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A unique common fixed-point theorem for
two maps under ψ-φ contractive condition in
partial metric spaces
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Abstract

Purpose: The purpose of this paper is to study a common fixed point theorem for two maps in partial metric spaces.

Methods: To prove Cauchy sequence, we used� −� contractive method and obtain common fixed points.

Results: We obtained a common fixed point result and illustrated with one example.

Conclusions: It is concluded from the present study that one can generalize some results from metric spaces to
partial metric spaces.
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Background
The notion of partial metric space was introduced by S.G.
Matthews [1] as a part of the study of denotational seman-
tics of data flow networks. In fact, it is widely recognized
that partial metric spaces play an important role in con-
structing models in the theory of computation ([2-9], etc).
Matthews [1], Oltra and Valero [10], Romaguera [11] and
Altun et al. [12] proved fixed-point theorems in partial
metric spaces for a single map.
In this paper, we obtain a unique common fixed-point

theorem for two self mappings satisfying a generalized
ψ − φ contractive condition in partial metric spaces. Our
result generalizes and improves a theorem of Altun et
al.[12] and some known theorems in partial metric spaces.
First, we recall some definitions and lemmas of partial

metric spaces.

Definition 1.1. [1] A partial metric on a non-empty set
X is a function p : X×X → R+ such that for all x, y, z ∈ X:

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),
(p2) p(x, x) ≤ p(x, y), p(y, y) ≤ p(x, y),
(p3) p(x, y) = p(y, x),
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(p4) p(x, y) ≤ p(x, z)+ p(z, y)− p(z, z).
(X, p) is called a partial metric space.

It is clear that |p(x, y)− p(y, z)| ≤ p(x, z)∀x, y, z ∈ X.
It is also clear that p(x, y) = 0 implies x = y from (p1)

and (p2). But if x = y, p(x, y) may not be zero. A basic
example of a partial metric space is the pair (R+, p), where
p(x, y) = max{x, y} for all x, y ∈ R+.
Each partial metric p on X generates τ0 topology τp on

X which bases on the family of open p-balls {Bp(x, ε)/
x ∈ X, ε > 0} for all x ∈ X and ε > 0, where Bp(x, ε) =
{y ∈ X/p(x, y) < p(x, x)+ ε} for all x ∈ X and ε > 0.
If p is a partial metric on X, then the function dp : X ×

X → R+ given by dp(x, y) = 2p(x, y) − p(x, x) − p(y, y) is
a metric on X.

Definition 1.2. [1] Let (X, p) be a partial metric space.

(a) A sequence {xn} in (X, p) is said to converge to a
point x ∈ X if and only if p(x, x) = lim

n→∞p(x, xn).
(b) A sequence {xn} in (X, p) is said to be Cauchy

sequence if lim
n,m→∞p(xn, xm) exists and is finite.

(c) (X, p) is said to be complete if every Cauchy
sequence {xn} in X converges, w.r. to τp, to a point
x ∈ X such that p(x, x) = lim

n,m→∞p(xn, xm).
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Lemma 1.3. [1] Let (X, p) be a partial metric space.

(a) {xn} is a Cauchy sequence in (X, p) if and only if it is
a Cauchy sequence in the metric space (X, dp).

(b) (X, p)is complete if and only if the metric space
(X, dp) is complete. Furthermore, lim

n→∞dp(xn, x) = 0
if and only if p(x, x) = lim

n→∞p(xn, x) = lim
n,m→∞

p(xn, xm).

Note 1.4. If {xn} converges to x in (X, p), then
lim
n→∞p(xn, y) ≤ p(x, y)∀ y ∈ X.

Proof. Since {xn} converges to x, we have p(x, x) =
lim
n→∞p(xn, x). Now, p(xn, y) ≤ p(xn, x) + p(x, y) − p(x, x).
Letting n → ∞, lim

n→∞p(xn, y) ≤ lim
n→∞p(xn, x)+ p(x, y) −

p(x, x). Thus, lim
n→∞ p(xn, y) ≤ p(x, y).

Results and discussion

Theorem 2.1. Let (X, p) be a partial metric space
and let S, f : X → X be such that

(2.1.1) ψ
(
p
(
Sx, Sy

)) ≤ ψ
(
M
(
x, y
))−φ (M (

x, y
))
, ∀x, y ∈

X, where ψ : [ 0,∞)→ [ 0,∞) is continuous, non-
decreasing and φ : [ 0,∞)→ [ 0,∞) is lower semi-
continuous with φ(t) > 0 for t > 0 andM

(
x, y
) =

max
{
p(fx, fy), p(fx, Sx), p(fy, Sy), 12

[
p
(
fx, Sy

) +
p(fy, Sx)

]}
,

(2.1.2) S(X) ⊆ f (X) and f (X) is a complete subspace of
X, and

(2.1.3) the pair (f , S) is weakly compatible. Then, S and f
have a unique common fixed point in X.

