ORIGINAL RESEARCH

Open Access

Generalized composition operators on $Q_{K,\omega}(p,q)$ spaces

Ahmed El-Sayed Ahmed^{1,3*} and Alaa Kamal^{2,4*}

Abstract

Purpose: Our aim in this paper is to study generalized composition operators on α -Bloch and $Q_{K,\omega}(p,q)$ spaces.

Methods: By the help of generalized composition operators, we act between several classes of weighted function spaces. Some important results obtained by using modified Nevanlinna counting function.

Results: The boundedness and compactness of the generalized composition operator C_{ϕ}^{g} acting between two different Möbius invariant spaces $Q_{K_1}(p,q)$ and $Q_{K_2}(p,q)$ are studied.

Conclusions: Our results in this paper extend, generalize and improve a lot of previous results.

Keywords: $Q_{K,\omega}(p,q)$ spaces, Holomorphic functions, and Weighted Bloch space

Introduction and preliminaries

Let ϕ be an analytic self-map of the unit disk $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ in the complex plane \mathbb{C} and let dA(z) be the Euclidean area element on Δ . Associated with ϕ , the composition operator C_{ϕ} is defined by

$$C_{\phi} = f \circ \phi,$$

for f analytic on Δ . It maps analytic functions f to analytic functions. The problem of boundedness and compactness of C_{ϕ} has been studied in many function spaces. The first setting was in the Hardy space H^2 , the space of functions analytic on Δ (see [1]). Madigan and Matheson (see [2]) gave a characterization of the compact composition operators on the Bloch space \mathcal{B} . Tjani (see [3]) gave a Carleson measure characterization of compact operators C_{ϕ} on Besov spaces $B_p(1 . Bourdon, Cima and Matheson in [4] and Smith in [5] investigated the same problem on$ *BMOA* $. Li and Wulan in [6] gave a characterization of compact operators <math>C_{\phi}$ on Q_K and F(p,q,s) spaces. Also, very recently in [7,8], there are some characterizations for the composition operators C_{ϕ} in holomorphic F(p,q,s) spaces.

*Correspondence: ahsayed80@hotmail.com; a.k.ahmed@mu.edu.sa ¹ Sohag University, Faculty of Science, Department of Mathematics, Sohag 82524, Egypt

²Present address: Faculty of Science, Mathematics Department, Taif University, Box 888 El-Hawiyah, El-Taif 5700, Saudi Arabia

Full list of author information is available at the end of the article

For $a \in \Delta$ the Möbius transformations $\varphi_a(z)$ is defined by

$$\varphi_a(z) = \frac{a-z}{1-\bar{a}z}, \text{ for } z \in \Delta.$$

The following identity is easily verified:

$$1 - |\varphi_a(z)|^2 = \frac{(1 - |a|^2)(1 - |z|^2)}{|1 - \bar{a}z|^2} = (1 - |z|^2)|\varphi_a'(z)|.$$
(1)

Note that $\varphi_a(\varphi_a(z)) = z$ and thus $\varphi_a^{-1}(z) = \varphi_a(z)$. For $a, z \in \Delta$ and 0 < r < 1, the pseudo-hyperbolic disc $\Delta(a, r)$ is defined by $\Delta(a, r) = \{z \in \Delta : |\varphi_a(z)| < r\}$. Denote by

$$g(z,a) = \log \left| \frac{1 - \bar{a}z}{z - a} \right| = \log \frac{1}{|\varphi_a(z)|}$$

the Green's function of Δ with logarithmic singularity at $a \in \Delta$.

Definition 1.1. [9] Let f be an analytic function in Δ and let $0 < \alpha < \infty$. If

$$\|f\|_{\mathcal{B}^{lpha}} = \sup_{z \in \Delta} (1 - |z|^2)^{lpha} |f'(z)| < \infty$$
,

then f belongs to the α -Bloch space \mathcal{B}^{α} . The space \mathcal{B}^{1} is called the Bloch space \mathcal{B} . Now, given a reasonable function ω : $(0,1] \rightarrow [0,\infty)$, the weighted Bloch space \mathcal{B}_{ω}

© 2012 Ahmed and Kamal; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

(see [10]) is defined as the set of all analytic functions f on Δ satisfying

$$(1-|z|)|f'(z)| \le C\omega(1-|z|), \quad z \in \Delta,$$

for some fixed $C = C_f > 0$. In the special case where $\omega \equiv 1, \mathcal{B}_{\omega}$ reduces to the classical Bloch space \mathcal{B} . Here, the word "reasonable" is a non-mathematical term; it was just intended to mean that the "not too bad" and the function satisfy some natural conditions.

Now, we introduce the following definitions:

Definition 1.2. For a given reasonable function ω : (0,1] \rightarrow [0, ∞) and for 0 < α < ∞ . An analytic function f on Δ is said to belong to the α -weighted Bloch space $\mathcal{B}^{\alpha}_{\omega}$ if

$$\|f\|_{\mathcal{B}^{\alpha}_{\omega}} = \sup_{z \in \Lambda} \frac{(1-|z|)^{\alpha}}{\omega(1-|z|)} |f'(z)| < \infty.$$

Definition 1.3. For a given reasonable function ω : (0,1] \rightarrow [0, ∞) and for 0 < α < ∞ . An analytic function f on Δ is said to belong to the little weighted Bloch space $\mathcal{B}^{\alpha}_{\omega,0}$ if

$$\|f\|_{\mathcal{B}^{\alpha}_{\omega,0}} = \lim_{|z| \to 1^{-}} \frac{(1-|z|)^{\alpha}}{\omega(1-|z|)} |f'(z)| = 0$$

In this paper we study generalized compact composition operator on the spaces $Q_{K,\omega}(p,q)$, we will define and discuss properties of these spaces. A particular class of Möbius-invariant function spaces, the so-called $Q_{K,\omega}$ spaces, has attracted a lot of attention in recent years.

Definition 1.4. For a nondecreasing function K: $[0,\infty) \rightarrow [0,\infty), 0 and for a given reasonable function <math>\omega : (0,1] \rightarrow (0,\infty)$, an analytic function f in Δ is said to belong to the space $Q_{K,\omega}(p,q)$ if

. 💼

$$\|f\|_{K,\omega,p,q}^{p} = \sup_{a \in \Delta} \int_{\Delta} |f'(z)|^{p} (1-|z|)^{q} \frac{K(g(z,a))}{\omega^{p}(1-|z|)} \times dA(z) < \infty.$$

Remark 1.1. It should be remarked that our $Q_{K,\omega}(p,q)$ classes are more general than many classes of analytic functions. If $\omega \equiv 1$, we obtain $Q_K(p,q)$ type spaces (cf. [11,12]). If q = p = 2, and $\omega(t) = t$, we obtain Q_K spaces as studied recently in [12-17] and others. If q = p = 2, $\omega(t) = t$ and $K(t) = t^p$, we obtain Q_p spaces as studied in [18-20] and others. If $\omega \equiv 1$ and $K(t) = t^s$, then $Q_{K,\omega} = F(p,q,s)$ classes (cf. [7,21]).

Definition 1.5. [22,23] Let f be an analytic function in Δ and let 1 . If

$$\|f\|_{B_p}^p = \sup_{z \in \Delta} \int_{\Delta} |f'(z)|^p (1 - |z|^2)^{p-2} dA(z) < \infty,$$

then f belongs to the Besov space B_p .

