
Arc
hive

 of
 S

ID

Chakrabarti and Martha Mathematical Sciences 2012, 6:15
http://www.iaumath.com/content/6/1/15

ORIGINAL RESEARCH Open Access

Methods of solution of singular integral
equations
Aloknath Chakrabarti1 and Subash Chandra Martha2*

*Correspondence:
scmartha@iitrpr.ac.in
2Department of Mathematics,
Indian Institute of Technology
Ropar, Nangal Road, Rupnagar,
Punjab, 140001, India
Full list of author information is
available at the end of the article

Abstract

Purpose: This paper investigates a different method to evaluate different real
improper integrals and also to obtain the solutions of various types of Cauchy-type
singular integral equations of the first kind.

Methods: Methods using the analysis of functions of real variables only are reviewed
and utilized for the above purpose. These methods clearly demonstrate that details of
complex function theory which are normally employed in handling such integral
equations for their solutions can be avoided altogether. Also, some approximate
methods of solution of such integral equations are developed.

Results: The solutions of real singular integral equations over different intervals such
as (−1, 1); (a, b); (0, a) ∪ (b, c); (−1, k) ∪ (k, 1); (−∞, b); (a, +∞); (−∞, +∞); infinite
intervals with a gap are obtained by using the proposed methods.

Conclusion: The proposed methods are new and each has its own structure.
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Background
Real singular integral equations involving Cauchy-type singularities arise (see [1-10]) in
a natural way in handling a large class of mixed boundary value problems of mathemat-
ical physics, especially when two-dimensional problems are encountered. The integrals
occurring in these integral equations are in fact improper and their evaluations in most
cases can be rendered by using the theory of functions of complex variables involving
the application of Cauchy’s residue theorem. It is desirable, as is always felt, to avoid the
use of complex function theory to evaluate real integrals because the details can be more
involved analytically speaking than what is actually necessary for being able to use the
final results in practical problems. It is with this idea in mind, in the present paper, that
we have first reviewed the problems of evaluation of several real improper integrals (see
[11]) by the help of the theory of functions of real variables only whilst the application of
complex function theory is also demonstrated for these problems for comparison as well
as for realizing the major differences of the analysis involved.

Thus, by developing the feeling that complex function theory can be avoided for prob-
lems involving improper real integrals, we have next taken up some known real singular
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integral equations involving Cauchy-type kernels and have presented the real variable
method of solution of these equations.

The plan of this paper is as follows: In the ‘Evaluation of real improper integrals’ section,
we consider some problems of real improper integrals and their solutions. In the ‘Solu-
tion of a Cauchy-type singular integral equation of the first kind’ section, a Cauchy-type
singular integral equation of the first kind is considered for its solution in the intervals
(−1, 1) and (a, b). We consider a Cauchy-type singular integral equation of the first kind
over two disjoint intervals, (0, a)∪ (b, c) and (−1, −k)∪ (k, 1) and its solution in the ‘Solu-
tion of a Cauchy-type singular integral equation of the first kind over an interval with a
gap’ section. In the ‘Verification of the solutions for homogeneous Cauchy-type singu-
lar integral equation of the first kind’ section, we verify the solution of the homogeneous
problem obtained in the previous section. We then we determine the approximate solu-
tion of Cauchy-type singular integral equations in the intervals (0,1), (−1, −k) ∪ (k, 1)

and then (0, a) ∪ (b, c) in the ‘Approximate solution of singular integral equations of the
Cauchy type’ section. Finally, in the ‘Solutions of Cauchy-type singular integral equations
over semi-infinite and infinite intervals’ and ‘Solution of Cauchy-type singular integral
equations of the first kind over infinite intervals with a gap’ sections, we derive the solu-
tions of singular integral equations of the Cauchy type, involving semi-infinite as well as
infinite intervals, as special limiting cases and show that the final results agree with the
known ones.

Results and discussion
Evaluation of real improper integrals

In this section, we consider the problems of evaluation of certain special real improper
integrals and their solutions by using the complex variable method as well as the real
variable method.

Problem 1. Evaluate

I =
∫ ∞

0

sin x
x

dx. (1)

Solution (using complex analysis):
Let F(z) = eiz

z . Using Cauchy’s residue theorem, we obtain∫
�

F(z)dz = 2π i
∑
�

Res F(z) = 0, (2)

where � is the closed contour consisting of the upper half of the large circle |z| = R
and the real axis from -R to R which avoids the origin, with a semicircular indentation of
radius r.

Then, letting R → ∞ and r → 0, we get∫ ∞

−∞
F(x)dx + i

∫ 0

π

dθ = 0, (3)

giving∫ ∞

0

sin x
x

dx = π/2. (4)
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Solution (without using complex analysis):
We write∫ ∞

0

sin x
x

dx = lim
ε→0+

∫ ∞

0
e−εx sin x

x
dx = lim

ε→0+

∫ ∞

0
e−εx

(∫ 1

0
cos (αx)dα

)
dx

= lim
ε→0+

∫ 1

0
dα

(∫ ∞

0
e−εx cos (αx)dx

)
= lim

ε→0+

∫ 1

0
dα

[
ε

α2 + ε2

]
= lim

ε→0+ tan−1
(α

ε

)
|1
α=0 = π

2
, (5)

which matches with Equation 4.

