such that for all n ≥ n1, we have∥∥∥(α − βe1)f ′ + e1

2
f ′′

∥∥∥
r

− 1
n

· n2
∥∥∥∥Sα,β

n (f ) − f − α − βe1
n + β

f ′ − e1
2n

f ′′

−β(α − βe1)f ′

n(n + β)

∥∥∥∥
r
≥ 1

2

∥∥∥(α − βe1)f ′ + e1
2

f ′′
∥∥∥

r
,

(27)

which implies that

‖Sα,β
n (f ) − f ‖r ≥ 1

2n

∥∥∥(α − βe1)f ′ + e1
2

f ′′
∥∥∥

r

for all n ≥ n1.
For n ∈ {n0 + 1, ...., n1}, we get ‖Sα,β

n (f ) − f ‖r ≥ 1
n Ar(f )

with Ar(f ) = n · ‖Sα,β
n (f ) − f ‖r > 0, which implies that

www.SID.ir
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‖Sα,β
n (f ) − f ‖r ≥ Cr(f )

n for all n ≥ n0, with

Cr(f ) = min
{

Ar,n0+1(f ), ...., Ar,n1(f ),

1
2

∥∥∥(α − βe1)f ′ + e1
2

f ′′
∥∥∥

r

}
,

(28)

which proves the theorem.

Remark 1. By Theorems 1 and 3, it easily follows that
if f is not a constant function, then the exact order in the
approximation by the complex Favard-Szász-Mirakjan-
Stancu operator Sα,β

n is 1
n .

Concerning the simultaneous approximation, we
present the following:

Theorem 4. For 2 < R < +∞, 1 ≤ r < R
2 , let f :

[ R, +∞) ∪ DR → C be bounded on [ 0, +∞) and analytic
in DR, that is f (z) = ∑∞

k=0 ckzk, for all z ∈ DR and let
1 ≤ r < r1 < R

2 and p ∈ N be fixed.
Let 0 < α ≤ β and suppose that f is not a polynomial of

degree ≤ p − 1. Then, for all n ∈ N and |z| ≤ r, we have

‖[ Sα,β
n (f )](p) −f (p)‖r ∼ 1

n
,

where the constants in the equivalence depend only on f
(that is on M and A), α, β , p and r.

Proof. Denoted by γ , the circle of radius r1 with r <

r1 < min{n0/2, 1/A} and center 0. Since for |z| ≤ r and
v ∈ γ we have |v − z| ≥ r1 − r, by the Cauchy’s formula,
for all |z| ≤ r and n > n0, we obtain

∣∣∣[ Sα,β
n (f , z)](p) −f (p)(z)

∣∣∣ = p!
2π

·
∣∣∣∣∣
∫

γ

Sα,β
n (f , v) − f (v)
(v − z)p+1 dv

∣∣∣∣∣
≤ Cr,r1,α,β

n
· p!

2π
· 2πr1
(r1 − r)p+1 ,

(29)

which proves one of the inequalities in the equivalence.
Note here that r1 depends in fact on r, A and n0; therefore,
it depends in fact on r and f.

To prove the converse inequality in the equivalence, we
start from the relationship for Sα,β

n (f , v)−f (v) in (1) (in the
proof of Theorem 3, with v instead of z there), replaced in
the Cauchy’s formula

[ Sα,β
n (f , z)](p) −f (p)(z) = p!

2π i
·
∫

γ

Sα,β
n (f , v) − f (v)
(v − z)p+1 dv.

By standard reasonings as those for the case of classical
complex Favard-Szász-Mirakjan operator (see the proof
of Theorem 1.8.6 in [3]), combined with those for the
Bernstein-Stancu polynomials (see [17] or the proof of
Theorem 1.6.5 in [3]), the present proof finally reduces to

the proof of the fact that ‖[ (α −βz)f ′(z)+ z
2 f ′′(z)](p) ‖r >

0. However, this can be shown by following exactly the
lines in [17]; see also [3]. As the reasonings are standard,
we omit the details.

Conclusions
For the parameters α and β , our results have better
rate convergence for the complex Favard-Szász-Mirakjan-
Stancu operators which include α = 0 = β , as special
case. In special case, the Theorems 1, 2, 3 and 4 become
the results in [7]; see also [3].
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