In [21] Zhao gave the following definition:

Definition 1.6. Let f be an analytic function in Δ and let $0 , <math>-2 < q < \infty$ and $0 < s < \infty$. If

$$\|f\|_{F(p,q,s)}^{p} = \sup_{a \in \Delta} \int_{\Delta} |f'(z)|^{p} (1 - |z|^{2})^{q} g^{s}(z,a) dA(z) < \infty,$$

then $f \in F(p, q, s)$. Moreover, if

$$\lim_{|a|\to 1} \int_{\Delta} |f'(z)|^p (1-|z|^2)^q g^s(z,a) dA(z) = 0,$$

then $f \in F_0(p,q,s)$.

The spaces F(p,q,s) were intensively studied by Zhao in [21] and Rättyä in [24]. It is known from ([21], Theorem 2.10) that, for $p \ge 1$, the spaces F(p,q,s) are Banach spaces under the norm

$$||f|| = ||f||_{F(p,q,s)} + |f(0)|.$$

Now, we define the following definition

Definition 1.7. Let f be an analytic function in Δ , ω : $(0,1] \rightarrow (0,\infty)$ and let $0 , <math>-2 < q < \infty$ and $0 < s < \infty$. If

$$\begin{split} \|f\|_{F_{\omega}(p,q,s)}^{p} &= \sup_{a \in \Delta} \int_{\Delta} |f'(z)|^{p} (1-|z|^{2})^{q} \frac{g^{s}(z,a)}{\omega(1-|z|)} \\ &\times dA(z) < \infty, \end{split}$$

then $f \in F_{\omega}(p,q,s)$. Moreover, if

$$\lim_{|z| \to 1^{-}} \int_{\Delta} |f'(z)|^{p} (1 - |z|^{2})^{q} \frac{g^{s}(z, a)}{\omega(1 - |z|)} dA(z) = 0,$$

then $f \in F_{\omega,0}(p,q,s)$.

Li and Stević in [25] *defined the generalized composition operator* C_{ϕ}^{g} *as the follows:*

$$(C^g_\phi)(z) = \int_0^z f'(\phi(\xi))g(\xi)d\xi.$$

When $g = \phi'$, we see that this operator is essentially the composition operator C_{ϕ} . Therefore, C_{ϕ}^{g} is a generalization of the composition operator C_{ϕ} .

We assume throughout this paper that

$$\int_{0}^{1} K\left(\log\frac{1}{r}\right) \frac{r}{(1-r^{2})^{2}} \, dr < \infty \,. \tag{2}$$

The author [26] collected the following immediate relations of $Q_{K,\omega}(p,q)$ and $Q_{K,\omega,0}(p,q)$

(i)
$$Q_{K,\omega}(p,q) \subset \mathcal{B}_{\omega}^{\frac{q+2}{p}}$$
 and
(ii) $Q_{K,\omega}(p,q) = \mathcal{B}_{\omega}^{\frac{q+2}{p}}$, iff

www.SID.ir

$$\int_0^1 K\left(\log\frac{1}{r}\right) \frac{r}{(1-r^2)^2} \, dr < \infty.$$

(iii) $F_{\omega}(p,q,0) = Q_{K,\omega}(p,q)$, if K(0) > 0.

The following lemma is useful for our study (see [26]).

Lemma 1.1. Let $K : [0, \infty) \to [0, \infty), 0 and <math>\omega : (0, 1] \to (0, \infty)$. Then

(i) $f \in \mathcal{B}_{\omega}^{\frac{q+2}{p}}$ if and only if there exists $R \in (0, 1)$ such that

$$\sup_{a \in \Delta} \int_{\Delta(a,R)} |f'(z)|^p (1-|z|)^q \frac{K(g(z,a))}{\omega^p (1-|z|)} dA(z) < \infty,$$
(3)

(ii) $f \in \mathcal{B}_{\omega,0}^{\frac{q+2}{p}}$ if and only if there exists $R \in (0,1)$ such that

$$\lim_{|a|\to 1^{-}} \int_{\Delta(a,\mathcal{R})} |f'(z)|^{p} (1-|z|)^{q} \frac{K(g(z,a))}{\omega^{p} (1-|z|)} dA(z) = 0.$$
(4)

Recall that a linear operator $T : X \to Y$ is said to be compact if it takes bounded sets in X to sets in Y which have compact closure. For Banach spaces X and Y of the space of all analytic functions $H(\Delta)$, we call that T is compact from X to Y if and only if for each bounded sequence $\{x_n\}$ in X, the sequence $(Tx_n) \in Y$ contains a subsequence converging to some limit in Y.

Results and discussions

Composition operators C_{ϕ}^{g} : $Q_{K_{1},\omega}(p,q) \rightarrow Q_{K_{2},\omega}(p,q)$ In this section, we characterize boundedness and compactness of the generalized composition operator C_{ϕ}^{g} from $Q_{K_{1},\omega}(p,q)$ spaces to $Q_{K_{2},\omega}(p,q)$ spaces.

Now we are ready to state and prove the main results in this section.

Theorem 2.1. Let $\omega : (0,1] \to (0,\infty)$, let $g \in H(\Delta)$ and ϕ be an analytic self-map of Δ . If $C_{\phi}^{g}(Q_{K_{1},\omega}(p,q)) \subset Q_{K_{2},\omega}(p,q)$. Then $C_{\phi}^{g} : Q_{K_{1},\omega}(p,q) \to Q_{K_{2},\omega}(p,q)$ is compact if and only if

$$\lim_{t \to 1^{-}} \sup_{a \in \Delta} \int_{|\phi(z)| > t} |f'(\phi(z))\phi'(z)g(z)|^{p}(1-|z|^{2})^{q} \\ \times \frac{K(g(z,a))}{\omega(1-|z|)} \times dA(z) = 0, \quad \text{where } f \in X_{Q_{K_{1},\omega}(p,q)}.$$
(5)

Proof. First assume that (5) holds. To show that C_{ϕ}^{g} is compact we consider $\{f_n\} \subset X_{Q_{K_1}(p,q)}$. It suffices to prove that $\{C_{\phi}^{g}f_n\}$ has a subsequence which converges in

 $Q_{K_{2},\omega}(p,q)$. Since $f_n \subset Q_{K_{1},\omega}(p,q) \subset \mathcal{B}_{\omega}^{\frac{q+2}{p}}$ (cf. [26]), for $z \in \Delta$.

$$\begin{aligned} \left| f_n(z) - f_n(0) \right| &= \left| \int_0^1 f'(zt) z dt \right| \le \int_0^1 |f'(zt)| |z| dt \\ &\le \| f_n \|_{\mathcal{B}^{\frac{q+2}{p}}_{\omega^p}} \int_0^1 \frac{\omega (1 - |tz|)| z| dt}{(1 - t^2 |z|^2)^{\frac{q+2}{p}}} \\ &\le C \| f_n \|_{\mathcal{B}^{\frac{q+2}{p}}_{\omega^p}} \\ &\le \frac{C \omega (1 - r)}{\pi r^2 K(\log \frac{1}{r})} \| f \|_{Q_{K_1, \omega}(p, q)} . \end{aligned}$$

We know that $\{f_n\}$ is a normal family. By passing to a subsequence, we may assume, without loss of generality, that $\{f_n\}$ converges to 0 uniformly on compact subsets of Δ . We must show that $\{C_{\phi}^{g}f_n\}$ converges to 0 in the norm $\| \cdot \|_{Q_{K_2,\omega}(p,q)}$. Given $\epsilon \in (0, 1)$, by (5), there is a $t \in (0, 1)$ such that for all functions f_n and for all $a \in \Delta$,

$$\int_{|\phi(z)| > t} |f'_{n}(\phi(z))\phi'(z)g(z)|^{p}(1-|z|^{2})^{q} \frac{K_{2}(g(z,a))}{\omega(1-|z|)} \times dA(z) < \epsilon$$
(6)