Problem 2. Evaluate

I =
∫ ∞

0

sin2 kx
x2 dx, k > 0. (6)

Solution (using complex analysis):
Using Cauchy’s residue theorem, we obtain∫

�

F(z)dz = 2π i
∑
�

Res F(z) = 0, (7)

where F(z) = 1−e−2iz

z2 and � is the same contour as was used for problem 1.
Again, letting R → ∞ and r → 0, we get∫ ∞

−∞
F(x)dx + 2

∫ 0

π

dθ = 0, (8)

giving ∫ ∞

−∞
1 − cos 2x + i sin 2x

x2 dx = 2π

⇒
∫ ∞

0

sin2 x
x2 dx = π/2. (9)

Thus, we find that∫ ∞

0

sin2 kx
x2 dx = πk

2
. (10)

Solution (without using complex analysis):
We write∫ ∞

0

sin2 kx
x2 dx =

∫ ∞

0

1 − cos 2kx
2x2 dx = 1

2

∫ ∞

0

dx
x

(∫ 2k

0
sin(αx)dα

)

= 1
2

∫ 2k

0
dα

(∫ ∞

0

sin(αx)

x
dx
)

= πk
2

. (11)

which agrees with Equation 10.

Problem 3. Evaluate

I =
∫ ∞

0

x2dx
x4 + 6x2 + 13

. (12)

Solution (using complex analysis):

I = 1
2

J , (13)
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where

J =
∫ ∞

0

√
udu

u2 + 6u + 13
(by setting x2 = u). (14)

We use Cauchy’s residue theorem and get∫
�

F(z)dz = 2π i
∑
�

ResF(z),

where F(z) =
√

z
z2+6z+13 and � is a contour comprising of a circular indentation of radius

r at the origin along with the two parts of the positive real axis, one lying above and the
other lying below, as well as a large circle of radius R.

Then, letting R → ∞ and r → 0, we obtain∫ ∞

0

√
udu

u2 + 6u + 13
= π i

[ √z1
z1 − z2

+
√z2

z2 − z1

]
, (15)

where

z1 = √
13ei(π−tan−1 2

3 ), z2 = √
13ei(π+tan−1 2

3 ).

We then find that

I = 1
2

J = π

4
131/4 sin

(
tan−1 2

3
2

)
. (16)

Solution (without using complex analysis):
We write

I = 1
2

∫ ∞

0

√
udu

u2 + 6u + 13
(by setting x2 = u)

= 1
2(u − ū0)

lim
R→∞

∫ R

0

[ √
u

(u − u0)
−

√
u

(u − ū0)

]
du (17)

= π

2(u − ū0)

[√−ū0 − √−u0
]

= π

4
(13)1/4 sin

(
1
2

tan−1 (2/3)

)
, (18)

where u0 = −3 + 2i, ū0 = −3 − 2i.
Equation 18 agrees with Equation 16.

Problem 4. Evaluate

I =
∫ ∞

0

log x
(x + 1)2 dx. (19)

Solution: We write

I =
∫ ∞

0

log x
(x + 1)2 dx =

[
− 1

2k
d

dk
J(k)

]
k=1

, (20)

where

J(k) =
∫ ∞

0

log x
(x2 + k2)

dx. (21)

Solution (using complex analysis):
Applying Cauchy’s residue theorem, we first get∫

�

log z
(z2 + k2)

dz = 2π i×[ Residue at z = i k] , (22)
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where � is the contour lying above the real axis, with a small semicircular indentation of
radius h and a large semicircular arc of radius R, giving∫ ∞

0

ln rdr
r2 + k2 = π

2k
ln k. (23)

Then, we find that

I = −π

4
(by using Equation 20). (24)

Solution (without using complex analysis):
We can write

J(k) =
∫ ∞

0

log x
(x2 + k2)

dx

= 1
k

∫ π/2

0
[ln k + ln(tan θ)] dθ (by setting x = k tan θ)

= π

2k
ln k. (25)

Then, using Equation 20, we get

I = −π

4
, (26)

which agrees with Equation 24.

Problem 5. Evaluate

I =
∫ ∞

0

cos x
x2 + a2 dx, a > 0. (27)

Solution (using complex analysis):
Cauchy’s residue theorem gives

J =
∫

�

e−zdz
z2 − a2 = 2π i×[ Residue at z = a] , (28)

where � is the contour lying at the right side of the y-axis with a large semicircular arc of
radius R, giving

J = 2π i
e−a

2a
(taking limit as R → ∞).

But J = 2iI, which gives

I = πe−a

2a
. (29)

Solution (without using complex analysis):
We write

I =
∫ ∞

0

cos x
a

dx
(∫ ∞

0
e−at cos (tx)dt

)
(30)

= 1
2a

∫ ∞

0
e−at

{
lim

ε→0+

∫ ∞

0
e−εx [cos (1 − t)x + cos (1 + t)x] dx

}
dt

= 1
2a

lim
ε→0+

[
ε

∫ ∞

0

e−atdt
(1 − t)2 + ε2 + ε

∫ ∞

0

e−atdt
(1 + t)2 + ε2

]
= 1

2a
lim

ε→0+

[
−e−a lim

ε→0+

{
−π

2
− tan−1 1/ε

}
+ ea lim

ε→0+

{π

2
− tan−1 1/ε

}]
= πe−a

2a
, (31)

which matches with Equation 29.
www.SID.ir
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A different approach:
We write

