
www.SID.ir

Arc
hive

 of
 S

ID

Varmazyar Mathematical Sciences 2012, 6:70
http://www.iaumath.com/content/6/1/70

ORIGINAL RESEARCH Open Access

Graded coprime submodules
Rezvan Varmazyar

Abstract

Let G be a group. Let R be a G-graded commutative ring with identity, and let M be a G-graded module over R. Two
graded submodules N and K of graded module M are called graded coprime whenever N + K = M. In this paper,
some properties of graded coprime submodules are discussed. For example, we show that if M is a graded finitely
generated module, then two graded submodules N and K of M are graded coprime if and only if gradM(N) and
gradM(K) are graded coprime.
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Introduction
We define a G-graded ring R and a G-graded module over
R in the same way as in [1] and [2]. Let G be a group
with identity e and R be a commutative ring. Then, R is
a G-graded ring if there exist additive subgroups Rg of R
indexed by the elements g ∈ G such that R = ⊕g∈GRg and
RgRh ⊆ Rgh for all g, h ∈ G; here, RgRh denotes the addi-
tive subgroup of R consisting of all finite sums of elements
rgkh with rg ∈ Rg and kh ∈ Rh. Moreover, Re is a subring of
R and 1R ∈ Re. We denote this by (R, G). The elements of
Rg are called homogeneous of degree g. If x ∈ R, then x can
be written uniquely as �g∈Gxg , where xg is the component
of x in Rg . Also, we write h(R) = ∪g∈GRg .

Let R be a G-graded ring and M be an R-module. We
say that M is a graded R-module if there exists a family
of submodules {Mg}g∈G of M such that M = ⊕g∈GMg
and RgMh ⊆ Mgh for all g, h ∈ G, and we write h(M) =
∪g∈GMg .

Throughout this paper, G is a group, R is a G-graded
commutative ring with identity, and M is a G-graded mod-
ule over R. Also, for basic properties of coprime ideals, one
may refer to [3].

The concept of multiplication module has been stud-
ied by various authors (see, for example, [4,5]). Also, the
notion of the product of two submodules of a multiplica-
tion module has been studied in [6].
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We define a graded multiplication module and the
product of two graded submodules of a graded multipli-
cation module in the same way as in [7].

Let R be a graded ring. A graded R-module M is said to
be a graded multiplication module if for every graded sub-
module N of M, there exists a graded ideal I of h(R) such
that N = IM. Assume that M is a graded multiplication
R-module. If N and K are graded submodules of M, then
there exist graded ideals I and J of h(R) such that N = IM
and K = JM. Then, the product of N and K is defined to be
(IJ)M and is denoted by N ∗ K . In fact, IJ is a graded ideal
of R by [7, Lemma 1.1], and N ∗ K is well-defined and is
independent of the choices of I and J by [6, Theorem 3.4],
and [2, Theorem 4]. Also, for every positive integer t, Nt

is defined to be

t times
︷ ︸︸ ︷

N ∗ N ∗ ... ∗ N .

Lemma 1.1. [7, Lemma 1.2], Let R be a graded ring and
M be a graded R-module.

(i) If N and K are graded submodules of M, then N + K
and N ∩ K are graded submodules of M.

(ii) If a is an element of h(R) and x is an element of
h(M), then aM and Rx are graded submodules of M.

(iii) If N and K are graded submodules of M, then
(N :R K) is a graded ideal of R.

Definition 1.2. Let R be a graded ring and M be a
graded module over R. Let P be a proper graded submod-
ule of M.
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(i) P is called a graded prime submodule of M
whenever am ∈ P implies that m ∈ P or a ∈ (P :R M)

where a ∈ h(R) and m ∈ h(M).
(ii) P is called a graded semiprime submodule of M

whenever InK ⊆ P implies that IK ⊆ P where
I ⊆ h(R) and K ⊆ h(M).

(iii) P is called a graded maximal submodule of M if
there is no graded submodule K of M such that
P ⊂ K ⊂ M.

Theorem 1.3. [2, Theorem 5], Let R be a graded ring and
M be a graded multiplication R-module. Let N be a proper
graded submodule of M. Then, N is graded prime if and
only if K ∗ L ⊆ N implies that K ⊆ N or L ⊆ N for graded
submodules K and L of M.

