Open Access

ORIGINAL RESEARCH

Graded coprime submodules

Rezvan Varmazyar

Abstract

Let *G* be a group. Let *R* be a *G*-graded commutative ring with identity, and let *M* be a *G*-graded module over *R*. Two graded submodules *N* and *K* of graded module *M* are called graded coprime whenever N + K = M. In this paper, some properties of graded coprime submodules are discussed. For example, we show that if *M* is a graded finitely generated module, then two graded submodules *N* and *K* of *M* are graded coprime if and only if $grad_M(N)$ and $grad_M(K)$ are graded coprime.

Keywords: Graded multiplication module, Graded coprime submodule, Graded cancelation module **MSC:** 13A02; 16W50

Introduction

We define a *G*-graded ring *R* and a *G*-graded module over *R* in the same way as in [1] and [2]. Let *G* be a group with identity *e* and *R* be a commutative ring. Then, *R* is a *G*-graded ring if there exist additive subgroups R_g of *R* indexed by the elements $g \in G$ such that $R = \bigoplus_{g \in G} R_g$ and $R_g R_h \subseteq R_{gh}$ for all $g, h \in G$; here, $R_g R_h$ denotes the additive subgroup of *R* consisting of all finite sums of elements $r_g k_h$ with $r_g \in R_g$ and $k_h \in R_h$. Moreover, R_e is a subring of *R* and $1_R \in R_e$. We denote this by (R, G). The elements of R_g are called homogeneous of degree *g*. If $x \in R$, then *x* can be written uniquely as $\sum_{g \in G} x_g$, where x_g is the component of *x* in R_g . Also, we write $h(R) = \bigcup_{g \in G} R_g$.

Let *R* be a *G*-graded ring and *M* be an *R*-module. We say that *M* is a graded *R*-module if there exists a family of submodules $\{M_g\}_{g\in G}$ of *M* such that $M = \bigoplus_{g\in G} M_g$ and $R_g M_h \subseteq M_{gh}$ for all $g, h \in G$, and we write $h(M) = \bigcup_{g\in G} M_g$.

Throughout this paper, G is a group, R is a G-graded commutative ring with identity, and M is a G-graded module over R. Also, for basic properties of coprime ideals, one may refer to [3].

The concept of multiplication module has been studied by various authors (see, for example, [4,5]). Also, the notion of the product of two submodules of a multiplication module has been studied in [6].

Correspondence: varmazyar@iaukhoy.ac.ir

Department of Mathematics, Islamic Azad University Khoy Branch, Khoy, 58168-44799, Iran

We define a graded multiplication module and the product of two graded submodules of a graded multiplication module in the same way as in [7].

Let *R* be a graded ring. A graded *R*-module *M* is said to be a graded multiplication module if for every graded submodule *N* of *M*, there exists a graded ideal *I* of h(R) such that N = IM. Assume that *M* is a graded multiplication *R*-module. If *N* and *K* are graded submodules of *M*, then there exist graded ideals *I* and *J* of h(R) such that N = IMand K = JM. Then, the product of *N* and *K* is defined to be (*IJ*)*M* and is denoted by N * K. In fact, *IJ* is a graded ideal of *R* by [7, Lemma 1.1], and N * K is well-defined and is independent of the choices of *I* and *J* by [6, Theorem 3.4], and [2, Theorem 4]. Also, for every positive integer *t*, N^t is defined to be

$$\overbrace{N*N*...*N}^{t \text{ times}}.$$

Lemma 1.1. [7, Lemma 1.2], Let R be a graded ring and M be a graded R-module.

- (i) If N and K are graded submodules of M, then N + Kand $N \cap K$ are graded submodules of M.
- (ii) If a is an element of h(R) and x is an element of h(M), then aM and Rx are graded submodules of M.
- (iii) If N and K are graded submodules of M, then ($N :_R K$) is a graded ideal of R.

Definition 1.2. Let R be a graded ring and M be a graded module over R. Let P be a proper graded submodule of M.

© 2012 Varmazyar; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

- (*i*) *P* is called a *graded prime submodule* of *M* whenever $am \in P$ implies that $m \in P$ or $a \in (P :_R M)$ where $a \in h(R)$ and $m \in h(M)$.
- (ii) *P* is called a *graded semiprime submodule* of *M* whenever $I^n K \subseteq P$ implies that $IK \subseteq P$ where $I \subseteq h(R)$ and $K \subseteq h(M)$.
- (iii) *P* is called a *graded maximal submodule* of *M* if there is no graded submodule *K* of *M* such that $P \subset K \subset M$.