I =
∫ ∞

0

xdx
x2 + a2

[
−
∫ 1

0
sin αxdα + 1

x

]
= −

∫ 1

0
dα

[∫ ∞

0

x sin αx
x2 + a2 dx

]
+
∫ ∞

0

dx
x2 + a2

= −
∫ 1

0
dα

[∫ ∞

0
sin αx

{∫ ∞

0
e−at sin (tx)dt

}
dx
]

+ π

2a

= −
∫ 1

0
dα

[∫ ∞

0
e−atdt

{
lim
ε→0

∫ ∞

0
e−εx sin (αx) sin (tx)dt

}]
+ π

2a

= −
∫ 1

0
dα

[∫ ∞

0
e−atdt

{
lim
ε→0

(
1
2

∫ ∞

0
e−εx [cos (α− t)x − cos (α+t)x] dx

)}]
+ π

2a

= −
∫ 1

0

dα

2

[
lim
ε→0

{∫ ∞

0

e−at .ε
(α − t)2 + ε2 dt −

∫ ∞

0

e−at .εdt
(α + t)2 + ε2

}]
+ π

2a

= −1
2

∫ 1

0
dα

{
e−aα lim

ε→0

(π

2
+ tan−1 (α/ε)

)
− eaα lim

ε→0

(π

2
− tan−1 (α/ε)

)}
+ π

2a

= πe−a

2a
, (32)

which matches with Equations 29 and 31.

Problem 6. Evaluate

I =
∫ π/2

0

dx
a + sin2 x

(a > 0). (33)

Solution (using complex analysis):
We write

I =
∫ π/2

0

dx
a + sin2 x

= 2
∫ π/2

0

dx
2a + (1 − cos 2x)

= 1
2

∫ π

−π

dθ

(1 + 2a) − cos θ
(setting θ = 2x and noting that cos θ is even)

= 1
i

∫
�

dz
2(1 + 2a)z − 1 − z2 (putting eiθ = z), (34)

where � is the unit circle around the origin.
Then, applying Cauchy’s residue theorem, we get

I = π

2
√

a(1 + a)
. (35)

Solution (without using complex analysis):
We can write Equation 33 as

I =
∫ π/2

0

sec2 xdx
a sec2 x + sin2 x sec2 x

=
∫ π/2

0

sec2 xdx
a sec2 x + tan2 x

=
∫ ∞

0

dt
a + (1 + a)t2 (setting t = tan x)

=
(

1
1 + a

)∫ ∞

0

dt
a

(1+a)
+ t2 = π

2
√

a(1 + a)
, (36)
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and this agrees with Equation 35.

Problem 7. Evaluate

I =
∫ ∞

−∞
x2 − x + 2

x4 + 10x2 + 9
dx. (37)

Solution:
We can write Equation 37 as

I =
∫ ∞

−∞
(x2 + 2)dx

x4 + 10x2 + 9
dx (since

∫ ∞

−∞
xdx

x4 + 10x2 + 9
= 0)

=
∫ ∞

−∞
(x2 + 2)dx

(x2 + 5)2 − 42 =
∫ ∞

−∞
(x2 + 2)dx

(x2 + 9)(x2 + 1)
. (38)

Solution (using complex analysis):
Applying Cauchy’s residue theorem, involving the contour � comprising of the real axis

and a large semicircular arc lying above the real axis, we obtain

I =
∫

�

(z2 + 2)dz
(z2 + 9)(z2 + 1)

= 5
12

π . (39)

Solution (without using complex analysis):
We can write Equation 38 as

I = 2
∫ ∞

0

x2 + 2
(x2 + 9)(x2 + 1)

dx

= 2
∫ ∞

0

[
1

8(x2 + 1)
+ 7

8(x2 + 9)

]
dx (by partial fraction)

= 1
4

[
tan−1 x + 7

3
tan−1 x

3

]∞

0

= 5
12

π , (40)

and this matches with Equation 39.

Problem 8. Evaluate

I(x) =
∫ 1

−1

(1 + t)α(1 − t)1−α

t − x
dt, (0 < α < 1), (−1 < x < 1). (41)

Solution:
I(x) can be written as

I(x) =
∫ 1

−1

(1 + t)1/2(1 − t)1/2(1 + t)α− 1
2 (1 − t)

1
2 −α

t − x
dt

=
∫ 1

−1

(1 − t2)1/2ψ(t)
t − x

dt, (42)

where

ψ(t) = (1 + t)α− 1
2 (1 − t)

1
2 −α . (43)

This ψ(t) can be written as

ψ(t) =
∞∑

n=0
cntn, (44)

where c0 = 1, c1 = 2β , c2 = 2β2, c3 = 2
(

2β3+β
3

)
, . . . with β = α − 1

2 .
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From Equations 42 and 44, I(x) can be written as

I(x) =
∞∑

n=0
cnIn(x), (45)

where

In(x) =
∫ 1

−1

(1 − t2)1/2tn

t − x
dt. (46)

Evaluation of In(x) (using complex analysis):

In(x) = −πPP
{

xn+1
(

1 − 1
x2

)2
}

for large x
(see [2]), (47)

from which we obtain

I0(x) = −πx, I1(x) = −π

(
x2 − 1

2

)
, I2(x) = −π

(
x3 − x

2

)
,

I3(x) = −π

(
x4 − x2

2
− 1

8

)
, . . . . (48)