Theorem 1.4. [7, Theorem 2.1], Let R be a graded ring
and M be a graded multiplication R-module. Let N be a
graded submodule of M. Then, N is graded semiprime if
and only if (Rx)n ⊆ N implies that x ∈ N for each x ∈
h(M) and positive integer n.

The graded radical of a graded submodule N of a graded
module M is the intersection of all graded prime submod-
ules of M containing N and is denoted by gradM(N). If
there is no graded prime submodule of M containing N,
then we say gradM(N) = M. Also, gradM(M) = M. It is
easy to show that if M is a graded multiplication module,
then gradM(N) is the set of all elements m of h(M) such
that (Rm)k ⊆ N for some positive integer k.

Results and discussion
Let G = (Z, +) and R = (Z, +, ·). Clearly, R is a G-graded
ring. Let M = Z × Z. So, M is a G-graded R-module. Let
x, y ∈ h(M). Consider the graded submodules N = (Rx)×
0 and K = (Ry) × 0 of M. Then, N + K is the graded
submodule generated by the greatest common factor of x
and y.

Definition 2.1. Let R be a graded ring and M be a
graded module over R; two graded submodules N and K
of M are called graded coprime whenever N + K = M.

Clearly, two distinct graded maximal submodules of a
graded module are graded coprime.

Proposition 2.2. Let R be a graded ring and M be a
graded multiplication module over R. Let N1 and K1 be
two graded coprime submodules of M. Let N2 and K2 be
two graded submodules of M such that every element of N1
(resp. K1) has a power in N2 (resp. K2). Then, N2 and K2
are graded coprime.

Proof. Under the given hypothesis, every graded prime
submodule which contains N2 (resp. K2) contains N1
(resp. K1). Let P be a graded prime submodule of M which
contains both N2 and K2. So, P contains N1 and K1, that
is, N1 + K1 ⊆ P, which is absurd. Hence, no graded prime
submodule contains both N2 and K2. Therefore, N2 and
K2 are graded coprime.

Proposition 2.3. Let R be a graded ring and M be a
graded multiplication module over R. Let N and K be
graded coprime submodules of M. Then, N ∗ K = N ∩ K.

Proof. Similar to the proof of [6, Proposition 3.5].

Proposition 2.4. Let R be a graded ring and M be a
graded multiplication module over R with this property
that every graded submodule of M is graded semiprime.
Let N1, N2, ..., Nt be graded submodules of M such that Ni
and Nj are graded coprime whenever i 	= j. Then, for each
i(1 ≤ i ≤ t),

Ni + (N1 ∗ ... ∗ Ni−1 ∗ Ni+1 ∗ ... ∗ Nt)

= Ni + (N1 ∩ ... ∩ Ni−1 ∩ Ni+1 ∩ ... ∩ Nt) = M.

Furthermore,

N1 ∗ N2 ∗ ... ∗ Nt = N1 ∩ N2 ∩ ... ∩ Nt .

Proof. Since

N1∗...∗Ni−1∗Ni+1∗...∗Nt ⊆ N1∩...∩Ni−1∩Ni+1∩...∩Nt ,

it is enough to show that

Ni + (N1 ∗ ... ∗ Ni−1 ∗ Ni+1 ∗ ... ∗ Nt) = M.

Without loss of generality, let i = 1. Suppose that 2 ≤
j ≤ t. Let m be an arbitrary element of h(M). So, there
exist elements x1j ∈ N1, xj ∈ Nj such that x1j + xj = m. So,

(Rm)t = R(x12 + x2) ∗ R(x13 + x3) ∗ ... ∗ R(x1t + xt)

= Rx + (Rx2 ∗ Rx3 ∗ ... ∗ Rxt),

where x ∈ N1. Therefore, (Rm)t ⊆ N1 + (N2 ∗N3 ∗ ...∗Nt).
Now, N1 + (N2 ∗ N3 ∗ ... ∗ Nt) graded semiprime implies
that m ∈ N1 + (N2 ∗ N3 ∗ ... ∗ Nt), as required.

We prove the next result by induction on t. When t = 1,
there is nothing to prove, and when t = 2, the required
result follows from Proposition 2.3. Now, assume that
t > 2 and the relation has been proved for all smaller
values of the inductive variable. So,

N1 ∗ N2 ∗ ... ∗ Nt−1 = N1 ∩ N2 ∩ ... ∩ Nt−1.
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Therefore,

N1 ∗ N2 ∗ ... ∗ Nt−1 ∗ Nt = (N1 ∩ N2 ∩ ... ∩ Nt−1) ∗ Nt .

