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Abstract

Purpose: It is well known that the conjugacy class sizes have an important influence on the structure of a group. This
work is considering a different set of ‘sizes’, the number of elements of a given order.

Methods: By using the set nse(G) and the order of G, We prove that G is isomorphic to A12.

Results: Thompson’s conjecture is true for A112.

Conclusions: We proved that a finite group G is isomorphic to A12, the alternating group A12 of degree 12 if, and only
if, |G| = |A12| and nse(G)=nse(A12).
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Introduction
In this study, all groups are assumed to be finite. It is
well known that the conjugacy class sizes have an impor-
tant influence on the structure of a group. The relation
between conjugacy class sizes and the structure of a
group has been studied by many authors (for example,
see [1-4]). In the present work, we are considering a dif-
ferent set of ‘sizes’, the number of elements of a given
order.

Most notations are standard (see [5,6]). We introduce
some which may be unfamiliar to the reader. Let ω(G)

denote the set of element orders of G. Let mi(G) := |{g ∈
G|the order of g is i}| (mi for short) be the number of ele-
ments of order i, and let nse(G) := {mi(G)|i ∈ ω(G)}
be the set of sizes of elements with the same order. np(G)

denotes the number of Sylow p-subgroup of G, namely,
np(G) = |Sylp(G)|. π(G) denotes the set of all prime divi-
sors of |G|. A12 is the alternating group of degree 12. We
use a|b to mean that a divides b; if p is a prime, then pn||b
means pn|b but pn+1 � b. N = {1, 2, 3, 4, · · · } denotes the
set of positive integers. π(G) denotes the set of prime divi-
sors of |G| and |π(G)|, the number of the element of the set
π(G). nse(G) denotes the number of elements of a given
order of G.
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Methods
Thompson’s problem
For the set nse(G), the most important problem is related
to Thompson’s problem. In 1987, JG Thompson put for-
ward the following problem. For each finite group G and
each integer d ≥ 1, let G(d) = {x ∈ G|xd = 1}. Defin-
ing G1 and G2 is of the same order type if, and only if,
|G1(d)| = |G2(d)|, d = 1, 2, 3, · · · . Suppose G1 and G2 are
of the same order type. If G1 is solvable, is G2 necessarily
solvable?

Professor WJ Shi in [7] made the above problem public
in 1989. Unfortunately, no one can solve it or give a coun-
terexample until now, and it remains open. The influence
of nse(G) on the structure of finite groups was studied by
some authors (see [8-11]). In the present work, we show
that a condition related to the order type characterizes
A12; explicitly, we prove the following:

Main theorem. Let G be a group, and then G ∼= A12 if,
and only if, |G| = |A12| and nse(G)=nse(A12).

Preliminary
Lemma 1. If G is a soluble group of order mn, where m

is prime to n ([12] (p. 99)), then

1. G possesses at least one subgroup of order m,
2. Any two subgroups of G of order m are conjugate,
3. Any subgroup of G whose order divides m belongs to

some subgroup of order m,
© 2012 Liu and Zhang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
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4. The number hm of subgroups of G of order m may be
expressed as a product of factors, each of which (1) is
congruent to 1 modulo some prime factor of m, (2) is
a power of a prime and divides one of the chief
factors of G.

Definition 1. A finite group G is called a simple
Kn-group if G is a simple group with |π(G)| = n (see [13]
(p. 658) or [14]).

We will give need a description of the simple Kn-groups
for n ≤ 5.

Remark 1. If G is a simple K1-group, then G is a cyclic of
prime-order.

Remark 2. If |G| = paqb with p and q distinct primes
and a, b nonnegative integers, then by Burnside’s pq-
theorem (see [6] section (10.2.1)), G is soluble. In particular,
there are no simple K2-groups.

Lemma 2. If G is a simple K3-group, then G is isomor-
phic to one of the groups (see Theorem 2 of [15]): A5(22 · 3 ·
5), A6(23 ·32 ·5), L2(7)(23 ·3·7), L2(8)(23 ·32 ·7), L2(17)(24 ·
32·17), L3(3)(24·33·13), U3(3)(25·33·7), or U4(2)(26·34·5),
where ∗(∗) means the group (the order of G).