Evaluation of In(x) (without using complex analysis):
In(x) can also be written as

In(x) =
⎧⎨⎩2x

∫ 1
0

(1−t2)1/2tn

t2−x2 dt, when n is even

2
∫ 1

0
(1−t2)1/2tn+1

t2−x2 dt, when n is odd,
(49)

⇒ In(x)=
⎧⎨⎩2x

[−Sn + (1 − x2){Sn−2 + x2Sn−4 + x4Sn−6 + . . . + xn−2S0}
]

, when n is even

2
[−Sn+1 + (1 − x2){Sn−1 + x2Sn−3 + x4Sn−5 + . . . + xn−1S0}

]
, when n is odd,

(50)

where

Sn = 1
2

B
(

n + 1
2

,
1
2

)
. (51)

The values of In(x) can then be determined easily which are the same as the ones
obtained in Equation 48.

Substituting the values of In(x)(n = 0, 1, 2, . . .) in Equation 45, the approximate value of
I(x) can be written as

I(x)=−π

[
x+2β

(
x2 − 1

2

)
+2β2

(
x3 − x

2

)
+2

(
2β3 + β

3

)(
x4 − x2

2
− 1

8

)
+ . . .

]
.

(52)

The exact value of I(x) is given by (see [2])

I(x)=π
[
(1−2α−x) csc(πα)−(1 + x)α(1−x)1−αcot(πα)

]
, (0<α<1), (−1<x<1).

(53)

In Table 1, we find that the exact values and approximate values of I(x) are nearly equal.

Table 1 Comparison between exact values and approximate values of I(x)

α = 1/4, x = 0.5 α = 1/4, x = 0 α = 1/4, x = −0.5
Iexact −2.0673 −0.9202 0.8622

Iapprox −2.0249 −0.8590 1.0186
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Evaluation of some real singular integrals by real variable method

Here, we consider some problems involving singular integrals and their solutions by real
variable method. These results are useful to evaluate some other integral equations in the
succeeding sections.

Problem 1. Evaluate

I =
∫ 1

0

√
t(1 − t)dt

t − x
, for x /∈ (0, 1), real. (54)

Solution: Setting t = sin2 θ [ t ∈ (0, 1) ⇒ θ ∈ (0, π/2)], we get

I(x) =
∫ π/2

0

2 sin2 θ cos2 θdθ

sin2 θ − x

= 2(1 − x)

∫ π/2

0

sin2 θdθ

sin2 θ − x
− 2

∫ π/2

0
sin2 θdθ

= 2(1 − x)

[∫ π/2

0
dθ + x

∫ π/2

0

dθ

sin2 θ − x

]
− π

2

= π(1 − x) + 2x(1 − x)

∫ π/2

0

d(tan θ)

tan2 θ(1 − x) − x
− π

2
. (55)

Case 1: When x > 1, we obtain

I(x) = π(1 − x) + 2x
∫ π/2

0

d(tan θ)

tan2 θ + x
x−1

− π

2

= π

(
1
2

− x
)

+ π
√

x(x − 1). (56)

Case 2: When x < 0, we obtain

I(x) = π(1 − x) + 2x
∫ π/2

0

d(tan θ)

tan2 θ + (−x)
1−x

− π

2

= π

(
1
2

− x
)

+ π
√

x(x − 1). (57)

So, we get

I(x) = π

(
1
2

− x
)

+ π
√

x(x − 1). � (58)

Problem 2. Evaluate

I =
∫ 1

0

dt√
t(1 − t) (t − x)

, for x /∈ (0, 1), real. (59)

Solution: Setting t = sin2 θ [ t ∈ (0, 1) ⇒ θ ∈ (0, π/2)], we get

I(x) = 2
∫ π/2

0

dθ

sin2 θ − x
= 2

∫ π/2

0

d(tan θ)

tan2 θ(1 − x) − x
. (60)

Case 1: When x > 1, we obtain

I(x) = 2
1 − x

∫ π/2

0

d(tan θ)

tan2 θ + x
x−1

= −π√
x(x − 1)

. (61)

Case 2: When x < 0, we obtain

I(x) = 2
1 − x

∫ π/2

0

d(tan θ)

tan2 θ + (−x)
1−x

= −π√
x(x − 1)

. (62)
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So, we get

I(x) = −π√
x(x − 1)

. � (63)

Problem 3. Evaluate

I(x) =
∫ c

a

√
(t − a)(c − t)dt

t − x
, for x /∈ (a, c), real. (64)

Solution: Setting t = a cos2 θ + c sin2 θ [ t ∈ (a, c) ⇒ θ ∈ (0, π/2)], we get

I(x) =
∫ π/2

0

2(c − a)2 sin2 θ cos2 θdθ

a cos2 θ + c sin2 θ − x

= 2(c − a)

∫ π/2

0

(c − x) sin2 θ − sin2 θ
(
a cos2 θ + c sin2 θ − x

)
a cos2 θ + c sin2 θ − x

dθ

= 2(c − a)(c − x)

∫ π/2

0

sin2 θdθ

(a − x) + (c − a) sin2 θ
− (c − a)

π

2

= 2(c − x)

⎡⎣π

2
+ x − a

c − a

∫ π/2

0

d(tan θ){
1 − x−a

c−a

}
tan2 θ − x−a

c−a

⎤⎦− (c − a)
π

2
. (65)

