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Positive definite solution of the matrix
equation X = Q − A∗X−1A + B∗X−1B via
Bhaskar-Lakshmikantham fixed point theorem
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Abstract

Purpose: The purpose of this paper is to study the existence and uniqueness of a positive definite solution to the
nonlinear matrix equation X = Q − A∗X−1A + B∗X−1B, which is a special stochastic rational Riccati equation arising in
stochastic control theory.

Methods: Our technique is based on the Bhaskar and Lakshmikantham coupled fixed point theorem.

Results: A new result on the existence of a unique positive definite solution is derived. An iterative method is
constructed to compute the unique positive definite solution. Finally, some numerical examples are used to show
that the iterative method is feasible.

Conclusion: Coupled fixed point theory on ordered metric spaces can be a useful tool to solve some classes of
nonlinear matrix equations.

Keywords: Nonlinear matrix equation, Positive definite solution, Sufficient condition, Iterative method, Error
estimation, Coupled fixed point
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Introduction
We consider the matrix equation:

X = Q − A∗X−1A + B∗X−1B, (1)

where Q is an n × n Hermitian positive definite matrix,
and A and B are arbitrary n × n matrices. Equation (1)
is a special stochastic rational Riccati equation arising in
stochastic control theory, and it can be described below.
Some stochastic control problems lead to computing the
positive definite solution of the following stochastic ratio-
nal Riccati equation [1]:

C∗XC − X + S + �1(X)

− (L + C∗XP + �12(X))(R + P∗XP + �2(X))

+(L + C∗XP + �12(X))∗ = 0,
(2)
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where Z+ stands for the Moore-Penrose inverse of a
matrix Z and C; P, S, R and L are given matrices of size
n×n, n×m, n×n, m×m, and n×m, respectively, such that

T =
(

S L
L∗ R

)
is a Hermitian matrix, and the operator

�(X) =
(

�1(X) �12(X)

�12(X)∗ �2(X)

)
is positive, i.e. X ≥ 0 implies �(X) ≥ 0. Consider the
following case: C is the identity matrix, P is an n × n non-
singular matrix, S is an n × n positive definite matrix, L
is the zero matrix, and �12(X) = �2(X) = 0, �1(X) =
(R + P∗XP)−1, where R + P∗XP is positive definite for all
positive semidefinite matrices X. Meanwhile, the stochas-
tic rational Riccati Equation (2) has the form

S + (R + P∗XP)−1 − XP(R + P∗XP)−1P∗X = 0. (3)

Set

Y = R + P∗XP, (4)
© 2012 Berzig et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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then

P−∗(Y − R) = XP. (5)

By Equations 3 to 5, we have

S + Y −1 − P−∗(Y − R)Y −1(Y − R)P−1 = 0,

which implies that

Y + R∗Y −1R − P∗Y −1P = 2R + P∗SP.

Set

Q = 2R + P∗SP, A = R, B = P,

then Equation 3 can be equivalently written as Equation 1.
Therefore, Equation 1 is a special stochastic rational
Riccati equation (Equation 2). Moreover, some special
cases of Equation 1 are also problems of practical impor-
tance, such as the matrix equation X + M∗X−1M = Q
that arises in the control theory, ladder networks, dynamic
programming, stochastic filtering, statistics, and so on
[2-4]. The matrix equation X−M∗X−1M = Q arises in the
analysis of stationary Gaussian reciprocal processes over a
finite interval [5,6].

Since 1993, the matrix equations X+M∗X−1M = Q and
X − M∗X−1M = Q have been extensively studied, and the
research results mainly concentrated on the following:

(a) sufficient conditions and necessary conditions for the
existence of a (unique) positive definite solution
[2,6-8];

(b) numerical methods for computing the (unique)
positive definite solution [4-6,9-13];

(c) properties of the positive definite solution [2,4]; and
(d) perturbation bound for the positive definite solution

[3,14].

In addition, other nonlinear matrix equations such as
AX2 + BX + C = 0 [15], Xs ± A∗X−tA = Q [16,17],
X +

m∑
i=1

A∗
i X−1Ai = I [18,19], X ± A∗X−qA = Q

[3,20-27], X −
m∑

i=1
A∗

i Xδi Ai = Q [28], X + A∗F(X)A = Q

[29,30] have been investigated by many authors. How-
ever, results on the general nonlinear matrix equation
(Equation 1) are few as far as we know.