Theorem 1.3. [2, Theorem 5], Let R be a graded ring and M be a graded multiplication R-module. Let N be a proper graded submodule of M. Then, N is graded prime if and only if $K * L \subseteq N$ implies that $K \subseteq N$ or $L \subseteq N$ for graded submodules K and L of M.

Theorem 1.4. [7, Theorem 2.1], Let R be a graded ring and M be a graded multiplication R-module. Let N be a graded submodule of M. Then, N is graded semiprime if and only if $(Rx)^n \subseteq N$ implies that $x \in N$ for each $x \in$ h(M) and positive integer n.

The graded radical of a graded submodule N of a graded module M is the intersection of all graded prime submodules of M containing N and is denoted by $grad_M(N)$. If there is no graded prime submodule of M containing N, then we say $grad_M(N) = M$. Also, $grad_M(M) = M$. It is easy to show that if M is a graded multiplication module, then $grad_M(N)$ is the set of all elements m of h(M) such that $(Rm)^k \subseteq N$ for some positive integer k.

Results and discussion

Let $G = (\mathbb{Z}, +)$ and $R = (\mathbb{Z}, +, \cdot)$. Clearly, *R* is a *G*-graded ring. Let $M = \mathbb{Z} \times \mathbb{Z}$. So, *M* is a *G*-graded *R*-module. Let $x, y \in h(M)$. Consider the graded submodules $N = (Rx) \times 0$ and $K = (Ry) \times 0$ of *M*. Then, N + K is the graded submodule generated by the greatest common factor of *x* and *y*.

Definition 2.1. Let *R* be a graded ring and *M* be a graded module over *R*; two graded submodules *N* and *K* of *M* are called graded coprime whenever N + K = M.

Clearly, two distinct graded maximal submodules of a graded module are graded coprime.

Proposition 2.2. Let R be a graded ring and M be a graded multiplication module over R. Let N_1 and K_1 be two graded coprime submodules of M. Let N_2 and K_2 be two graded submodules of M such that every element of N_1 (resp. K_1) has a power in N_2 (resp. K_2). Then, N_2 and K_2 are graded coprime.

Proof. Under the given hypothesis, every graded prime submodule which contains N_2 (resp. K_2) contains N_1 (resp. K_1). Let P be a graded prime submodule of M which contains both N_2 and K_2 . So, P contains N_1 and K_1 , that is, $N_1 + K_1 \subseteq P$, which is absurd. Hence, no graded prime submodule contains both N_2 and K_2 . Therefore, N_2 and K_2 are graded coprime.

Proposition 2.3. Let R be a graded ring and M be a graded multiplication module over R. Let N and K be graded coprime submodules of M. Then, $N * K = N \cap K$.

Proof. Similar to the proof of [6, Proposition 3.5]. \Box

Proposition 2.4. Let R be a graded ring and M be a graded multiplication module over R with this property that every graded submodule of M is graded semiprime. Let $N_1, N_2, ..., N_t$ be graded submodules of M such that N_i and N_j are graded coprime whenever $i \neq j$. Then, for each $i(1 \leq i \leq t)$,

$$N_{i} + (N_{1} * \dots * N_{i-1} * N_{i+1} * \dots * N_{t})$$

= $N_{i} + (N_{1} \cap \dots \cap N_{i-1} \cap N_{i+1} \cap \dots \cap N_{t}) = M.$

Furthermore,

$$N_1 * N_2 * \dots * N_t = N_1 \cap N_2 \cap \dots \cap N_t.$$

Proof. Since

$$N_1 * ... * N_{i-1} * N_{i+1} * ... * N_t \subseteq N_1 \cap ... \cap N_{i-1} \cap N_{i+1} \cap ... \cap N_t$$

it is enough to show that

$$N_i + (N_1 * ... * N_{i-1} * N_{i+1} * ... * N_t) = M.$$

Without loss of generality, let i = 1. Suppose that $2 \le j \le t$. Let *m* be an arbitrary element of h(M). So, there exist elements $x_{1j} \in N_1$, $x_j \in N_j$ such that $x_{1j} + x_j = m$. So,

$$(Rm)^{t} = R(x_{12} + x_{2}) * R(x_{13} + x_{3}) * \dots * R(x_{1t} + x_{t})$$

= $Rx + (Rx_{2} * Rx_{3} * \dots * Rx_{t}),$

where $x \in N_1$. Therefore, $(Rm)^t \subseteq N_1 + (N_2 * N_3 * ... * N_t)$. Now, $N_1 + (N_2 * N_3 * ... * N_t)$ graded semiprime implies that $m \in N_1 + (N_2 * N_3 * ... * N_t)$, as required.