Case 1: When x > c (i.e., x − c > 0 and x − a > 0), we obtain

I(x) = 2(c − x)

[
π

2
+ x − a

c − x

∫ π/2

0

d(tan θ)

tan2 θ + x−a
x−c

]
− (c − a)

π

2

= π

[
(c + a)

2
− x

]
+ π

√
(x − a)(x − c). (66)

Case 2: When x < a ( i.e., a − x > 0, c − x > 0), we obtain

I(x) = 2(c − x)

[
π

2
+ x − a

c − x

∫ π/2

0

d(tan θ)

tan2 θ + a−x
c−x

]
− (c − a)

π

2

= π

[
(c + a)

2
− x

]
− π

√
(a − x)(c − x). (67)

So, we obtain

I(x) = π

[
(c + a)

2
− x

]
+ π

√
(x − a)(x − c) sgn(x − a). � (68)

Problem 4. Evaluate

I(x) =
∫ c

a

dt√
(t − a)(c − t) (t − x)

, for x /∈ (a, c), real. (69)

Solution: Setting t = a cos2 θ + c sin2 θ [ t ∈ (a, c) ⇒ θ ∈ (0, π/2)], we get

I(x) = 2
∫ π/2

0

dθ

a cos2 θ + c sin2 θ − x

= 2
∫ π/2

0

dθ

(a − x) cos2 θ + (c − x) sin2 θ
. (70)
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Case 1: When x > c ( i.e., x − c > 0 and x − a > 0), we get

I(x) = 2
c − x

∫ π/2

0

d(tan θ)

tan2 θ + x−a
x−c

= −π√
(x − a)(x − c)

. (71)

Case 2: When x < a ( i.e., a − x > 0, c − x > 0), we get

I(x) = 2
c − x

∫ π/2

0

d(tan θ)

tan2 θ + a−x
c−x

= π√
(c − x)(a − x)

. (72)

So, we obtain

I(x) = −π√
(x − a)(x − c)

sgn(x − a). � (73)

Solution of a Cauchy-type singular integral equation of the first kind

Here, we consider a Cauchy-type singular integral equation of the first kind in the interval
(-1,1) and obtain its solution by real variable method. Then, we have generalized the result
for the interval (a,b).

Problem 1. Solve the singular integral equation of the first kind∫ 1

−1

φ(t)dt
t − x

= f (x), − 1 < x < 1. (74)

Solution: Set

t = 2u − 1, x = 2ξ − 1 [ t ∈ (−1, 1) ⇒ u ∈ (0, 1), x ∈ (−1, 1) ⇒ ξ ∈ (0, 1)] . (75)

Get: t − x = 2(u − ξ).
Hence, the given integral equation (Equation 74) becomes∫ 1

0

φ(2u − 1)2du
2(u − ξ)

= f (2ξ − 1),

or
∫ 1

0

ψ(u)du
u − ξ

= g(ξ), (76)

where

ψ(u) = φ(2u − 1), g(ξ) = f (2ξ − 1). (77)

Now, we set

u = cos2 θ , ξ = cos2 α. (78)

Then, we get, from Equation 76,

2
∫ π/2

0

ψ(cos2 θ) sin θ cos θdθ

cos2 θ − cos2 α
= g(cos2 α). (79)

Now, we set (see [12])

2ψ(cos2 θ) sin θ cos θ = 1
2

a0 +
∞∑

r=1
a2r cos 2rθ . (80)
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Then, Equations 79 and 80 give

g(cos2 α) = 1
2

a0

∫ π/2

0

dθ

cos2 θ − cos2 α
+

∞∑
r=1

a2r

∫ π/2

0

cos 2rθdθ

cos2 θ − cos2 α
. (81)

Now, we have the following results:

Result 1:

I0 ≡
∫ π/2

0

dθ

cos2 θ − cos2 α
=

∫ π/2

0

sec2 θdθ

1 − cos2 α(1 + tan2 θ)

= − sec2 α

2 tan α

[
log
∣∣∣∣ tan θ − tan α

tan θ + tan α

∣∣∣∣]π/2

0

= 0. (82)

Result 2: Let

Ir =
∫ π/2

0

cos (2rθ)dθ

cos2 θ − cos2 α
, (r = 1, 2, 3, . . .). (83)

Now,

I1 =
∫ π/2

0

cos 2θdθ

cos2 θ − cos2 α

=
∫ π/2

0

2(cos2 θ − cos2 α) + (2 cos2 α − 1)

cos2 θ − cos2 α
dθ

= 2
∫ π/2

0
dθ + (2 cos2 α − 1)I0 = π , by using Equation 82.