In this paper, we first use the the Bhaskar and
Lakshmikantham fixed point theorem to study the pos-
itive definite solution of the nonlinear matrix equation
(Equation 1). A new sufficient condition for the existence
of a unique positive definite solution to Equation 1 is
derived. An iterative method is constructed to compute
the unique Hermitian positive definite solution, and the
error estimation formal is also given. In the end, we use
some numerical examples to illustrate that the iterative
method is feasible to compute the unique positive definite
solution of Equation 1.

Methods
Throughout this paper, we denote by M(N) and H(N)

the set of N × N complex and N × N Hermitian matri-
ces, respectively. For A, B ∈ H(N) , A ≥ 0 (A > 0) means
that A is positive semi-definite (positive definite). More-
over, A ≥ B (A > B) means that A − B ≥ 0 (A − B > 0),
and X ∈[ A, B] means A ≤ X ≤ B. A∗ and r(A) denote
the complex conjugate transpose and the spectral radius
of A, respectively. We denote by ‖·‖ the spectral norm, i.e.,
‖A‖ = √

λ+(A∗A), where λ+(A∗A) is the largest eigen-
value of A∗A. The N × N identity matrix will be written
as I. We denote by ‖ · ‖tr the trace norm. Recall that this
norm is given by

‖A‖tr =
N∑

j=1
σj(A),

where σj(A), j = 1, . . . , N are the singular values of A.
The following lemmas will be useful later.

Lemma 2.1 (See [31]). Let A ≥ 0 and B ≥ 0 be N × N
matrices, then 0 ≤ tr(AB) ≤ ‖A‖ tr(B).
Lemma 2.2 (See [32]). If 0 < θ ≤ 1, and P and Q are posi-
tive definite matrices of the same order with P, Q ≥ bI > 0,
then for every unitarily invariant norm |||Pθ − Qθ ||| ≤
θbθ−1|||P−Q||| and |||P−θ −Q−θ ||| ≤ θb−(θ+1)|||P−Q|||.
Lemma 2.3 (See [32]). Let A ∈ H(N) satisfying −I < A <

I, then ‖A‖ < 1.
Let (X, �) be a partially ordered set and F : X × X →

X be a given mapping. We say that F has the mixed
monotone property if for any x, y ∈ X,

x1, x2 ∈ X, x1 � x2 =⇒ F(x1, y) � F(x2, y),
y1, y2 ∈ X, y1 � y2 =⇒ F(x, y1) 
 F(x, y2).

We say that (x, y) is a coupled fixed point of F if x =
F(x, y) and y = F(y, x).

The proof of our main result is based on the following
two fixed point theorems.
Theorem 2.1 ([33]). Let (X, �) be a partially ordered set
endowed with a metric d such that (X, d) is complete. Let
F : X ×X → X be a continuous mapping having the mixed
monotone property on X. Assume that there exists a δ ∈
[ 0, 1), such that

d(F(x, y), F(u, v)) ≤ δ

2
[ d(x, u) + d(y, v)] ,

for all (x, y), (u, v) ∈ X × X with x 
 u and y � v. We
suppose that there exist x0, y0 ∈ X, such that x0 � F(x0, y0)
and y0 
 F(y0, x0). Then,

(a) F has a coupled fixed point (x, y) ∈ X × X; and
(b) the sequences {xn} and {yn} defined by

xn+1 = F(xn, yn) and yn+1 = F(yn, xn) converge
respectively to x and y.
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In addition, suppose that every pair of elements has a
lower bound and an upper bound, then

(c) F has a unique coupled fixed point (x, y) ∈ X × X;
(d) x = y; and
(e) we have the following estimate:

max{d(xn, x), d(yn, x)}
≤ δn

2(1 − δ)
[ d(F(x0, y0), x0) + d(F(y0, x0), y0)] .

For other results concerning fixed point theorems on
ordered sets, we refer to [34-37].
Theorem 2.2 (Schauder Fixed point theorem). Let S be
a nonempty, compact, convex subset of a normed vector
space. Every continuous function f : S → S mapping S into
itself has a fixed point.