We prove the next result by induction on *t*. When t = 1, there is nothing to prove, and when t = 2, the required result follows from Proposition 2.3. Now, assume that t > 2 and the relation has been proved for all smaller values of the inductive variable. So,

$$N_1 * N_2 * ... * N_{t-1} = N_1 \cap N_2 \cap ... \cap N_{t-1}.$$

www.SID.ii

Therefore,

$$N_1 * N_2 * \dots * N_{t-1} * N_t = (N_1 \cap N_2 \cap \dots \cap N_{t-1}) * N_t.$$

But we showed that $N_1 \cap N_2 \cap ... \cap N_{t-1}$ and N_t are graded coprime. Hence, by applying Proposition 2.3, we find that

$$(N_1 \cap N_2 \cap ... \cap N_{t-1}) * N_t = N_1 \cap N_2 \cap ... \cap N_{t-1} \cap N_t.$$

Accordingly,

$$N_1 * N_2 * \dots * N_t = N_1 \cap N_2 \cap \dots \cap N_t.$$

The following result can be obtained by the above proposition easily.

Corollary 2.5. Let R be a graded ring and M be a graded multiplication module over R. Let N and K be graded coprime submodules of M. Then, N and K^t are graded coprime for every positive integer t.

Proposition 2.6. With the assumption in Proposition 2.4, let $\varphi : M \to \prod_{i=1}^{t} (M/N_i)$ be a homomorphism by the rule $\varphi(m) = (m + N_1, ..., m + N_t)$. Then, φ is injective if and only if $N_1 * N_2 * ... * N_t = 0$.

Proof. It is enough to show that $ker\varphi = N_1 * N_2 * ... * N_t$. Let $x \in ker\varphi$. So, $x \in N_i$ for every $i(1 \le i \le t)$. Thus, $(Rx)^t \subseteq N_1 * N_2 * ... * N_t$ and $N_1 * N_2 * ... * N_t$ graded semiprime implies that $x \in N_1 * N_2 * ... * N_t$, that is, $ker\varphi \subseteq N_1 * N_2 * ... * N_t$.

Conversely, let $x \in N_1 * N_2 * ... * N_t$. Therefore, $x \in N_1 \cap N_2 \cap ... \cap N_t$. Hence, $x + N_i = N_i$ for every $i(1 \le i \le t)$. Now, we conclude that $\varphi(x) = (N_1, ..., N_t)$, that is, $N_1 * N_2 * ... * N_t \subseteq ker\varphi$.

Proposition 2.7. Let R be a graded ring and M be a graded multiplication module over R. Let P be a graded maximal submodule of M. Then, for every positive integer n, the only graded prime submodule containing P^n is P.

Proof. Let \hat{P} be a graded prime submodule of M containing P^n . So, by Theorem 1.3, $P \subseteq \hat{P}$ as P is grade maximal; $P = \hat{P}$.

Proposition 2.8. Let R be a graded ring and M be a graded module over R. Let N = IM and K = JM be graded submodules of M where I and J are graded coprime ideals of R. Then, N and K are graded coprime.

Proof. Since *I* and *J* are graded coprime ideals in *R*, we have

$$M = RM = (I+J)M \subseteq IM + JM = N + K.$$

Definition 2.9. Let *R* be a graded ring and *M* be a graded module over *R*. Let *I* and *J* be graded ideals of *R*. Then, *M* is called *graded cancelation* whenever IM = JM gives I = J.

Theorem 2.10. Let *R* be a graded ring and *M* be a graded finitely generated cancelation module over *R*. Let *N* and *K* be graded submodules of *M* with graded presentation ideals *I* and *J*, respectively. Then, *I* and *J* are graded coprime in *R* if and only if *N* and *K* are graded coprime in *M*.

Proof. One direction is proved in Proposition 2.8. Since N and K are graded coprime submodules in a graded finitely generated module M, we have

$$RM = M = N + K = IM + JM = (I + J)M.$$

Now, *M* graded cancelation implies that R = I + J, as required.

Corollary 2.11. Let M be a graded finitely generated module. Then, every proper graded submodule of M is contained in a graded prime submodule.

Proof. Similar to the proof of [8, Corollary 1]. \Box

Proposition 2.12. Let *R* be a graded ring and *M* be a graded module over *R*. Let *N* and *K* be graded submodules of *M*. then,

(i)
$$N \subseteq grad_M(N)$$

- (ii) $grad_M(grad_M(N)) = grad_M(N)$.
- (iii) If M = N, then $grad_M(N) = M$.

Moreover, if M is finitely generated, then $grad_M(N) = M$ if and only if N = M.

(iv) $grad_M(N+K) = grad_M(grad_M(N) + grad_M(K))$.

Also, if M is a graded multiplication module, then

- (v) $grad_M(N * K) = grad_M(N \cap K) = grad_M(N) \cap grad_M(K).$
- (vi) Let N be graded prime. Then $grad_M(N^t) = N$ for every positive integer t.