So, I1 ≡ π sin 2α

sin 2α
. (84)

Again, we get

I2 =
∫ π/2

0

cos (4θ)dθ

cos2 θ − cos2 α

=
∫ π/2

0

8(cos2 θ − 1) cos2 θ

cos2 θ − cos2 α
dθ (by using I0 = 0)

= 4
∫ π/2

0
(cos 2θ + 1)dθ − 4 sin2 α

∫ π/2

0

cos 2θ + 1
cos2 θ − cos2 α

dθ

= 2π − 4 sin2 α(I1 + I0) = 2π cos 2α, (see Equations 82 and 84). (85)

So, we get

I2 = 2π cos 2α sin 2α

sin 2α
= π sin 4α

sin 2α
= π sin 2rα

sin 2α
, (r = 2). (86)

Now, let us assume that

Ir = π sin 2rα
sin 2α

, (r = 1, 2, . . .). (87)
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We have

Ir+1 =
∫ π/2

0

cos (2(r + 1)θ)dθ

cos2 θ − cos2 α

=cos(2α)Ir −
∫ π/2

0

{cos (r+1)θ+cos (r−1)θ}{cos (r−1)θ−cos (r+1)θ}
cos2 θ − cos2 α

dθ

= cos(2α)
π sin(2rα)

sin(2α)
−
∫ π/2

0

{cos2 (r − 1)θ − cos2 (r + 1)θ}
cos2 θ − cos2 α

dθ

= π
sin 2(r + 1)α

sin(2α)
− π cos(2rα) + 1

2
[Ir+1 − Ir−1]

⇒ 1
2

Ir+1 = π
sin 2(r + 1)α

sin(2α)
− π cos(2rα) − π

2
sin 2(r − 1)α

sin(2α)
, by Equation 87

= π

2
sin 2(r + 1)α

sin(2α)
. (88)

We then get

Ir+1 = π
sin 2(r + 1)α

sin(2α)
. (89)

Hence, the assumption in Equation 87 holds good for all r = 1, 2, . . ., by induction.
Thus, by using Equation 87, we get, from Equation 81,

g(cos2 α) = π

∞∑
r=1

a2r
sin 2rα
sin(2α)

. (90)

Hence, we obtain, by the Fourier series method,

πa2r = 4
π

∫ π/2

0
g(cos2 α) sin(2α) sin(2rα)dα. (91)

This, then, gives, from Equation 80,

2ψ(cos2 θ) sin θ cos θ = 1
2

a0+ 4
π2

∫ π/2

0
g(cos2 α) sin(2α)

( ∞∑
r=1

sin(2rα) cos(2rθ)

)
dα,

(92)[
Use:

∞∑
r=1

sin(2rα) cos(2rθ) = lim
R→1−0

∞∑
r=1

R2r sin(2rα) cos(2rθ)

]
.

Now, we have the following result (using a limiting procedure of the type explained
above):

∞∑
r=1

sin(2rα) cos(2rθ) = 1
2

∞∑
r=1

[sin 2r(α + θ) + sin 2r(α − θ)]

= 1
2

Im
[ ∞∑

r=1

(
e2ir(α+θ) + e2ir(α−θ)

)]

= 1
2

Im
[

1
1 − e2i(α+θ)

+ 1
1 − e2i(α−θ)

]
= 1

4
[cot(α + θ) + cot(α − θ)]

= sin(2α)

2{cos 2θ − cos 2α} = sin 2α

4(cos2 θ − cos2 α)
. (93)
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Thus, Equations 92 and 93 give

2ψ(cos2 θ) sin θ cos θ = 1
2

a0 + 4
π2

∫ π/2

0

g(cos2 α) sin2 α cos2 α

(cos2 θ − cos2 α)
dα. (94)

Hence, putting back (see Equation 78): u = cos2 θ , ξ = cos2 α, −dξ =
2 sin (α) cos (α)dα, α ∈ (0, π/2) ⇒ ξ ∈ (1, 0), we obtain, from Equation 94,

ψ(u) = c√
u(1 − u)

− 1
π2

1√
u(1 − u)

∫ 1

0

g(ξ)
√

ξ(1 − ξ)

(ξ − u)
dξ , (95)

where c = (1/4)a0 = an arbitrary constant.
Note that Equation 95 is the well-known form of the solution of the integral equation

(Equation 76), obtainable by using the theory of Riemann-Hilbert problems involving
functions of a complex variable.

Finally, substituting u = 1
2 (t+1), ξ = 1

2 (x+1), ψ(u) = φ(t), g(ξ) = f (x), [ u ∈ (0, 1) ⇒
t ∈ (−1, 1); ξ ∈ (0, 1) ⇒ x ∈ (−1, 1)], we obtain

φ(t) = c0√
1 − t2

− 1
π2

1√
1 − t2

∫ 1

−1

f (x)
√

1 − x2

x − t
dx, (96)

which is the well-known form of the solution of the given integral equation (Equation 74)
where c0 = 2c is an arbitrary constant.

Now, we consider the integral equation given by Equation 74 for its solution in the
interval (a, b). So, we have the following problem to solve:

Problem 2. Solve the singular integral equation∫ b

a

φ(t)dt
t − x

= f (x), a < x < b. (97)

Solution: Set

t = a+ (b−a)u, x = a+ (b−a)ξ [ t ∈ (a, b) ⇒ u ∈ (0, 1), x ∈ (a, b) ⇒ ξ ∈ (0, 1)] .