Results and discussion
There exist a > 0, b > 0 (real numbers), such that the
following assumptions were considered:

1. a−1A∗A + aI ≤ Q ≤ bI
2. bA∗A − aB∗B ≤ ab(Q − aI)
3. bB∗B − aA∗A ≤ ab(bI − Q)

4. A∗A < a2

2 I, B∗B < a2

2 I.

We denote by � the set of matrices defined by

� = {X ∈ H(N) : X ≥ aI}.
Our main result is discussed below:

Theorem 3.1. Under the assumptions 1 to 4, we have

(I) Equation 1 has a unique solution X ∈ �

(II) X ∈[ Q + b−1B∗B − a−1A∗A, Q + a−1B∗B − b−1A∗A]
(III) the sequences {Xn} and {Yn} defined by{

X0 = aI
Xn+1 = Q − A∗X−1

n A + B∗Y −1
n B ;{

Y0 = bI
Yn+1 = Q − A∗Y −1

n A + B∗X−1
n B

converge to X, that is,

lim
n→∞ ‖Xn − X‖tr = lim

n→∞ ‖Yn − X‖tr = 0,

and the error estimation is given by

max
{‖Xn − X̂‖tr, ‖Yn − X̂‖tr

} ≤ δn

1 − δ

max {‖X1 − X0‖tr, ‖Y1 − Y0‖tr} ,
(6)

where 0 < δ < 1.

Proof. For all X, Y ∈ H(N), let

F(X, Y ) = Q − A∗X−1A + B∗Y −1B.

We claim that F(� × �) ⊂ �. Indeed, let X, Y ∈ �, that
is, X ≥ aI and Y ≥ aI. This implies that

Q−A∗X−1A+B∗Y −1B ≥ Q−A∗X−1A ≥ Q−a−1A∗A.

On the other hand, from assumption 1, we have

Q − A∗X−1A ≥ aI.

Thus, we have

F(X, Y ) = Q − A∗X−1A + B∗Y −1B ≥ aI,

which implies that F(X, Y ) ∈ �. Then, our claim holds.
Now, the mapping F : � × � → � is well defined. Let

X, Y , U , V ∈ �, such that X ≥ U and Y ≤ V . We have

‖F(X, Y ) − F(U , V )‖tr

= ‖A∗(U−1 − X−1)A + B∗(Y −1 − V −1)B‖tr

≤ ‖A∗(U−1 − X−1)A‖tr + ‖B∗(Y −1 − V −1)B‖tr

= tr
(
A∗(U−1 − X−1)A

) + tr
(
B∗(Y −1 − V −1)B

)
= tr

(
AA∗(U−1 − X−1)

) + tr
(
BB∗(Y −1 − V −1)

)
.

Since U−1 − X−1 ≥ 0 and Y −1 − V −1 ≥ 0, using
Lemma 2.1, we get

‖F(X, Y ) − F(U , V )‖tr

≤ ‖AA∗‖tr(U−1 − X−1) + ‖BB∗‖tr(Y −1 − V −1).

On the other hand, since X, Y , U , V ≥ aI, using
Lemma 2.2, we have

tr(U−1 − X−1) ≤ a−2tr(X − U)

and

tr(Y −1 − V −1) ≤ a−2tr(V − Y ).

Thus, we get

‖F(X,Y )−F(U ,V )‖tr≤ ‖AA∗‖
a2 ‖X−U‖tr + ‖BB∗‖

a2 ‖V−Y‖tr.

This implies that

‖F(X, Y )−F(U , V )‖tr ≤ δ

2
(‖X − U‖tr + ‖V − Y‖tr) ,

where

δ = 2
a2 max

{‖AA∗‖, ‖BB∗‖} .

From condition 4 and Lemma 2.3, we can easily show
that 0 ≤ δ < 1. Now, taking X0 = aI and Y0 = bI, from
conditions 2 and 3, we can easily show that X0 ≤ F(X0, Y0)
and Y0 ≥ F(Y0, X0). On the other hand, for every X, Y ∈
H(N), there is a greatest lower bound and a least upper
bound. Note also that F is a continuous mapping. Now, (I)
and (III) follow immediately from Theorem 2.1. Let X be
the unique solution to Equation 1 in �.