But we showed that N1∩N2∩...∩Nt−1 and Nt are graded
coprime. Hence, by applying Proposition 2.3, we find that

(N1 ∩ N2 ∩ ... ∩ Nt−1) ∗ Nt = N1 ∩ N2 ∩ ... ∩ Nt−1 ∩ Nt .

Accordingly,

N1 ∗ N2 ∗ ... ∗ Nt = N1 ∩ N2 ∩ ... ∩ Nt .

The following result can be obtained by the above
proposition easily.

Corollary 2.5. Let R be a graded ring and M be a graded
multiplication module over R. Let N and K be graded
coprime submodules of M. Then, N and Kt are graded
coprime for every positive integer t.

Proposition 2.6. With the assumption in Proposition
2.4, let ϕ : M → �t

i=1(M/Ni) be a homomorphism by the
rule ϕ(m) = (m + N1, ..., m + Nt). Then, ϕ is injective if
and only if N1 ∗ N2 ∗ ... ∗ Nt = 0.

Proof. It is enough to show that kerϕ = N1 ∗ N2 ∗ ... ∗ Nt .
Let x ∈ kerϕ. So, x ∈ Ni for every i(1 ≤ i ≤ t). Thus,
(Rx)t ⊆ N1 ∗ N2 ∗ ... ∗ Nt and N1 ∗ N2 ∗ ... ∗ Nt graded
semiprime implies that x ∈ N1 ∗N2 ∗ ...∗Nt , that is, kerϕ ⊆
N1 ∗ N2 ∗ ... ∗ Nt .

Conversely, let x ∈ N1 ∗ N2 ∗ ... ∗ Nt . Therefore, x ∈
N1 ∩ N2 ∩ ... ∩ Nt . Hence, x + Ni = Ni for every i(1 ≤
i ≤ t). Now, we conclude that ϕ(x) = (N1, ..., Nt), that is,
N1 ∗ N2 ∗ ... ∗ Nt ⊆ kerϕ.

Proposition 2.7. Let R be a graded ring and M be a
graded multiplication module over R. Let P be a graded
maximal submodule of M. Then, for every positive integer
n, the only graded prime submodule containing Pn is P.

Proof. Let Ṕ be a graded prime submodule of M contain-
ing Pn. So, by Theorem 1.3, P ⊆ Ṕ as P is grade maximal;
P = Ṕ.

Proposition 2.8. Let R be a graded ring and M be a
graded module over R. Let N = IM and K = JM be graded
submodules of M where I and J are graded coprime ideals
of R. Then, N and K are graded coprime.

Proof. Since I and J are graded coprime ideals in R, we
have

M = RM = (I + J)M ⊆ IM + JM = N + K .

Definition 2.9. Let R be a graded ring and M be a
graded module over R. Let I and J be graded ideals of R.
Then, M is called graded cancelation whenever IM = JM
gives I = J .

Theorem 2.10. Let R be a graded ring and M be a
graded finitely generated cancelation module over R. Let N
and K be graded submodules of M with graded presenta-
tion ideals I and J, respectively. Then, I and J are graded
coprime in R if and only if N and K are graded coprime
in M.

Proof. One direction is proved in Proposition 2.8.
Since N and K are graded coprime submodules in a

graded finitely generated module M, we have

RM = M = N + K = IM + JM = (I + J)M.

Now, M graded cancelation implies that R = I + J , as
required.

Corollary 2.11. Let M be a graded finitely generated
module. Then, every proper graded submodule of M is
contained in a graded prime submodule.

Proof. Similar to the proof of [8, Corollary 1].

Proposition 2.12. Let R be a graded ring and M be a
graded module over R. Let N and K be graded submodules
of M. then,

(i) N ⊆ gradM(N).
(ii) gradM(gradM(N)) = gradM(N).

(iii) If M = N , then gradM(N) = M.

Moreover, if M is finitely generated, then gradM(N) = M
if and only if N = M.

(iv) gradM(N + K) = gradM(gradM(N) + gradM(K)).

Also, if M is a graded multiplication module, then

(v) gradM(N ∗ K) = gradM(N ∩ K) =
gradM(N) ∩ gradM(K).