Lemma 3. Let G be a simple K4-group, and then G is
isomorphic to one of the following groups (see Theorem 1 of
[13] or Theorem 2 of [14]):

1. A7, A8, A9, or A10.
2. M11, M12, or J2.
3. One of the following:

(a) L2(r), where r is a prime and
r2 − 1 = 2a · 3b · vc with a ≥ 1, b ≥ 1, c ≥ 1,
and v is a prime greater than 3.

(b) L2(2m), where 2m − 1 = u, 2m + 1 = 3tb

with m ≥ 2, u, t are primes, t > 3, b ≥ 1;
(c) L2(3m), where 3m + 1 = 4t, 3m − 1 = 2uc or

3m + 1 = 4tb, 3m − 1 = 2u, with m ≥ 2, u, t
are odd primes, b ≥ 1, c ≥ 1;

(d) L2(16), L2(25), L2(49), L2(81), L3(4), L3(5),
L3(7), L3(8), L3(17), L4(3), S4(4), S4(5), S4(7),
S4(9), S6(2), O+

8 (2), G2(3), U3(4), U3(5), U3
(7), U3(8), U3(9), U4(3), U5(2), Sz(8), Sz(32),3
D4(2), or 2F4(2)′.

Lemma 4. Each simple K5-group is isomorphic to one of
the following simple groups (see Theorem A of [16]):

1. L2(q) where q satisfies |π(q2 − 1)| = 4;
2. L3(q) where q satisfies |π(q2 − 1)(q3 − 1)| = 4;
3. U3(q) where |π(q2 − 1)(q3 + 1)| = 4;

4. O5(q) where |π(q4 − 1)| = 4;
5. Sz(22m+1) where |π((22m+1 − 11)(224m+2 + 1))| = 4;
6. R(q) where q is an odd power of 3 and

|π(q2 − 1)| = 3;
7. Following 30 simple groups:

A11, A12, M22, J3, HS, He, McL, L4(4), L4(5),
L4(7), L5(2), L5(3), L6(2), O7(3), O9(2), PSp6(3),
PSp8(2), U4(4), U4(5), U4(7), U4(9), U5(3),
U6(2), O+

8 (3), O−
8 (2),3 D4(3), G2(4), G2(5), G2(7), or

G2(9).

Lemma 5. Let G be a finite group, P ∈ Sylp(G), where
p ∈ π(G). Suppose that G has a normal series K � L � G
and p � |K |, and then following statements hold [17]:

1. NG/K (PK/K) = NG(P)K/K .
2. If P ≤ L, then |G : NG(P)| = |L : NL(P)|, namely,

np(G) = np(L).
3. If P ≤ L, then|L/K : NL/K (PK/K)|t = |G : NG(P)| =

|L : NL(P)|, namely, np(L/K) = t = np(G) = np(L).
In particular, |NK (P)|t = |K |.

Lemma 6. Let G be a simple K5-group and 35∣∣|G|∣∣29 ·35 ·
52 · 7 · 11; then G ∼= A12.

Proof. Assume G is isomorphic to L2(q) in Lemma 4,
then 7 or 11 ||L2(q)| .

Case 1. 7 ||L2(q)| .
If q = 7, then |π(q2 − 1)| = 2, which contradicts

|π(q2 − 1)| = 4.
If q = 2m, then 7

∣
∣22m − 1 , so we have 5|m and

19 ||L2(q)| , which is a contradiction.
If q = 3, 32, or 5, then |π(q2 − 1)| < 4, which is a

contradiction.
If q = 33, or 52, then 13

∣
∣(q2 − 1)

∣
∣ |G|, which is a

contradiction.
If q = 34, then 41 ||L2(q)| , which is a contradiction.
If q = 35, then 61 ||L2(q)| , which is a contradiction.

Case 2. 11 ||L2(q)| .
If q = 11, then |π(112 − 1)| = 3, which contradicts

|π(q2 − 1)| = 4.
If q = 2m, then 11

∣
∣22m − 1 , so we have 5|m and

31 ||L2(q)| , which is a contradiction.
If q = 3, 32, 5, or 7, then |π(q2 − 1)| < 4, which is a

contradiction.
If q = 33, or 52, then 13

∣
∣(q2 − 1)

∣
∣ |G|, which is a

contradiction.
If q = 34, then 41 ||L2(q)| , which is a contradiction.
If q = 35, then 61 ||L2(q)| , which is a contradiction.