Proof. (i,ii) (i) and (ii) are trivial by definition of $grad_M(N)$.

(iii) Suppose that N = M. So, $grad_M(N) = grad_M(M) = M$. Also, let M be finitely generated and $grad_M(N) = M$. Suppose to the contrary that $N \neq M$. Hence, by Corollary 2.11,

www.SID.ir

 $grad_M(N) \subseteq P$ for some graded prime submodule *P* of *M*. Therefore, $grad_M(N) \neq M$, a contradiction.

- (iv) $N \subseteq grad(N)$ and $K \subseteq grad(K)$ implies that $N + K \subseteq grad(N) + grad(K)$. Therefore, $grad(N + K) \subseteq grad(grad(N) + grad(K))$. Also, $N, K \subseteq N + K$, hence $grad(N), grad(K) \subseteq grad(N + K)$. So, $grad(N) + grad(K) \subseteq grad(N + K)$, and by (ii), $grad(grad(N) + grad(K)) \subseteq grad(N + K)$.
- (v) We prove the first equality. Suppose that $x \in grad(N * K)$. Then, $(Rx)^t \subseteq N * K \subseteq N \cap K$ for some positive integer *t*. So, $x \in grad_M(N \cap K)$. Conversely, suppose $x \in grad_M(N \cap K)$. Then, $(Rx)^t \subseteq N$ and $(Rx)^t \subseteq K$ for some positive integer *t*. Hence, $(Rx)^{2t} = (Rx)^t * (Rx)^t \subseteq N * K$, that is, $x \in grad_M(N * K).$ Now, we prove the second equality. Let $x \in grad_M(N \cap K)$. So, $(Rx)^t \subseteq N \cap K \subseteq grad_M(N) \cap grad_M(K)$ for some positive integer *t*. Thus, $(Rx)^t \subseteq grad_M(N)$ and $(Rx)^t \subset grad_M(K)$. Hence, $x \in grad_M(N) \cap grad_M(K).$ Conversely, if $x \in grad_M(N) \cap grad_M(K)$, then $(Rx)^n \subseteq N$ and $(Rx)^k \subseteq K$ for some positive integers *n*, *k*. Therefore, $(Rx)^{nk} \subseteq N \cap K$, giving us that in fact $x \in grad_M(N \cap K)$.
- (vi) Note that $N \subseteq grad_M(N^t)$. Now, suppose $x \in grad_M(N^t)$. Then, $(Rx)^n \subseteq N^t \subseteq N$, for some positive integer *n*. Now, *N* graded prime implies that $x \in N$, as needed.

Proposition 2.13. Let *R* be a graded ring and *M* be a graded finitely generated module over *R*. Let *N* and *K* be graded submodules of *M*. Then, *N* and *K* are graded coprime if and only if $grad_M(N)$ and $grad_M(K)$ are graded coprime.

Proof. By using (iii) and (iv) above, we have

$$N + K = M \Leftrightarrow grad_M(N + K) = M$$

$$\Leftrightarrow grad_M(grad_M(N) + grad_M(K)) = M$$

$$\Leftrightarrow$$
 grad_M(N) + grad_M(K) = M.

Competing interests

The author has no competing interests.

Acknowledgements

The author would like to appreciate the referees for (his/her) good comments.

Received: 31 July 2012 Accepted: 11 November 2012 Published: 10 December 2012

References

- 1. Atani, SE: Graded modules which satisfy the Gr-radical formula. Thai Journal of Mathematics. **8**(1), 161–170 (2010)
- Oral, KH, Tekir, U, Agargun, AG: On graded prime and primary submodules. Turk Journal Math. 34, 1–9 (2010)
- Atiyah, MF, Macdonald, IG: Introduction to Commutative Algebra. Addison-Wesley, Reading (1969)
- Barnard, A: Multiplication modules. Journal of Algebra. 71(1), 174–178 (1981)
- El-Bast, Z, Smith, PF: Multiplication modules. Communication in Algebra. 16(4), 755–779 (1988)
- Ameri, R: On the prime submodules of multiplication modules. International Journal of Mathematics and Mathematical Sciences. 2003(27), 1715–1724 (2003)
- Lee, SC, Varmazyar, R: Semiprime submodules of graded multiplication modules. J. Korean Math. Soc. 49(2), 435–447 (2012)
- Lu, CP: Prime submodules of modules. Comment. Math. Univ. St. Paul. 33(1), 61–69 (1984)

doi:10.1186/2251-7456-6-70

Cite this article as: Varmazyar: Graded coprime submodules. *Mathematical Sciences* 2012 6:70.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com