Proof. Let x0 ∈ X. From (2.1.2), there exist sequences
{xn} and {yn} in X such that yn = Sxn−1 = fxn, n =
1, 2, . . . . . . .
Case (i): Suppose yn = yn+1 for some n, then fz = Sz,

where z = xn. Let us denote fz = Sz = α. From (2.1.3), we
have f α = Sα. Suppose Sα 	= α, then

ψ(p(Sα, α)) = ψ(p(Sα, Sz))
≤ ψ(M(α, z))− φ(M(α, z)).

M(α, z) = max
{
p(Sα, α), p(Sα, Sα), p(α, α),

1
2
[p(Sα, α) + p(α, Sα)]

}
= p(Sα, α), from (p2).

Thus,

ψ(p(Sα, α)) ≤ ψ(p(Sα, α)) − φ(p(Sα, α))
< ψ(p(Sα, α)), sinceφ(t) > 0 ∀ t > 0.

Hence, Sα=α. Thus, α is a common fixed point of f and
S. Suppose β is another common fixed point of f and S,

M(α, β) = max
{
p(α, β), p(α, α), p(β , β),

1
2
[p(α, β)

+ p(β , α)]
}

= p(α, β), from (p2)

ψ(p(α, β)) = ψ(p(Sα, Sβ))
≤ ψ(M(α, β))− φ(M(α, β))
= ψ(p(α, β))− φ(p(α, β))
< ψ(p(α, β)), sinceφ(t) > 0∀t > 0.

Hence, β = α. Thus, α is the unique common fixed
point of S and f.
Case (ii): Assume that yn 	= yn+1 for all n. Denote pn =

p(yn, yn+1).

ψ (pn) = ψ
(
p
(
yn, yn+1

))
= ψ (p (Sxn−1, Sxn))
≤ ψ (M (xn−1, xn))− φ (M (xn−1, xn)) .

M(xn−1, xn)=max
{
p(yn−1, yn), p(yn−1, yn), p(yn, yn+1),

1
2
[
p(yn−1, yn+1)+ p(yn, yn)

] }
.

But
1
2
[
p(yn−1, yn+1)+ p(yn, yn)

] ≤ 1
2
[
p(yn−1, yn)

+ p(yn, yn+1)
]

≤ max {pn−1, pn} .
Hence, M(xn−1, xn) = max {pn−1, pn}. If pn is maxi-

mum, then

ψ(pn) ≤ ψ(pn)− φ(pn)
< ψ(pn), sinceφ(t) > 0 ∀ t > 0.

Hence,

ψ(pn) ≤ ψ(pn−1)− φ(pn−1)

< ψ(pn−1).
(1)

Since ψ is non-decreasing, we have pn < pn−1, n =
1, 2, 3, . . . Thus, {pn} is a non-increasing sequence of
non-negative real numbers and must converge to a real
number, say, k ≥ 0. Letting n → ∞ in (1), we get ψ(k) ≤
ψ(k)− φ(k) so that φ(k) ≤ 0. Hence, k = 0.
Thus,

lim
n→∞ p(yn, yn+1) = 0 (2)

Hence,

lim
n→∞ p(yn, yn) = 0 = lim

n→∞p(yn+1, yn+1) from (p2) (3)
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From the definition of dp and (2) and (3), we have

lim
n→∞dp(yn, yn+1) = 0 (4)

Now, we prove that {yn} is a Cauchy sequence in (X, dp).
On contrary, suppose that {yn} is not Cauchy, then there
exists an ε > 0 and monotone increasing sequences of
natural numbers {mk} and {nk} such that nk > mk ,

dp(ymk , ynk ) ≥ ε (5)

and

dp(ymk , ynk−1) < ε (6)

From (5),

ε ≤ dp(ymk , ynk )
≤ dp(ymk , ynk−1)+ dp(ynk−1, ynk )
< ε + dp(ynk−1, ynk ) from (6).