Thus, G is not isomorphic to L2(q).
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Similarly, G is not isomorphic to L3(q), U3(q), O5(q),
Sz(22m+1), and R(q).

In view of item number 7 of Lemma 4, we get that G ∼=
A12.

This completes the proof. �

Results and discussion
The proof of the main theorem
In this section, we will give the proof of the main theorem.
We rewrite the main theorem here:

Main theorem. Let G be a group, and then G ∼= A12 if,
and only if, |G| = |A12| and nse(G)=nse(A12)={1, 63855,
570240, 2154900, 3825360, 3991680, 4809024, 6652800,
8553600, 11404800, 11975040, 13685760, 21621600,
25530120, 25945920, 26611200, 29937600, 43545600.}

Proof. If G ∼= A12, from [18] (pp. 91 to 92), we easily get
the results.

Then, we assume that |G|=|A12|, and nse(G)=nse(A12).

We prove G ∼= A12 by first proving that G is insoluble,
and then showing that it must be isomorphic to A12.

Step 1. G is insoluble.
If G is soluble, let H be a {3, 5, 7, 11}-Hall subgroup of

G. By item number 2 of Lemma 1, all {3, 5, 7, 11}-Hall sub-
groups of G are conjugate in G; hence, by I and Exercise
2 of [5], the number of {3, 5, 7, 11}-Hall subgroup of G is
|G : NG(H)|∣∣29.

By I and Theorem 2.9 of [5], n11(H) = 1, 12, 111,
925, 1442 in H . Thus, we have the following cases:

If n11(H) = 1, then the number m of elements of order
11 in G is 10 < m < 5120 and 10 | m, but m �∈ nse(G),
which is a contradiction.

If n11(H) = 12, then the number m of elements of order
11 in G is 120 < m < 61440 and 10 | m, but m �∈ nse(G),
which is a contradiction.

If n11(H) = 111, then the number m of elements of
order 11 in G is 1110 < m < 568320 and 10 | m, but m �∈
nse(G), which is a contradiction.

If n11(H) = 925, or 1442, then the number m of ele-
ments of order 11 in G is 9250 < m < 4736000 or
14420 < m < 7383040 and 10 | m. Since m ∈nse(G),
m = 776600, 3825360, 570240, so 11k + 1 = 776600,
3825360, 570240, but none of these equations have solu-
tions in N.

Thus, G is insoluble.

Step 2. G ∼= A12.
Through Step 1, it has been proven that G is insoluble.

Since p ||G| , where p ∈ {7, 11}, then G has a normal series:
1�K �L�G such that L/K is a simple Ki-group where i =

3, 4, or 5. Thus, we will prove this through the following
three cases due to Remarks 1 and 2.

Case 1. L/K is a simple K3-group.

Since 7 or 11 | |L/K | | 29 · 35 · 52 · 7 · 11, we have known,
from Lemma 2, that L/K ∼= L2(7), L2(8), or U3(3).

In the following, let P be the Sylow 7-subgroup of G.
Then, PK/K ∈Syl7(L/K), and by Lemma 5, n7(L/K)t =
n7(G) for some integer t ∈ N.

Subcase 1.1. L/K ∼= L2(7)(23 · 3 · 7).
From [18], n7(L/K) = n7(L2(7)) = 8. Hence, n7(G) =

8t and 7 � t, so the number of elements of order 7 in G is
m = 8t · 6 = 48t.

Since m ∈nse(G) and 7 � t, then m = 4809024, 570240
and t = 100188, 11880.

1. Let m = 4809024 and t = 100188. By Lemma 5 and
since |G| = |G : L||L : K ||K |, 100188|NK (P)| = |K |,
so 22 · 32 · 112 · 23

∣
∣|K |. However, 23 �∈ π(G), which is

a contradiction.
2. Let m = 570240 and t = 11880. By Lemma 5 and

since |G| = |G : L||L : K ||K |, 11880|NK (P)| = |K |, so
23 ·33 ·5 ·11

∣
∣|K |∣∣26 ·34 ·7 ·11, which is a contradiction.