(vi) Let N be graded prime. Then gradM(Nt) = N for
every positive integer t.

Proof. (i,ii) (i) and (ii) are trivial by definition of
gradM(N).

(iii) Suppose that N = M. So,
gradM(N) = gradM(M) = M. Also, let M be finitely
generated and gradM(N) = M. Suppose to the
contrary that N 	= M. Hence, by Corollary 2.11,
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gradM(N) ⊆ P for some graded prime submodule P
of M. Therefore, gradM(N) 	= M, a contradiction.

(iv) N ⊆ grad(N) and K ⊆ grad(K) implies that
N + K ⊆ grad(N) + grad(K). Therefore,
grad(N + K) ⊆ grad(grad(N) + grad(K)). Also,
N , K ⊆ N + K , hence
grad(N), grad(K) ⊆ grad(N + K). So,
grad(N) + grad(K) ⊆ grad(N + K), and by (ii),
grad(grad(N) + grad(K)) ⊆ grad(N + K).

(v) We prove the first equality. Suppose that
x ∈ grad(N ∗ K). Then, (Rx)t ⊆ N ∗ K ⊆ N ∩ K for
some positive integer t. So, x ∈ gradM(N ∩ K).
Conversely, suppose x ∈ gradM(N ∩ K). Then,
(Rx)t ⊆ N and (Rx)t ⊆ K for some positive integer t.
Hence, (Rx)2t = (Rx)t ∗ (Rx)t ⊆ N ∗ K , that is,
x ∈ gradM(N ∗ K).
Now, we prove the second equality. Let
x ∈ gradM(N ∩ K). So,
(Rx)t ⊆ N ∩ K ⊆ gradM(N) ∩ gradM(K) for some
positive integer t. Thus, (Rx)t ⊆ gradM(N) and
(Rx)t ⊆ gradM(K). Hence,
x ∈ gradM(N) ∩ gradM(K).
Conversely, if x ∈ gradM(N) ∩ gradM(K), then
(Rx)n ⊆ N and (Rx)k ⊆ K for some positive integers
n, k. Therefore, (Rx)nk ⊆ N ∩ K , giving us that in
fact x ∈ gradM(N ∩ K).

(vi) Note that N ⊆ gradM(Nt). Now, suppose
x ∈ gradM(Nt). Then, (Rx)n ⊆ Nt ⊆ N , for some
positive integer n. Now, N graded prime implies that
x ∈ N , as needed.

Proposition 2.13. Let R be a graded ring and M be
a graded finitely generated module over R. Let N and K
be graded submodules of M. Then, N and K are graded
coprime if and only if gradM(N) and gradM(K) are graded
coprime.

Proof. By using (iii) and (iv) above, we have

N + K = M ⇔ gradM(N + K) = M

⇔ gradM(gradM(N) + gradM(K)) = M

⇔ gradM(N) + gradM(K) = M.

Competing interests
The author has no competing interests.

Acknowledgements
The author would like to appreciate the referees for (his/her) good comments.

Received: 31 July 2012 Accepted: 11 November 2012
Published: 10 December 2012

References
1. Atani, SE: Graded modules which satisfy the Gr-radical formula. Thai

Journal of Mathematics. 8(1), 161–170 (2010)
2. Oral, KH, Tekir, U, Agargun, AG: On graded prime and primary

submodules. Turk Journal Math. 34, 1–9 (2010)
3. Atiyah, MF, Macdonald, IG: Introduction to Commutative Algebra.

Addison-Wesley, Reading (1969)
4. Barnard, A: Multiplication modules. Journal of Algebra. 71(1), 174–178

(1981)
5. El-Bast, Z, Smith, PF: Multiplication modules. Communication in Algebra.

16(4), 755–779 (1988)
6. Ameri, R: On the prime submodules of multiplication modules.

International Journal of Mathematics and Mathematical Sciences.
2003(27), 1715–1724 (2003)

7. Lee, SC, Varmazyar, R: Semiprime submodules of graded multiplication
modules. J. Korean Math. Soc. 49(2), 435–447 (2012)

8. Lu, CP: Prime submodules of modules. Comment. Math. Univ. St. Paul.
33(1), 61–69 (1984)

doi:10.1186/2251-7456-6-70
Cite this article as: Varmazyar: Graded coprime submodules. Mathematical
Sciences 2012 6:70.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

www.SID.ir