By (5) and the fact that $\Delta_t = \{z \in \Delta : |z| \le t\}$ is a compact subset of Δ , we see that $\phi \in Q_{K_2,\omega}(p,q)$, since $z \in Q_{K_1,\omega}(p,q)$, and also that $\{f'_n\}$ converges to 0 uniformly on Δ_t . Therefore, there exists an integer N > 1 such that for $n \ge N$,

$$\int_{|\phi(z)| \le t} |f'_n(\phi(z))\phi'(z)g(z)|^p (1-|z|^2)^q \frac{K_2(g(z,a))}{\omega(1-|z|)} \\ \times dA(z) < \epsilon \|\phi\|_{Q_{K_2,\omega}(p,q)}^p.$$
 (7)

Thus (6) and (7) give

$$\begin{split} &\int_{|\phi(z)| \le t} |f'_n(\phi(z))\phi'(z)|^p |g(z)|^p (1-|z|^2)^q \frac{K_2(g(z,a))}{\omega(1-|z|)} \\ &\times dA(z) < \epsilon \left(1 + \|\phi\|_{Q_{K_2,\omega}(p,q)}^p\right), \end{split}$$

when $n \ge N$. That is, $\|C_{\phi}^g f_n\|_{Q_{K_{2,\omega}}(p,q)} \to 0$ as $n \to \infty$.

Now suppose that $C_{\phi}^{g'}$: $Q_{K_{1},\omega}(p,q) \rightarrow Q_{K_{2},\omega}(p,q)$ is compact. To verify (5) consider $f \in X_{Q_{K_{1},\omega}(p,q)}$ and let $f_{s}(z) = f(sz)$ for $s \in (0,1)$ and $z \in \Delta$. Note that $f_{s} \rightarrow f$ uniformly on compact subsets of Δ as $s \rightarrow 1$. By [27] we know that $\{f_{s}, 0 < s < 1\}$ is bounded in $Q_{K_{1},\omega}(p,q)$. Since C_{ϕ} is compact, $\|C_{\phi}^{g}f_{s} - C_{\phi}f\|_{Q_{K_{2},\omega}(p,q)} \rightarrow 0$ as $s \rightarrow 1$. That is, for given $\epsilon > 0$ there exists $s_{0} \in (0,1)$ such that

$$\begin{split} \sup_{a \in \Delta} & \int_{\Delta} |f'_{s_0}(\phi(z)) - f'(\phi(z))|^p |\phi'(z)|^p |g(z)|^p (1 - |z|^2)^q \\ & \times \frac{K_2(g(z, a))}{\omega(1 - |z|)} dA(z) < \epsilon. \end{split}$$

www.SID.ir

For $t \in (0, 1)$ and the above s_0 the triangle inequality gives

$$\sup_{a \in \Delta} \int_{|\phi(z)| > t} |f'(\phi(z))|^p |\phi'(z)|^p |g(z)|^p (1 - |z|^2)^q \times \frac{K_2(g(z, a))}{\omega(1 - |z|)} dA(z) \le \epsilon + ||f'_{s_0}||_{a \in \Delta}^p \int_{|\phi(z)| > t} \times |\phi'(z)|^p |g(z)|^p (1 - |z|^2)^q \frac{K_2(g(z, a))}{\omega(1 - |z|)} dA(z).$$
(8)

We know that

$$\begin{split} \sup_{a \in \Delta} &\int_{|\phi(z)| > t} \left| \phi'(z) \right|^p |g(z)|^p (1 - |z|^2)^q \frac{K_2(g(z, a))}{\omega(1 - |z|)} \\ &\times dA(z) \le \|\phi\|_{Q_{K,\omega}(p,q)}^p < \infty \end{split}$$

since $C^{g}_{\phi}(Q_{K_{1},\omega}(p,q)) \subset Q_{K_{2},\omega}(p,q)$. It will be shown that for given $\epsilon > 0$ and $||f'_{s_0}||_{\infty}^p > 0$ there exists a $\delta \in (0, 1)$ such that for $\delta < t < 1$

$$\begin{split} \|f_{s_0}'\|_{\infty}^p \sup_{a \in \Delta} \int_{|\phi(z)| > t} |\phi'(z)|^p |g(z)|^p (1 - |z|^2)^q \\ & \times \frac{K_2(g(z, a))}{\omega(1 - |z|)} dA(z) < \epsilon. \end{split}$$

Let $n = 2^{j}, j = 1, 2, ...$ Choose $h_n(z) = \frac{n^{-\frac{1}{2}} z^n}{\omega(1-|z|)}$, and we know that $h_n \in \mathcal{B}_{\omega}^{\frac{q+2}{p}}$. It is easy to check that $\{h_n\}$ is

a bounded family in $Q_{K_{1,\omega}}(p,q)$ since $\mathcal{B}_{\omega}^{\frac{q+2}{p}} \subseteq Q_{K_{1,\omega}}(p,q)$ $\widehat{\omega}(1-|z|)^{u_{1,\omega}}(1-|z|)^{u_{2,\omega$ formly to 0 on compact subsets of Δ , we have

$$\lim_{n\to\infty} \|h_n \circ \phi\|_{Q_{K_2,\omega}(p,q)} = 0$$

Thus, for any given $\epsilon > 0$, there exists an integer N > 1such that for all $a \in \Delta$ 1

$$m \int_{|\phi(z)| > t} |\phi'(z)|^{p} |\phi(z)|^{pn-p} (1 - |z|^{2})^{q} |g(z)|^{p} \\ \times \frac{K_{2}(g(z, a))}{\omega(1 - |z|)} dA(z) < \epsilon$$
(9)

whenever $n \ge N$. Given $t \in (0, 1)$, (8) yields

$$Nt^{pN-p} \int_{|\phi(z)|>t} |\phi'(z)|^p |g(z)|^p (1-|z|^2)^q \\ \times \frac{K_2(g(z,a))}{\omega(1-|z|)} dA(z) < \epsilon$$

$$(10)$$

Taking $t = e^{-\frac{\log N}{P(N-1)}}$, we get

$$\begin{split} \|f_{s_0}'\|_{\infty}^p \sup_{a \in \Delta} &\int_{|\phi(z)| > t} \left|\phi'(z)\right|^p \left(1 - |z|^2\right)^q |g(z)|^p \\ &\times \frac{K_2(g(z,a))}{\omega(1 - |z|)} dA(z) < \epsilon. \end{split}$$

Hence by (8) and (9) we have already proved that for any $\epsilon > 0$ and for $f \in X_{Q_{K_{1},\omega}}(p,q)$, there exists a $\delta = \delta(\epsilon, f)$ such that

$$\sup_{a \in \Delta} \int_{|\phi(z)| > t} \left| (f \circ \phi)'(z)g(z) \right|^p (1 - |z|^2)^q \\ \times \frac{K_2(g(z, a))}{\omega(1 - |z|)} dA(z) < \epsilon$$

whenever $\delta < t < 1$.