(98)

Get: t − x = (b − a)(u − ξ).
Hence, the given integral equation (Equation 97) becomes∫ 1

0

ψ(u)du
u − ξ

= g(ξ), (99)

where

ψ(u) = φ{a + (b − a)u}, g(ξ) = f {a + (b − a)ξ}. (100)

By the help of Equations 76 and 95, the solution of the integral equation (Equation 99) can
be written as

ψ(u) = c√
u(1 − u)

− 1
π2

1√
u(1 − u)

∫ 1

0

g(ξ)
√

ξ(1 − ξ)

(ξ − u)
dξ , (101)

where c = (1/4)a0 = an arbitrary constant.
Now, substituting, u = t−a

b−a , ξ = x−a
b−a , ψ(u) = φ(t), g(ξ) = f (x), [ u ∈ (0, 1) ⇒ t ∈

(a, b); ξ ∈ (0, 1) ⇒ x ∈ (a, b)], in Equation 101, we get

φ(t) = c0√
(t − a)(b − t)

− 1
π2

1√
(t − a)(b − t)

∫ b

a

f (x)
√

(x − a)(b − x)

(x − t)
dx, (102)
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which is the well-known form of the solution of the given integral equation (Equation 74),
where c0 = c(b − a) is an arbitrary constant.

Solution of a Cauchy-type singular integral equation of the first kind over an interval with a

gap

Here, we consider a Cauchy-type singular integral equation of the first kind over two
disjoint intervals (0, a)∪(b, c) and obtain its solution by real variable method. We also find,
here, its solution, applicable to the intervals (−1, −k) ∪ (k, 1) as considered by Tricomi
[13].

Problem: Solve the singular integral equation of the first kind, involving a finite interval
with a gap, as given by∫ a

0

φ(t)dt
t − x

+
∫ c

b

φ(t)dt
t − x

= f (x), x ∈ (0, a) ∪ (b, c). (103)

Solution: We shall use the known solution of the following singular integral equation:∫ 1

0

p(t)dt
t − x

= q(x), 0 < x < 1, (104)

which is given by

p(x) = c0√
x(1 − x)

− 1
π2√x(1 − x)

∫ 1

0

√
t(1 − t)q(t)dt

t − x
, 0 < x < 1, (105)

where c0 is an arbitrary constant.
Setting

cx = ξ , ct = τ , p(t) = ψ(τ), q(x) = g(ξ), (106)

we obtain, from Equations 104 and 106, that the solution of the singular integral equation∫ c

0

ψ(τ)dτ

τ − ξ
= g(ξ), 0 < ξ < c, (107)

is given by

ψ(ξ) = D0√
ξ(c − ξ)

− 1
π2√ξ(c − ξ)

∫ c

0

√
τ(c − τ)g(τ )dτ

τ − ξ
, (108)

where D0 is an arbitrary constant.
Now, we shall first solve the homogeneous integral equation (Equation 103) as follows:
Consider the homogeneous integral equation (Equation 103), as given by∫ a

0

φ0(t)dt
t − x

+
∫ c

b

φ0(t)dt
t − x

= 0, x ∈ (0, a) ∪ (b, c). (109)

Let us assume that there exist two functions: ψ0(t) and f0(x), such that

ψ0(t) =
{

φ0(t), for t ∈ (0, a) ∪ (b, c),
0, for t ∈ (a, b),

(110)

and

f0(x) =
{

0, for x ∈ (0, a) ∪ (b, c),
f̂0(x), for x ∈ (a, b),

(111)

where f̂0(x) is an unknown function.
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Then, using Equations 109, 110, and 111, we obtain an integral equation which is given
by ∫ c

0

ψ0(t)dt
t − x

= f0(x), for x ∈ (0, c), (112)

which possesses the solution (see Equations 107 and 108)

ψ0(x) = E0√
x(c − x)

− 1
π2√x(c − x)

∫ b

a

√
t(c − t)f̂0(t)dt

t − x
, 0 < x < c, (113)

where E0 is an arbitrary constant.
Now, ψ0(x) = 0, for x ∈ (a, b) (see Equation 110), gives an integral equation for the

unknown function f̂0(x), as given by (see Equation 113)∫ b

a

f̂0(t)
√

t(c − t)dt
t − x

= π2E0, x ∈ (a, b), (114)

with its solution, as given by the equation (see Equations 105 and 108)√
x(c − x)f̂0(x) = F0√

(b − x)(x − a)
− 1

π2√(b − x)(x − a)∫ b

a

√
(b − t)(t − a)

t − x
(π2E0)dt, a < x < b

= F0√
(b − x)(x − a)

− E0√
(b − x)(x − a)

×
[
−πPP

{
x
(

1 − a
x

)1/2
(

1 − b
x

)1/2
}]

(x large)
(see [2])

= G0 + H0x√
(b − x)(x − a)

, x ∈ (a, b), (115)

where G0 = F0 − π
2 E0(a + b), H0 = πE0.

Thus, using Equations 113 and 115, as well as Equation 110, we obtain the solution of
the homogeneous equation (Equation 109), as given by

φ0(x) = E0√
x(c − x)

− 1
π2√x(c − x)

∫ b

a

G0 + H0t√
(b − t)(t − a)(t − x)

dt, x ∈ (0, a)∪ (b, c).