To prove (II), we shall use the Schauder fixed
point theorem. We define the mapping G :[ F(aI, bI),
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F(bI, aI)] → � by

G(X) = F(X, X), for all X ∈[ F(aI, bI), F(bI, aI)] .

We claim that G([ F(aI, bI), F(bI, aI)] ) ⊆ [ F(aI, bI),
F(bI, aI)]. Let X ∈[ F(aI, bI), F(bI, aI)], that is,

F(aI, bI) ≤ X ≤ F(bI, aI).

Using the mixed monotone property of F, we get

F(F(aI, bI), F(bI, aI)) ≤ F(X, X)

= G(X) ≤ F(F(bI, aI), F(aI, bI)).
(7)

On the other hand, from conditions 2 and 3, we have

aI ≤ F(aI, bI) and bI ≥ F(bI, aI).

Again, using the mixed monotone property of F, we get

F(F(bI, aI), F(aI, bI)) ≤ F(bI, aI)
and

F(F(aI, bI), F(bI, aI)) ≥ F(aI, bI).
(8)

From Equations 7 and 8, it follows that

F(aI, bI) ≤ G(X) ≤ F(bI, aI).

Thus, our claim that G([ F(aI, bI), F(bI, aI)] )⊆ [ F(aI,
bI), F(bI, aI)] holds.

Now, G maps the compact convex set [ F(aI, bI),
F(bI, aI)] into itself. Since G is continuous, it follows from
Schauder fixed point theorem (see Theorem 2.2 ) that G
has at least one fixed point in this set. However, fixed
points of G are solutions of Equation 1, and we proved
already that Equation 1 has a unique solution in �. Thus,
this solution must be in the set [ F(aI, bI), F(bI, aI)], that
is,

X ∈[ Q + b−1B∗B − a−1A∗A, Q + a−1B∗B − b−1A∗A] .

Thus, we proved (II). This makes end to the proof. �
The following results are immediate consequences of

our Theorem 3.1.
Theorem 3.2. Consider Equation 1 with Q = I. Suppose
that

(1) 0 < a ≤ 1
2 , b ≥ 1 + a

2 ; and
(2) A∗A < a2

2 I, B∗B < a2

2 I.

Then, items I to III of Theorem 3.1 hold.
Theorem 3.3. Consider Equation 1 with A and B which
are unitary matrices. Suppose that

(1)
√

2 < a < b; and
(2) (a−1 + a)I ≤ Q ≤ (b + b−1 − a−1)I.

Then, items I to III of Theorem 3.1 hold.
Theorem 3.4. Consider Equation 1 with A = 0. Sup-
pose that

(1) aI ≤ Q ≤ bI;
(2) B∗B ≤ a(bI − Q); and
(3) B∗B < a2

2 I.

Then, items I to III of Theorem 3.1 hold.
Theorem 3.5. Consider Equation 1 with B = 0. Suppose
that

(1) a−1A∗A + aI ≤ Q ≤ bI;
(2) A∗A ≤ a(Q − aI); and
(3) A∗A < a2

2 I.

Then, items I to III of Theorem 3.1 hold.

Numerical experiments
All programs are written in MATLAB version 7.1.

Example 1
In this example, we consider Equation 1 with

Q =
⎛⎝ 7 −0 1

−0 7 1
1 1 8

⎞⎠ , A =
⎛⎝ 2.11 0.01 0.01

−0.05 1.98 −0.18
0.1 0.19 2.38

⎞⎠ ,

B =
⎛⎝ −3.09 0.01 0.01

−0.01 −3.15 −0.09
0.04 0.1 −2.94

⎞⎠ .