the above $\delta = \delta(\epsilon, f)$, in fact, is independent of $f \in$ $X_{Q_{K_1,\omega}(p,q)}$. Since C_{ϕ}^{g} : $Q_{K_1,\omega}(p,q) \rightarrow Q_{K_2,\omega}(p,q)$ is compact, $C_{\phi}^{g}(X_{Q_{K_{1},\omega}(p,q)})$ is a relatively compact subset of $Q_{K_{2},\omega}(p,q)$. It means that there is a finite collection of functions f_1, f_2, \ldots, f_n in $X_{Q_{K_{\mathbf{L}}, \omega}(p,q)}$ such that for any $\epsilon > 0$ and $f \in X_{Q_{K_1,\omega}(p,q)}$ there is a $k, 1 \le k \le n$, satisfying

$$\sup_{a \in \Delta} \int_{\Delta} |f'(\phi(z)) - f'_{k}(\phi(z))|^{p} |\phi'(z)|^{p} |g(z)|^{p} (1 - |z|^{2})^{q} \\ \times \frac{K_{2}(g(z, a))}{\omega(1 - |z|)} dA(z) < \epsilon .$$
(11)

On the other hand, if $\rho = \max_{1 \le k \le n} \delta(\epsilon, f_k) < t < 1$, we have from the previous observation that for all k = $1, 2, \ldots, n,$

$$\sup_{a \in \Delta} \int_{|\phi(z)| > t} |f'_k(\phi(z))|^p |\phi'(z)|^p |g(z)|^p (1 - |z|^2)^q \\ \times \frac{K_2(g(z, a))}{\omega(1 - |z|)} dA(z) < \epsilon .$$
(12)

$$\sup_{a \in \Delta} \int_{|\phi(z)| > t} |(f \circ \phi)'(z)g(z)|^p (1 - |z|^2)^q$$
$$\times \frac{K_2(g(z, a))}{\omega(1 - |z|)} dA(z) < 2\epsilon$$

whenever $\rho < t < 1$. The proof is complete.

Although Theorem 2.1 can be viewed as a characterization of compact composition operators C_{ϕ}^{g} : $Q_{K_1,\omega}(p,q) \rightarrow Q_{K_2,\omega}(p,q)$, by condition (5) it is not easy to check compactness of C^g_{ϕ} . The following theorem gives a characterization of C_{ϕ}^{g} directly in terms of ϕ .

Theorem 2.2. Let ω : $(0,1] \rightarrow (0,\infty)$, let $g \in H(\Delta)$, ϕ be an analytic self-map of Δ and C^{g}_{ϕ} : $Q_{K_{1},\omega}(p,q) \subset$ $Q_{K_{2},\omega}(p,q)$. Let two functions $K_1, K_2 : [0,\infty) \to [0,\infty)$ be right-continuous and nondecreasing, satisfying

$$\int_0^1 (1-r^2)^{-2} K_1(\log \frac{1}{r}) r dr < \infty.$$
(13)

If

$$\lim_{t \to 1^{-}} \sup_{a \in \Delta} \int_{|\phi(z)| > t} \frac{|\phi'(z)|^{p} |g(z)|^{p}}{(1 - |\phi(z)|^{2})^{2p}} (1 - |z|^{2})^{q} \\ \times \frac{K_{2}(g(z, a))}{\omega(1 - |z|)} dA(z) = 0.$$
(14)
www.SID.ir

Then, $C_{\phi}^{g}: Q_{K_{1},\omega}(p,q) \rightarrow Q_{K_{2},\omega}(p,q)$ is compact. Conversely, if $C_{\phi}^{g}: Q_{K_{1},\omega}(p,q) \rightarrow Q_{K_{2},\omega}(p,q)$ is compact, then (14) holds.

Proof. Consider $\{f_n\} \in X_{Q_{K_1,\omega}(p,q)}$ which converges to 0 uniformly on compact subsets of Δ . We must show that $\{C_{\phi}^{g}f_n\}$ converges to 0 in the norm $\|\cdot\|_{Q_{K,\omega}(p,q)}$. Thus

$$\begin{split} \|C_{\phi}^{g}f_{n}\|_{Q_{K,\omega}(p,q)}^{p} &= \sup_{a \in \Delta} \int_{\Delta} \left| (f \circ \phi)'(z)g(z) \right|^{p} (1 - |z|^{2})^{q} \\ &\times \frac{K_{2}(g(z,a))}{\omega(1 - |z|)} dA(z) \\ &= \sup_{a \in \Delta} \left(\int_{|\phi(z)| \le t} + \int_{|\phi(z)| > t} \right) \left| f_{n}'(\phi)(z) \right|^{p} \\ &\times |\phi'(z)|^{p} |g(z)|^{p} (1 - |z|^{2})^{q} \frac{K_{2}(g(z,a))}{\omega(1 - |z|)} \\ &\times dA(z) \\ &\leq \sup\{ |f_{n}'(w)g(w)|^{p} : |w| \le t \} \|\phi\|_{Q_{K_{2},\omega}(p,q)}^{p} \\ &+ const. \|f_{n}\|_{\mathcal{B}_{\omega}^{\frac{q+2}{p}}}^{p} \int_{|\phi(z)| > t} \\ &\times |\frac{|\phi'(z)g(z)|^{p}}{(1 - |\phi(z)|^{2})^{2p}} K_{2}(g(z,a)) dA(z) \\ &= I_{1} + I_{2}. \end{split}$$

Since $\{f_n\}$ converges to 0 uniformly on compact sets and $\phi \in Q_{K_2,\omega}(p,q)$, we have $I_1 \to 0$ as $n \to \infty$. In the second term I_2 we know that

$$\left\|f_{n}\right\|_{\mathcal{B}_{\omega}^{\frac{q+2}{p}}}^{p} \leq C\left\|f_{n}\right\|_{Q_{K_{1},\omega}(p,q)}^{p}$$

since every function in $Q_{K_{1,\omega}}(p,q)$ must be weighted $\frac{q+2}{p}$ -Bloch. Thus, I_2 goes to 0 when $t \rightarrow 1$ by our assumption. Therefore, C_{ϕ}^{g} is compact.

Conversely, let C_{ϕ}^{g} : $Q_{K_{1},\omega}(p,q) \rightarrow Q_{K_{2},\omega}(p,q)$ be compact. By [28] we know that (13) ensures

$$f_{\theta}(z) = \frac{1}{\omega(1-|z|)} \log \frac{1}{1-e^{-i\theta}z}$$

 $\in Q_{K_{1},\omega}(p,q) \text{ for all } \theta \in [0, 2\pi).$

By Theorem 2.1,

$$\lim_{t \to 1^{-}} \int_{|\phi(z)| > t} \frac{|\phi'(z)|^{p} |g(z)|^{p}}{(1 - |\phi(z)|^{2})^{2p} \omega(1 - |z|)} \\ \times K_{2}(g(z, a)) dA(z) = 0$$

holds for all $a \in \Delta$ and $\theta \in [0, 2\pi)$. Thus, we obtain (14) by integrating with respect to θ , the Fubini theorem and the Poisson formula.