Subcase 1.2. L/K ∼= L2(8)(23 · 32 · 7).
From [18], n7(L/K) = n7(L2(8)) = 36. Hence, n7(G) =

8t and 7 � t, so the number of elements of order 7 in G is
m = 36t · 6 = 216t.

Since m ∈nse(G) and 7 � t, then m = 4809024, 570240
and t = 22264, 2640.

1. Let m = 4809024 and t = 22264. By Lemma 5 and
since |G| = |G : L||L : K ||K |, 22264|NK (P)| = |K |, so
23 · 112 · 23

∣
∣|K |. However, 23 �∈ π(G), which is a

contradiction.
2. Let m = 570240 and t = 2640. By Lemma 5 and

since |G| = |G : L||L : K ||K |, 11880|NK (P)| = |K |.
As |K |∣∣26 · 33 · 52 · 11,
n11(K) = 1, 12, 45, 100, 144, 320, 540, 1200, 1728, so
the number of elements of order 11 in G is 10, 120,
450, 1000, 1440, 3200, 12000, 17280 �∈nse(G). Also,
we get a contradiction.

Subcase 1.3. L/K ∼= U3(3)(25 · 33 · 7).
From [18], n7(L/K) = n7(U3(3)) = 288. Hence,

n7(G) = 288t and 7 � t, so the number of elements of
order 7 in G is m = 288t · 6 = 1728t.

Since m ∈ nse(G) and 7 � t, then m = 4809024, 570240
and t = 2783, 330.

1. Let m = 4809024 and t = 2783. By Lemma 5 and
since |G| = |G : L||L : K ||K |, 2783|NK (P)| = |K |, so
112 · 23 | |K |. However, 23 �∈ π(G), which is a
contradiction.
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2. Let m = 570240 and t = 330. By Lemma 5 and since
|G| = |G : L||L : K ||K |, 330|NK (P)| = |K |. As
|K | | 24 · 32 · 52 · 11,
n11(K) = 1, 12, 45, 100, 144, 1200, so the number of
elements of order 11 in G is 10, 120, 450, 1000, 1440,
12000 �∈ nse(G). Also, we get a contradiction.

Case 2. L/K is a simple K4-group.

Since 7 or 11 | |L/K | | 29 · 35 · 52 · 7 · 11, and then by
Lemma 3, we have the following subcases:

Subcase 2.1. L/K ∼= Ai, where i = 7, 8, 9, 10.
If L/K ∼= A7, then from [18], n7(L/K) = n7(A7) = 120.

Hence, n7(G) = 120t and 7 � t. The number of elements
of order 7 in G is m = 120t · 6 = 720t.

Since m ∈ nse(G) and 7 � t, then m = 570240, 8553600,
11404800, 13685760 and t = 792, 11880, 15840, 19008.

Let m = 570240 and t = 792. By Lemma 5 and since
|G| = |G : L||L : K ||K |, 792|NK (P)| = |K |. As |K | | 26 ·
33 · 5 · 11, n11(K) = 1, 12, 45, 100, 144, 320, 540, 1728, so
the number of elements of order 11 in G is 10, 120, 450,
1000, 1440, 3200, 5400, 17280 �∈ nse(G). Also, we get a
contradiction.

For m = 8553600, 11404800, 13685760 and t = 11880,
15840, 19008, the proofs are similar to m = 570240 and
t = 792. We get contradictions.

For Ai, where i = 8, 9, or 10, we also get a contradiction.

Subcase 2.2. L/K ∼= M11, M12, J2.
The proof is similar to Subcase 2.1.

Subcase 2.3. L/K is isomorphic to one of the group as
listed in item number 3 of Lemma 3.

The proof is similar to Subcase 2.1.

Case 3. L/K is a simple K5-group.
In this case, π(L/K) = {2, 3, 5, 7, 11}. From Lemma 6,

we have G ∼= A12.
This completes the proof. �

Conclusions
We proved that a finite group G is isomorphic to A12, the
alternating group A12 of degree 12 if, and only if, |G| =
|A12| and nse(G)=nse(A12).
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