All the hypotheses of Theorem 3.1 are satisfied with a =
5 and b = 14. We consider the sequences {Xn} and {Yn}
defined in item III of Theorem 3.1 with X0 = aI and Y0 =
bI. For each iteration k, we consider the errors

R(Xk) = ‖Xk − (Q − A∗X−1
k A + B∗X−1

k B)‖,

R(Yk) = ‖Yk − (Q − A∗Y −1
k A + B∗Y −1

k B)‖
and

Rk = max{R(Xk), R(Yk)}.
After 23 iterations, we get

X ≈ X23 = Y23

=
( 7.68020112227005 0.02950633669680 0.88917486612500

0.02950633669680 7.79693817383459 0.92560452577454
0.88917486612500 0.92560452577454 8.34452699090856

)

with

R23 = 2.42861287e − 017.

Example 2
In this example, we consider Equation 1 with

Q =
⎛⎝ 1 0 0

0 1 0
0 0 1

⎞⎠ , A =
⎛⎝ 0.3 0.01 0.01

0 0.28 −0.02
0.02 0.03 0.34

⎞⎠ ,

B =
⎛⎝ −0.34 0 0

0 −0.34 0
0.01 0.01 −0.32

⎞⎠ .
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All the hypotheses of Theorem 3.2 are satisfied with a = 0.5 and b = 5. After 20 iterations, we get

X ≈ X20 = Y20 =
⎛⎝ 1.02444745949421 −0.003561623099836826 −0.01296282338345968

−0.003561623099836826 1.034823675282171 −0.008218578980308637
−0.01296282338345968 −0.008218578980308639 0.9861513844061653

⎞⎠
with

R20 = 2.09918957e − 016.

Example 3
We consider Equation 1 with

Q =
⎛⎝ 10 5 3.4

5 10 6.7
3.4 6.7 10

⎞⎠ , A=
⎛⎝ 0.0591 0.0737 0.0328

0.0737 −0.0328 −0.0591
0.0328 −0.0591 0.0737

⎞⎠ ,

B =
⎛⎝ 0.591 0.737 0.328

0.737 −0.328 −0.591
0.328 −0.591 0.737

⎞⎠ .

In this case, A and B are unitary matrices. All the
hypotheses of Theorem 3.3 are satisfied with a = 1.514
and b = 101.5. After 7 iterations, we get

X ≈ X7 = Y7

=
( 10.06412689941009 5.013263723550349 3.345079324929884

5.013263723550349 10.13999944657551 6.719887939894802
3.345079324929884 6.719887939894802 10.29931432720346

)

with

R7 = 1.77635684e − 015.

Example 4
We consider Equation 1 with

Q =
⎛⎝ 100 50 34

50 100 67
34 67 100

⎞⎠ , A =
⎛⎝ 0 0 0

0 0 0
0 0 0

⎞⎠ ,

B =
⎛⎝ 1 0.5 0

0.5 1 0
0.5 0.5 1.5

⎞⎠ .

All the hypotheses of Theorem 3.4 are satisfied with a =
3.5 and b = 300. After 3 iterations, we get

X ≈ X3 = Y3

=
( 100.0104629987089 50.00450680062249 34.00435076795997

50.00450680062249 100.0105221759655 66.99538011209222
34.00435076795997 66.99538011209222 100.0407917033456

)

with

R3 = 3.00990733e − 014.

Example 5
We consider Equation 1 with

Q =
⎛⎝ 10 5 3.4

5 10 6.7
3.4 6.7 10

⎞⎠ , A =
⎛⎝ 0.5 0.25 0

0.25 0.5 0
0.25 0.25 0.75

⎞⎠ ,

B =
⎛⎝ 0 0 0

0 0 0
0 0 0

⎞⎠ .

All the hypotheses of Theorem 3.5 are satisfied with a =
2 and b = 100. After 10 iterations, we get

X ≈ X10 = Y10

=
( 9.973738915336433 4.988761264228204 3.388819129012571

4.988761264228204 9.973542675753565 6.712061714363009
3.388819129012571 6.712061714363009 9.89541012219485

)

with

R10 = 1.32107728e − 014.

Conclusion
Fixed point theory on ordered metric spaces can be a
useful tool to solve various classes of nonlinear matrix
equations. In this work, to solve the nonlinear matrix
equation X = Q − A∗X−1A + B∗X−1B, we suggested an
iterative method based on a coupled fixed point theorem
of Bhaskar and Lakshmikantham for mixed monotone
mappings. The numerical experiments demonstrated that
the proposed method is satisfactory.
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