Composition operators $C_{\phi}^{g}: Q_{K_{1},\omega}(p,q) \rightarrow Q_{K_{2},\omega,0}(p,q)$

In this section, we consider compactness of the generalized composition operators C_{ϕ}^{g} : $Q_{K_{1},\omega}(p,q) \rightarrow$ $Q_{K_2,\omega,0}(p,q),$ where $Q_{K,\omega,0}(p,q)$ is a subspace of $Q_{K,\omega}(p,q)$ satisfying

$$\lim_{|a|\to 1^{-}} \int_{\Delta} \left| f'(z) \right|^{p} \left(1 - |z|^{2} \right)^{q} \frac{K(g(z,a))}{\omega(1-|z|)} dA(z) = 0.$$

By [26], we know that $Q_{K,\omega,0}(p,q) \subset \mathcal{B}_{\omega,0}^{\frac{q+2}{p}}$ and that $Q_{K,\omega,0}(p,q) = \mathcal{B}_{\omega,0}^{\frac{q+2}{p}}$ if and only if

$$\int_0^1 (1-r^2)^{-2} K(\log \frac{1}{r}) r dr < \infty.$$

We should mention that the generalized composition operator C_{ϕ}^{g} is compact from $Q_{K_{1},\omega}(p,q)$ to $Q_{K_{2},\omega,0}(p,q)$ if $\phi \in Q_{K_{2},\omega,0}(p,q)$ and C_{ϕ}^{g} is compact from $Q_{K_{1},\omega}(p,q)$ to $Q_{K_{2},\omega}(p,q)$.

Theorem 3.1. Let ω : $(0,1] \rightarrow (0,\infty)$, $g \in H(\Delta)$ and ϕ be an analytic self-map of Δ such that

$$C^{g}_{\phi}(Q_{K_{1},\omega}(p,q)) \subset Q_{K_{2},\omega,0}(p,q).$$

Then $C^{g}_{\phi}: Q_{K_{1},\omega}(p,q) \rightarrow Q_{K_{2},\omega,0}(p,q)$ is compact if and mly if

$$\lim_{|a| \to 1^{-}} \sup_{\|f\|_{Q_{K_{1},\omega}(p,q)} < 1} \int_{\Delta} \left| f'(\phi(z)) \right|^{p} |\phi'(z)|^{p} |g(z)|^{p} \\ \times (1 - |z|^{2})^{q} \frac{K_{2}(g(z,a))}{\omega(1 - |z|)} dA(z) = 0.$$
(15)

Proof. First suppose that $C_{\phi}^{g} : Q_{K_{1},\omega}(p,q) \to Q_{K_{2},\omega,0}(p,q)$ is compact. Then $A = cl(\{(f \circ \phi)g \in Q_{K_{2},\omega,0}(p,q) : \|f\|_{Q_{K_{1},\omega,p,q}} < 1\})$, the $Q_{K_{2},\omega,0}(p,q)$ closure of the image under C_{ϕ}^{g} of the unit ball of $Q_{K_{1},\omega}(p,q)$, is a compact subset of $Q_{K_{2},\omega,0}(p,q)$. For given $\epsilon > 0$, since a compact set in a metric space is completely bounded, there exist $f_{1}, f_{2}, \ldots, f_{N} \in Q_{K_{1},\omega}(p,q)$ such that each function f in A lies at most ϵ distant from

$$B = \{(f_1 \circ \phi)g, (f_2 \circ \phi)g, (f_3 \circ \phi)g, \dots, (f_N \circ \phi)g\}.$$

That is, there exists $j \in J = \{1, 2, ..., N\}$ such that

$$\|(f \circ \phi)g - (f_j \circ \phi)g\|_{Q_{K_2,\omega}(p,q)} < \frac{\epsilon}{4}.$$
 (16)

On the other hand, since $\{(f_j \circ \phi)g : j \in J\} \subset Q_{K,\omega,0}(p,q)$, there exists a $\delta > 0$ such that for all $j \in J$ and $|a| > 1 - \delta$,

$$\int_{\Delta} \left| (f_j \circ \phi)'(z)g(z) \right|^p (1 - |z|^2)^q \frac{K_2(g(z,a))}{\omega(1 - |z|)} dA(z) < \frac{\epsilon}{4}.$$
(17)

Therefore by (16) and (17), we obtain that for each $|a| > 1 - \delta$ and $f \in Q_{K_1,\omega}(p,q)$ with $||f||_{Q_{K_1,\omega,p,q}} < 1$ there exists *www.SID.ir* $j \in J$ such that

$$\begin{split} &\int_{\Delta} \left| (f \circ \phi)'(z)g(z) \right|^p (1 - |z|^2)^q \frac{K_2(g(z,a))}{\omega(1 - |z|)} dA(z) \\ &\leq 2 \int_{\Delta} \left| (f \circ \phi - f_j \circ \phi)'(z)g(z) \right|^p (1 - |z|^2)^q \frac{K_2(g(z,a))}{\omega(1 - |z|)} dA(z) \\ &+ \int_{\Delta} \left| (f_j \circ \phi)'(z)g(z) \right|^p (1 - |z|^2)^q \frac{K_2(g(z,a))}{\omega(1 - |z|)} dA(z) < \epsilon. \end{split}$$

This proves (15).

Now let (15) hold and let $\{f_n\}$ be a sequence in the unit ball of $Q_{K_1,\omega}(p,q)$. By Montel's theorem, there exists a subsequence $\{f_{n_k}\}$ which converges to a function f analytic in Δ and both $f_{n_k} \rightarrow f$ and $f'_{n_k} \rightarrow f'$ uniformly on compact subsets of Δ . By hypothesis and Fatou's lemma, we see that $C^g_{\phi} \in Q_{K_2,\omega,0}(p,q)$. Since $z \in Q_{K_1,\omega}(p,q)$, $\phi \in Q_{K_2,\omega,0}(p,q)$. Thus we remark that C^g_{ϕ} is a compact composition operator by showing that

$$\|C^g_{\phi}(f_{n_k}-f)\|_{Q_{K_{\gamma,\omega}}(p,q)} \to 0 \text{ as } k \to \infty.$$

In order to simplify the notation we additionally assume, without loss of generality, that f = 0. Hence it remains to show that

$$\lim_{|n|\to\infty}\|C_{\phi}^g f_n\|_{Q_{K_2,\omega}(p,q)}=0.$$

Let $\epsilon > 0$. By (15), we can choose $r \in (0, 1)$ for all n_{ϵ}

$$\sup_{r<|a|<1} \int_{\Delta} \left| (f\circ\phi)'(z)g(z) \right|^p (1-|z|^2)^q \frac{K_2(g(z,a))}{\omega(1-|z|)} \times dA(z) < \epsilon.$$
(18)

For $a \in \Delta$ and $t \in (0, 1)$, define $t\Delta = \{z \in \Delta : |z| \le t\}$ and set

$$\begin{split} I_t(a) &= \int_{\Delta \setminus t\Delta} \left| (f \circ \phi)'(z) g(z) \right|^p (1 - |z|^2)^q \frac{K_2(g(z, a))}{\omega(1 - |z|)} \\ &\times dA(z). \end{split}$$

By using the same way as in [6] we know that for each $t \in (0, 1)$, $I_t(a)$ is a continuous function of a. Since

$$\int_{\Delta} \left| (f_n \circ \phi)'(z)g(z) \right|^p (1-|z|^2)^q \frac{K_2(g(z,a))}{\omega(1-|z|)} dA(z) < \infty$$

for each $a \in \Delta$, we can choose $t(a) \in (r, 1)$ such that $I_{t(a)}(a) < \frac{\epsilon}{2}$. Moreover, there is a neighborhood $U(a) \subset \Delta$ of a such that $I_{t(a)}(b) < \epsilon$ for every $b \in U(a)$, by the continuity of $I_t(a)$. Thus, using the compactness of $\{a : |a| \leq r\}$, there exists $t_0 \in (0, 1)$ such that $I_{t_0}(a) < \epsilon$ if $|a| \leq r$, and so

$$\sup_{|a| \le r} \int_{\Delta \setminus t_0 \Delta} \left| (f_n \circ \phi)'(z)g(z) \right|^p (1 - |z|^2)^q \\ \times \frac{K_2(g(z, a))}{\omega(1 - |z|)} dA(z) < \epsilon.$$
(19)