Letting k → ∞ and using (4), we have

lim
k→∞

dp(ymk , ynk ) = ε. (7)

Letting k → ∞ and using (7) and (4) in |dp(ymk , ynk+1) −
dp(ymk , ynk )| ≤ dp(ynk+1, ynk ) we get

lim
k→∞

dp(ymk , ynk+1) = ε. (8)

From the definition of dp, (8) and (3), we have

lim
k→∞

p(ymk , ynk+1) = ε

2
. (9)

Letting k → ∞ and using (7) and (4) in |dp(ymk−1, ynk ) −
dp(ymk , ynk )| ≤ dp(ymk−1, ymk ) we get

lim
k→∞

dp(ymk−1, ynk ) = ε. (10)

Hence, we have

lim
k→∞

p(ymk−1, ynk ) = ε

2
. (11)

Letting k → ∞ and using (10) and (4) in
|dp(ynk−1, ymk−1)−dp(ymk−1, ynk )| ≤ dp(ynk−1, ynk )we get

lim
k→∞

dp(ynk−1, ymk−1) = ε. (12)

Hence, we have

lim
k→∞

p(ynk−1, ymk−1) = ε

2
. (13)

Letting k → ∞ and using (10) and (4) in |dp(ynk , ymk−2)−
dp(ynk , ymk−1)| ≤ dp(ymk−2, ymk−1) we get

lim
k→∞

dp(ynk , ymk−2) = ε. (14)

Hence, we have

lim
k→∞

p(ynk , ymk−2) = ε

2
. (15)

ψ
(
p(ymk , ynk+1)

)
= ψ

(
p(Sxmk−1, Sxnk )

)
≤ ψ

(
max

{
p(ymk−1, ynk ), p(ymk−1, ymk−2), p(ynk , ynk−1),

1
2 [p(ymk−1, ynk−1)+ p(ynk , ymk−2)]

})

− φ

(
max

{
p(ymk−1, ynk ), p(ymk−1, ymk−2), p(ynk , ynk−1),

1
2 [p(ymk−1, ynk−1)+ p(ynk , ymk−2)]

})
.

Letting k → ∞ and using (9), (11), (2), (13) and (15),
we get

ψ
(ε
2

)
≤ ψ

(
max

{
ε
2 , 0, 0,

1
2
[
ε
2 + ε

2
] })

− φ
(
max

{
ε
2 , 0, 0,

1
2
[
ε
2 + ε

2
] })

ψ
(ε
2

)
≤ ψ

(ε
2

)
− φ

(ε
2

)
< ψ

(ε
2

)
.

It is a contradiction. Hence, {yn} is a Cauchy sequence in
(X, dp). Thus,

lim
n,m→∞dp(yn, ym) = 0. (16)

Now dp(yn, ym) = 2p(yn, ym) − p(yn, yn) − p(ym, ym).
Letting n,m → ∞ and using (16) and (3), we get

lim
n, m→∞p(yn, ym) = 0. (17)

Suppose f (X) is complete. Since
{
yn
} ⊆ f (X) is a Cauchy

sequence in the complete metric space (f (X), dp),
it follows that

{
yn
}

converges in (f (X), dp). Thus,
lim
n→∞ dp(yn, v) = 0 for some v ∈ f (X). There exists u ∈ X
such that v = fu. From Lemma 1.3(b), we have

p(v, v) = lim
n→∞ p(yn, v) = lim

n, m→∞p(yn, ym) (18)

Now, from (17) and (18),

p(v, v) = lim
n→∞ p(yn, v) = 0. (19)

Now, suppose Su 	= v

p(Su, v) ≤ p (Su, Sxn)+ p (Sxn, v)− p (Sxn, Sxn)
≤ p (Su, Sxn)+ p

(
yn+1, v

)
ψ(p(Su, v)) ≤ ψ

[
p(Su, Sxn)+ p(yn+1, v)

]
.

Letting n → ∞, we have

ψ(p(Su, v))

≤ψ
(
lim
n→∞p(Su, Sxn)+ 0

)
from (19)

= lim
n→∞ψ(p(Su, Sxn)), since ψ is continuous

≤ lim
n→∞

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ψ

(
max

{
p(v, yn), p(v, Su), p(yn, yn+1),

1
2 [ p(v, yn+1)+ p(yn, Su)]

})

−φ
(
max

{
p(v, yn), p(v, Su), p(yn, yn+1),

1
2 [ p(v, yn+1)+ p(yn, Su)]

})
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.
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= max

⎧⎨
⎩

lim
n→∞p

(
v, yn

)
, p(v, Su), lim

n→∞p
(
yn, yn+1

)
,

1
2

[
lim
n→∞p

(
v, yn+1

)+ lim
n→∞p

(
yn, Su

)]
⎫⎬
⎭

= max
{
0, p(v, Su), 0, 12

[
0 + lim

n→∞ p
(
yn, Su

)]}
= p(v, Su), since

1
2

lim
n→∞ p(yn, Su)

≤ 1
2
p(v, Su) from Note 1.4

Therefore,
ψ(p(Su, v)) ≤ ψ(p(Su, v))− φ(p(Su, v))

< ψ(p(Su, v)).

Hence, Su = v. Thus, fu = Su = v.
As in case (i), we can prove that v is the unique common

fixed point of S and f. The following example illustrates
our Theorem 2.1.