Also, by the uniform convergence of $\{(f'_n \circ \phi)g\}$ to 0 on compact subsets of Δ , there exists *N* such that,

$$\int_{t_0\Delta} \left| (f_n \circ \phi)'(z)g(z) \right|^p (1-|z|^2)^q \frac{K_2(g(z,a))}{\omega(1-|z|)} dA(z) < \epsilon,$$

if $n \ge N$. Thus, for any such *n*, we have

$$\sup_{|a| \le r} \int_{\Delta} \left| (f_n \circ \phi)'(z) g(z) \right|^p (1 - |z|^2)^q \frac{K_2(g(z, a))}{\omega(1 - |z|)} dA(z) < 2\epsilon.$$
(20)

Combining (18) and (21), we obtain that

$$\lim_{|n|\to\infty} \|C_{\phi}^g f_n\|_{Q_{K_2,\omega}(p,q)} = 0.$$

The proof of Theorem 3.1 is complete.
$$\hfill \Box$$

Theorem 3.2. Let $\omega : (0, 1] \rightarrow (0, \infty)$, $g \in H(\Delta)$ and ϕ be an analytic self-map of Δ such that

$$C^{g}_{\phi}(Q_{K_{1},\omega}(p,q)) \subseteq Q_{K_{2},\omega,0}(p,q).$$

Assume that

$$\int_{0}^{1} (1 - r^{2})^{-2} K_{1}(\log \frac{1}{r}) r dr < \infty.$$
(21)

$$\lim_{|a|\to 1^{-}} \int_{\Delta} \frac{|\phi'(z)|^{p} |g(z)|^{p}}{(1-|\phi(z)|^{2})^{2p}} (1-|z|^{2})^{q} \frac{K_{2}(g(z,a))}{\omega(1-|z|)} dA(z) = 0,$$
(22)

then $C_{\phi}^{g}: Q_{K_{1},\omega}(p,q) \rightarrow Q_{K_{2},\omega,0}(p,q)$ is compact. Conversely assume that $C_{\phi}^{g}: Q_{K_{1},\omega}(p,q) \rightarrow Q_{K_{2},\omega,0}(p,q)$ is compact, (22) holds.

Proof. The proof is very similar as the proof of Theorem 2.2. $\hfill \Box$

Composition operators $C^g_\phi: \mathcal{B}_\omega \to Q_{K,\omega}(p,q)$

Using Riesz Factorization theorem and Vitali's convergence theorem, Shapiro and Taylor showed in [29] that, C_{ϕ} is compact on H^p , for some 0 if and only if $<math>C_{\phi}$ is compact on H^2 . Moreover, Shapiro solved the compactness problem for composition operators on H^p using the Nevanlinna counting function

$$N_{\phi(w)} = \sum_{\phi(z)=w} -\log|w|$$
 (see [1])

The counting function for the Besov space B_p is

$$N_p(w,\phi) = \sum_{\phi(z)=w} \left(|\phi'(z)|(1-|z|^2) \right)^{p-2}$$

for $w \in \Delta$, $p > 1$ (see [3]).
www.SID.ii

In [6], Li and Wulan gave a modification of the Nevanlinna type counting function on F(p, q, s) spaces as follows:

$$N_{p,q,s,\phi}(w) = \sum_{\phi(z)=w} |\phi'(z)|^{p-2} (1-|z|^2)^q g^s(z,a)$$

for $w \in \phi(\Delta)$, $2 \le p < \infty$, $-2 < q < \infty$ and $0 < s < \infty$.

Now, we introduce the following definition:

Definition 4.1. The counting function for the $Q_K(p,q)$ spaces is

$$N_{K,p,q,\phi}(w) = \sum_{\phi(z)=w} |\phi'(z)|^{p-2} (1-|z|^2)^q K(g(z,a)),$$

for $w \in \phi(\Delta)$, $2 \leq p < \infty$, $-2 < q < \infty$ and $K : [0, \infty) \rightarrow [0, \infty)$. In this section, we characterize the boundedness and compactness of the generalized composition operator from weighted Bloch type spaces to $Q_{K,\omega}(p,q)$ spaces.

Theorem 4.1. Let $\omega : (0,1] \to (0,\infty)$, $g(z) \in H(\Delta)$ and ϕ be an analytic self-map of Δ , $0 , <math>-2 < q < \infty$ and $K \in (0,\infty)$. Then $C_{\phi}^{g} : \mathcal{B}_{\omega} \to Q_{K,\omega}(p,q)$ is compact if and only if

$$\lim_{|a|\to 1^{-}} \|C_{\phi}^{g}\varphi_{a}\|_{K,\omega,p,q} = 0.$$
(23)

Proof. Assume that C_{ϕ}^{g} is compact from \mathcal{B}_{ω} to $Q_{K,\omega}(p,q)$. Since $\{\varphi_{a} : a \in \Delta\}$ is a bounded set in \mathcal{B}_{ω} and $\varphi_{a} - a \to 0$ uniformly on compact sets as $|a| \to 1$, the compactness of C_{ϕ}^{g} yields that $\|C_{\phi}^{g}\varphi_{a}\|_{K,\omega,p,q} \to 0$ as $|a| \to 1$.

Conversely, let $\{f_n\} \in \mathcal{B}_{\omega}$ be a bounded sequence. Since $f_n \in \mathcal{B}_{\omega}$, for $z \in \Delta$

$$|f_n(z)| \le C \|f_n\|_{\mathcal{B}^{\frac{q+2}{p}}_{\omega}}.$$

Hence $\{f_n\}$ is a normal family. Thus, there is a subsequence $\{f_{n_k}\}$ which converges to f analytic on Δ and both $f_{n_k} \to f$ and $f'_{n_k} \to f'$ uniformly on compact subsets of Δ . It is easy to know that $f \in \Delta$. We choose $h = C^g_{\phi} f$, we remark that C^g_{ϕ} is compact by showing

$$\|C_{\phi}^{g}f_{n_{k}}-C_{\phi}^{g}f\|_{K,\omega,p,q}\to 0 \text{ as } k\to\infty.$$

Write

$$\begin{split} \|C_{\phi}^{g}\varphi_{a}\|_{K,\omega,p,q}^{p} &= \sup_{a \in \Delta} \int_{\Delta} \frac{(1-|a|^{2})^{p}}{|1-\bar{a}\phi(z)|^{2p}} |\phi'(z)|^{2} |\phi'(z)|^{p-2} \\ &\times |g(z)|^{p} (1-|z|^{2})^{q} \frac{K(g(z,a))}{\omega(1-|z|)} dA(z) \\ &= \sup_{a \in \Delta} \int_{\Delta} \frac{(1-|a|^{2})^{p}}{|1-\bar{a}w|^{2p}} \frac{|g(z)|^{p}}{\omega(1-|z|)} \\ &\times N_{K,p,q,\phi}(z_{1}) dA(z_{1}). \end{split}$$

Here

$$N_{K,p,q,\phi}(z_1) = \sum_{\phi(z)=z_1} \{ |\phi'(z)|^{p-2} (1-|z|^2)^q K(g(z,a)) \},$$