Example 2.2. Let X =[ 0, 1] and p(x, y) = max{x, y} for
all x, y ∈ X. Let S, f : X → X be defined by

Sx =
{ x

4 , if x 	= 1
1
8 , if x = 1

and fx =
{ x

2 , if x 	= 1
1
4 , if x = 1

Define ψ : [ 0,∞) →[ 0,∞) by ψ(t) = t and φ :
[ 0,∞) →[ 0,∞) by φ(t) = t

2 . Then, all conditions
(2.1.1),(2.1.2) and (2.1.3) are satisfied, and 0 is the unique
common fixed point of S and f.

Corollary 2.3. Theorem 2.1 holds with the condition

(2.1.1) is replaced by (2.3.1) p(Sx, Sy) ≤ ϕ

(
max{

p(fx, fy), p(fx, Sx), p(fy, Sy),
1
2
[
p(fx, Sy)+ p(fy, Sx)

] })
∀ x, y ∈ X, where ϕ :

[ 0, ∞) →[ 0,∞) is continuous and ϕ(t) < t for t > 0.

Proof. Define ψ(t) = t and φ(t) = t − ϕ(t) ∀ t ≥ 0.
Then, the condition (2.3.1) implies the condition (2.1.1).

Corollary 2.4. Let (X, p) be a complete partial metric
space and F : X → X be a map such that p(Fx, Fy) ≤
ϕ
(
max

{
p(x, y), p(x, Fx), p(y, Fy), 12

[
p(x, Fy)+ p(y, Fx)

]})
,

∀x, y ∈ X, where ϕ :[ 0,∞) →[ 0,∞) is continuous and
ϕ(t) < t for t > 0. Then, F has a unique fixed point in X.

Remark 2.5. Altun et al. [12] proved the corollary 2.4
with an additional condition on ϕ, namely, ϕ is non-
decreasing.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
The authors sincerely thank the reviewers for their valuable suggestions.

Author details
1Department of Applied Mathematics, Acharya Nagarjuna University- Dr. M.R.
Appa Row Campus, Nuzvid, Krishna District, Andhra Pradesh, 521 201, India.
2Department of Mathematics, Swarnandhra Institute of Engineering and
Technology, Seetharampuram, Narasapuram, West Godavari District, Andhra
Pradesh, 534 280, India.

Authors’ contributions
KPRR formulated the problem and GNVK,KASNVP drafted and aligned the
manuscript sequentially.The three authors read and approved the final
manuscript.

Received: 19 January 2011 Accepted: 5 July 2012
Published: 5 July 2012

References
1. Matthews, SG: Partial metric topology. Ann. New York Acad. Sci. 728,

183–197 (1994)
2. Heckmann, R: Approximation of metric spaces by partial metric spaces .

Appl. Categ. Structures. 7(1–2), 71–83 (1999)
3. O’Neill, SJ: Partial metrics, valuations and domain theory. Annals of the

New York Academy of Sciences. 806, 304–315 (1996)
4. Romaguera, S, Schellekens, M: Partial metric monoids and semi valuation

spaces. Topology and Applications. 153(5-6), 948–962 (2005)
5. Romaguera, S, Valero, O: A quantitative computational modal for

complete partial metric space via formal balls. Mathematical Structures in
Computer Sciences. 19(3), 541–563 (2009)

6. Schellekens, M: The Smyth completion: a common foundation for
denotational semantics and complexity analysis. Electronic Notes in
Theoretical Computer Science. 1, 535–556 (1995)

7. Schellekens, M: A characterization of partial metrizebility: domains are
quantifiable. Theoretical Computer Sciences. 305(1–3), 409–432 (2003)

8. Waszkiewicz, P: Quantitative continuous domains. Applied Categorical
Structures. 11(1), 41–67 (2003)

9. Waszkiewicz, P: Partial metrizebility of continuous posets. Mathematical
Structures in Computer Sciences. 16(2), 359–372 (2006)

10. Oltra, S, Valero, O: Banach’s fixed point theorem for partial metric spaces.
Rend. Istit. Mat. Univ. Trieste. XXXVI, 17–26 (2004)

11. Romaguera, S: A Kirk type characterization of completeness for partial
metric spaces. Fixed Point Theory. 2010, 1–6 (2010). 10.1155/2010/493298

12. Altun, I, Sola, F, Simsek, H: Generalized contractions on partial metric
spaces. Topology and its Applications. 157, 2778–2785 (2010)

doi:10.1186/2251-7456-6-9
Cite this article as: Rao et al.: A unique common fixed-point theorem
for two maps under ψ-φ contractive condition in partial metric spaces.
Mathematical Sciences 2012 6:9.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

www.SID.ir