 $\times z_1 \in \phi(\Delta).$ (24)

is a counting function. Thus (24) is equivalent to

$$\lim_{|a| \to 1^{-}} \sup_{a \in \Delta} \int_{\Delta} \frac{(1 - |a|^2)^p}{|1 - \bar{a}z_1|^{2p}} \frac{|g(a)|^p}{\omega(1 - |z|)} \times N_{K, p, q, \phi}(z_1) dA(z_1) = 0.$$

For any $\epsilon > 0$ there exists a δ , $0 < \delta < 1$, such that for $0 < h < \delta$ and all $a \in \Delta$

$$\int_{\Delta} N_{K,p,q,\phi}(z_1) dA(z_1) < \epsilon K \Big(\frac{1-|z_1|}{h} \Big) \qquad (\text{see [30]}),$$

where $S(h, \theta)$ is a Carleson box. The mean value property for analytic functions f'_{nk} and f' yields

$$egin{aligned} f'_{n_k}(z_1) - f'(z_1) &\leq rac{4}{\pi (1 - |z_1|)^2} \int_{|z_1 - z| < rac{1 - |z|}{2}} \ & imes (f'_{n_k}(z) - f'(z)) dA(z). \end{aligned}$$

Then by Jensen's inequality (see [31]), we have

$$|f'_{n}(z_{1}) - f'(z_{1})|^{p} \leq \frac{4}{\pi (1 - |z_{1}|)^{2}} \int_{|z_{1} - z| < \frac{1 - |z|}{2}} \times |f'_{n_{k}}(z) - f'(z)|^{p} dA(z).$$

If $|z_1 - z| < \frac{1-|z|}{2}$, then $z_1 \in S(2(1 - |z|), \theta)$ and $\frac{1}{(1-|z_1|)^2} \le \frac{C}{(1-|z|)^2}$. By Fubini's theorem

$$\begin{split} \sup_{a \in \Delta} \int_{\Delta} |f'_{n_{k}}(z_{1}) - f'(z_{1})|^{p} \frac{|g(z_{1})|^{p}}{\omega(1 - |z_{1}|)} N_{K,p,q,\phi}(z_{1}) dA(z_{1}) \\ &\leq \sup_{a \in \Delta} \int_{\Delta} \frac{4}{\pi(1 - |z_{1}|)^{2}} \int_{|z_{1} - z| < \frac{1 - |z|}{2}} |f'_{n_{k}}(z_{1}) \\ &- f'(z_{1})|^{p} |g(z)|^{p} dA(z) N_{K,p,q,\phi}(z_{1}) dA(z_{1}) \\ &\leq C \sup_{a \in \Delta} \int_{\Delta} \frac{|f'_{n_{k}}(z) - f'(z)|^{p} |g(z)|^{p}}{(1 - |z|)^{2} \omega(1 - |z|)} \int_{S(2(1 - |z|),\theta)} \\ &\times N_{K,p,q,\phi}(z_{1}) dA(z_{1}) dA(z) \\ &= C \sup_{a \in \Delta} \int_{|z| > 1 - \frac{\delta}{2}} \frac{|f'_{n_{k}}(z) - f'(z)|^{p} |g(z)|^{p}}{(1 - |z|)^{2} \omega(1 - |z|)} \\ &\times \int_{S(2(1 - |z|),\theta)} N_{K,p,q,\phi}(z_{1}) dA(z_{1}) dA(z) \\ &+ C \sup_{a \in \Delta} \int_{|z| \le 1 - \frac{\delta}{2}} \frac{|f'_{n_{k}}(z) - f'(z)|^{p} |g(z)|^{p}}{(1 - |z|)^{2} \omega(1 - |z|)} \\ &\times \int_{S(2(1 - |z|),\theta)} N_{K,p,q,\phi}(z_{1}) dA(z_{1}) dA(z). \end{split}$$

Page 7 of 9

For one hand, since f_{n_k} , $f \in \mathcal{B}_\omega$ and 0 , we have

$$\begin{split} \sup_{a \in \Delta} \int_{|z|>1-\frac{\delta}{2}} \frac{|f'_{n_k}(z) - f'(z)|^p |g(z)|^p}{(1-|z|)^2 \omega (1-|z|)} \\ \int_{S(2(1-|z|),\theta)} N_{K,p,q,\phi}(z_1) dA(z_1) dA(z) \\ &\leq \epsilon K \left(\frac{1-|z_1|}{h}\right) \int_{|z|>1-\frac{\delta}{2}} |f'_{n_k}(z) - f'(z)|^p \frac{|g(z)|^p}{\omega (1-|z|)} \\ &\times (1-|z|)^{p-2} dA(z) \\ &\leq C \epsilon \|f_{n_k} - f\|_{\mathcal{B}_{\omega}}^{p-2} \int_{|z|>1-\frac{\delta}{2}} |f'_{n_k}(z) - f'(z)|^p |g(z)|^p dA(z) \\ &\leq C \epsilon \|f_{n_k} - f\|_{\mathcal{B}_{\omega}}^{p-2} \|f_{n_k} - f\|_{\mathcal{D}}^2 |g(z)|^p \\ &\leq \epsilon C' \|f_{n_k} - f\|_{\mathcal{B}_{\omega}}^{p-2} |g(z)|^p \end{split}$$

On the other hand,

$$\begin{split} \sup_{a \in \Delta} & \int_{|z| \le 1 - \frac{\delta}{2}} \frac{|f_{n_k}'(z) - f'(z)|^p |g(z)|^p}{(1 - |z|)^2 \omega (1 - |z|)} \\ & \int_{S(2(1 - |z|), \theta)} N_{K, p, q, \phi}(z_1) dA(z_1) dA(z) \\ \le & C \bigg(\sup_{a \in \Delta} \int_{\Delta} N_{K, p, q, \phi}(z_1) dA(z_1) \bigg) \int_{|z| \le 1 - \frac{\delta}{2}} \\ & \times |f_{n_k}'(z) - f'(z)|^p \frac{|g(z)|^p}{\omega (1 - |z|)} dA(z) \le C\epsilon \end{split}$$

for *n* large enough since $f'_{n_k}(z) - f'(z) \to 0$ uniformly on $\{z \in \Delta : |z| \le 1 - \frac{\delta}{2}\}.$

Therefore, for sufficiently large k, the above discussion gives

$$\begin{split} \|C_{\phi}^{g}f_{n_{k}} - C_{\phi}^{g}f\|_{K,\omega,p,q} &= \sup_{a \in \Delta} \int_{\Delta} \left| (f_{n_{k}} \circ \phi)'(z)g(z) - (f \circ \phi)'(z)g(z) \right|^{p} (1 - |z|^{2})^{q} \\ &\times \frac{K(g(z,a))}{\omega(1 - |z|)} dA(z) \\ &= \sup_{a \in \Delta} \int_{\Delta} \left| f_{n_{k}}'(z_{1}) - f'(z_{1}) \right|^{p} \\ &\times \frac{|g(z_{1})|^{p}}{\omega(1 - |z_{1}|)} N_{K,p,q,\phi} \\ &\times (z_{1}) dA(z_{1}) < C\epsilon. \end{split}$$

It follows that C_{ϕ}^{g} is a compact operator.

Corollary 4.1. Let $g(z) \in H(\Delta)$ and ϕ be an analytic selfmap of Δ , $0 , <math>-2 < q < \infty$ and $K \in (0, \infty)$. Then $C_{\phi}^{g} : \mathcal{B} \to Q_{K}(p,q)$ is compact if and only if

$$\lim_{|a|\to 1^-} \|C^g_\phi\varphi_a\|_{K,p,q}=0.$$

Corollary 4.2. Let $g(z) \in H(\Delta)$ and ϕ be an analytic selfmap of Δ , $0 , <math>-2 < q < \infty$ and $0 < s < \infty$. Then $C_{\phi}^{g} : \mathcal{B}_{\omega} \to F_{\omega}(p,q,s)$ is compact if and only if

$$\lim_{|a|\to 1^-} \|C^g_\phi \varphi_a\|_{F_\omega(p,q,s)} = 0.$$

Conclusions

The boundedness and compactness of generalized composition operators on $Q_{K,\omega}(p,q)$ -type spaces and the weighted Bloch space B_{ω} are investigated in the unit disc. Moreover, we characterized boundedness and compactness of generalized composition operators from $Q_{K_{1,\omega}}(p,q)$ into $Q_{K_{2,\omega}}(p,q)$. Compactness criteria is also provided for generalized composition operators on the space $Q_{K,\omega,0}(p,q)$ using mild conditions.

Competing interests

The authors of this paper declare that they have no competing interests.

Author's contributions

Each author contributed equally in the development of this paper. All authors read and approved the final version of this paper.

Acknowledgments

The authors would like to thank the referees for their valuable comments.

Author details

¹ Sohag University, Faculty of Science, Department of Mathematics, Sohag 82524, Egypt. ²Present address: Faculty of Science, Mathematics Department, Taif University, Box 888 El-Hawiyah, El-Taif 5700, Saudi Arabia. ³Present address: Faculty of Science and Humanities, Department of Mathematics, Majmaah University, Majmaah, Saudi Arabia. ⁴Port Said University, Faculty of Science, Department of Mathematics, Port Said 42521, Egypt.

Received: 4 May 2012 Accepted: 9 June 2012 Published: 20 July 2012

References

- Shapiro, JH: Composition operators and classical function theory. Springer-Verlay, New York (1993)
- Madigan, PK, Matheson, A: Compact composition operators on Bloch space. Trans. Amer. Math. Soc. 347, 2679–2687 (1997)
- 3. Tjani, M: Compact composition operators on Besov spaces. Trans. Amer. Math. Soc. **355**(11), 4683–4698
- Bourdon, BS, Cima, JA, Matheson, AL: Compact composition operators on BMOA. Trans. Amer. Math. Soc. 351, 2183–2169 (1999)
- 5. Smith, W, Zhao, R: Compact composition operators into Q_p spaces. Analysis. **17**, 239–263 (1997)
- Li, S, Wulan, H: Composition operators on Q_K spaces. J. Math. Anal. Appl. 327, 948–958 (2007)
- El-Sayed Ahmed, A, Bakhit, MA: Composition operators on some holomorphic Banach function spaces. Mathematica Scandinavica. 104(2), 275–295 (2009)
- El-Sayed Ahmed, A, Bakhit, MA: Composition operators acting between some weighted Möbius invariant spaces. Ann. Funct. Anal. AFA. 2(2), 138–152 (2011)
- 9. Zhao, R: On α-Bloch functions and *VMOA*. Acta. Math. Sci. **3**, 349–360 (1996)
- Dyakonov, KM: Weighted Bloch spaces, *H^p*, and BMOA. J. Lond. Math. Soc. II. Ser. **65**(2), 411–417 (2002)
- 11. Wulan, H, Zhou, J: The higher order derivatives of Q_K type spaces. J. Math. Anal. Appl. 332(2), 1216–1228 (2007)
- 12. Wulan, H, Zhu, K: Q_K type spaces of analytical functions. J. Funct. Spaces Appl. **4**, 73–84 (2006)
- 13. Essén, M, Wulan, H: On analytic and meromorphic functions and spaces of Q_K type. Illinois. J. Math. **46**, 1233–1258 (2002)

- Essén, M, Wulan, H, Xiao, J: Several function-theoretic characterizations of Möbius invariant Q_K spaces. J. Funct. Anal. 230(1), 78–115 (2006)
- Li Songxiao, S, Wulan, H: Composition operators on Q_K spaces. J. Math. Anal. Appl. 327(2), 948–958 (2007)
- Wulan, H, Zhang, Y: Hadamard products and Q_K spaces. J. Math. Anal. Appl. **337**, 1142–1150 (2008)
- 17. Wulan, H, Zhu, K: Derivative-free characterizations of Q_K spaces. J. Aust. Math. Soc. **82**(2), 283–295 (2007)
- Aulaskari, R, Lappan, P: Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal, Complex Analysis and its Applications (Eds Y. Chung-Chun et al.) Pitman Research Notes in Mathematics, Longman 305 (1994) 136–146
- 19. Aulaskari, R, Lappan, P, Zhao, R: On harmonic normal and $Q_p^{\#}$ functions. Illinois. J. Mathematics **45**(2), 423–440 (2001)
- 20. Xiao, J: Holomorphic Q Classes. Springer LNM 1767, Berlin (2001)
- Zhao, R: On a general family of function spaces, In: Annales Academiae Scientiarum Fennicae. Series A I. Mathematica. Dissertationes. vol. 105 pp. 1-56. Suomalainen Tiedeakatemia, Helsinki (1996)
- 22. Stroethoff, K: Besov-type characterizations for the Bloch space. Bull. Austral. Math. Soc. **39**, 405–420 (1989)
- Stroethoff, K: The Bloch space and Besov space of analytic functions. Bull. Austral. Math. Soc. 54, 211–219 (1995)
- Rättyä, J: On some Complex function spaces and classes, Annales Academiae Scientiarum Fennicae. Series A I. Mathematica. Dissertationes. 124, pp. 1–73. Suomalainen Tiedeakatemia, Helsinki (2001)
- Li, S, Stević, S: Generalized composition operators on Zygmund spaces and Bloch type spaces. J. Math. Anal. Appl. 338, 1282–1295 (2008)
- 26. Rashwan, RA, El-Sayed, Ahmed, A, Kamal, A: Integral characterizations of weighted Bloch space and $Q_{K,\omega}(p,q)$ spaces. Mathematica. Tome **51**(74), 63–76 N 1 (2009)
- 27. Aleman, A, Simbotin, AM: Estimates in Möbius invariant spaces of analytic functions. Complex Var. Theory Appl. **49**, 487–510 (2004)
- Essén, M, Wulan, H: On analytic and meromorphic functions and spaces of Q_K-type space. Illinois. J. Math. 46, 1233–1258 (2002)
- Shapiro, JH, Tylor, PD: Compact, nuclear and Hilbert-Schmidt composition operators on H². Indiana University Mathematics J. **125**, 471–496 (1973)
- 30. Rashwan, RA, El-Sayed, Ahmed, A, Kamal, A: Carleson measures and compact composition operators on $Q_K(p,q)$ spaces, In: Proceeding of conference mathematics and applications, Al-Imam University, Riyadh (KSA), 23–24 March 2011
- 31. Rudin, W: Real and Complex Analysis. McGraw-Hill, New York (1987)

doi:10.1186/2251-7456-6-14

Cite this article as: Ahmed and Kamal: **Generalized composition operators** on $Q_{K,\omega}(p,q)$ spaces. *Mathematical Sciences* 2012 **6**:14.

Submit your manuscript to a SpringerOpen[™] journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com

www.SID.ir