(116)

Now, we can evaluate the integral in Equation 116 for x /∈ (a, b) (see [2]) and obtain

∫ b

a

(G0 + H0t)dt√
(b − t)(t − a)(t − x)

dt =

⎧⎪⎨⎪⎩
π
[ −(G0+H0x)√

(x−b)(x−a)
+ H0

]
, for x > b

π
[

(G0+H0x)√
(x−b)(x−a)

+ H0
]

, for x < a.
(117)

Hence, by using Equations 116 and 117, we obtain

φ0(x) =

⎧⎪⎨⎪⎩
E0√

x(c−x)
− 1

π
√

x(c−x)

[ −(G0+H0x)√
(x−b)(x−a)

+ H0
]

, for x > b

E0√
x(c−x)

− 1
π

√
x(c−x)

[
(G0+H0x)√
(x−b)(x−a)

+ H0
]

, for x < a.
(118)

⇒ φ0(x) = (Ĝ0 + Ĥ0x) Sgn (x − a)√
x(c − x)

√
(x − b)(x − a)

, for x ∈ (0, a) ∪ (b, c), (119)

which is the solution of the homogeneous equation (Equation 118), where Ĝ0 = G0
π

, Ĥ0 =
H0
π

, are two arbitrary constants.
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Now, we solve the inhomogeneous equation (Equation 103) (for a particular solution):
We define

ψ(x) =
{

φ(x), for x ∈ (0, a) ∪ (b, c),
0, for x ∈ (a, b),

(120)

and

h(x) =
{

f (x), for x ∈ (0, a) ∪ (b, c),
f̂ (x), for x ∈ (a, b),

(121)

where f̂ (x) is an unknown function.
Then, Equation 103 can be expressed as∫ c

0

ψ(t)dt
t − x

= h(x), for x ∈ (0, c), (122)

with the particular solution

ψ(x) = −1
π2√x(c − x)

∫ c

0

h(t)
√

t(c − t)
t − x

dt. (123)

Then, ψ(x) = 0, for x ∈ (a, b), gives the integral equation (see Equations 120, 121, and
123):∫ b

a

f̂ (t)
√

t(c − t)dt
t − x

= −
∫

(0,a)∪(b,c)

f (t)
√

t(c − t)dt
t − x

, for x ∈ (a, b). (124)

Now the singular integral equation (Equation 124) possesses the particular solution as
given by

f̂ (x)
√

x(c − x) = 1
π2√(b − x)(x − a)

∫ b

a

√
(b − τ)(τ − a)

τ − x

×
(∫

(0,a)∪(b,c)

f (t)
√

t(c − t)dt
t − τ

)
dτ , (for x ∈ (a, b))

= 1
π2√(b − x)(x − a)

[∫
(0,a)∪(b,c)

f (t)
√

t(c − t)dt
t − x

∫ b

a

√
(b − τ)(τ − a)

×
{

1
−(τ − t)

+ 1
τ − x

}
dτ

]
, (for x ∈ (a, b))

= 1
π2√(b − x)(x − a)

[∫
(0,a)∪(b,c)

f (t)
√

t(c − t)dt
t − x

{
−π

(
b + a

2
− t
)

− π
√

(t − b)(t − a) Sgn (t − a) + π

(
b + a

2
− x

)}]
(for x ∈ (a, b))

(see Equations 64, 68, and [2])

= 1
π

√
(b−x)(x−a)

[(∫ a

0
+
∫ c

b

)
f (t)

√
t(c−t)dt

+
(∫ a

0
−
∫ c

b

)
f (t)

√
t(c − t)(t−b)(t−a)

t−x
dt
]
(for x ∈ (a, b)). (125)
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Using Equation 121, Equation 123 can be written as

ψ(x) = −1
π2√x(c − x)

[(∫ a

0
+
∫ c

b

)
f (t)

√
t(c − t)

t − x
dt+

∫ b

a

f̂ (τ )
√

τ(c − τ)

τ − x
dτ

]
(126)

= −1
π2√x(c − x)

(∫ a

0
+
∫ c

b

)
f (t)

√
t(c − t)

t − x
dt − −1

π3√x(c − x)∫ b

a

dτ√
(b − τ)(τ − a)(τ − x)

[(∫ a

0
+
∫ c

b

)
f (t)

√
t(c − t)dt +

(∫ a

0
−
∫ c

b

)

× f (t)
√

t(c − t)(t − a)(t − b)dt
t − τ

]
,

x ∈ (0, a) ∪ (b, c) (by substitution of Equation 125),

= −1
π2√x(c − x)

(∫ a

0
+
∫ c

b

)
f (t)

√
t(c−t)

t−x
dt− M0

π3√x(c−x)

∫ b

a

dτ√
(b−τ)(τ −a)(τ −x)

− −1
π3√x(c − x)

[(∫ a

0
−
∫ c

b

)
f (t)

√
t(c − t)(t − a)(t − b)dt×

∫ b

a

dτ√
(b − τ)(τ − a) (t − x)

{
1

−(τ − t)
+ 1

(τ − x)

}]
, x ∈ (0, a) ∪ (b, c),

where M0 =
(∫ a

0
+
∫ c

b

)
f (t)

√
t(c − t)dt

= −1
π2√x(c − x)

(∫ a

0
+
∫ c

b

)
f (t)

√
t(c − t)

t − x
dt + M0 Sgn (x − a)

π2√x(c − x)(x − a)(x − b)

− 1
π3√x(c − x)

[(∫ a

0
−
∫ c

b

)
f (t)

√
t(c − t)(t − a)(t − b)dt

t − x

×
{

π Sgn (t − a)√
(t − b)(t − a)

− π Sgn (x − a)√
(x − b)(x − a)

}]
, x ∈ (0, a) ∪ (b, c),

(see Equations 69 and 73)

= −1
π2√x(c − x)

(∫ a

0
+
∫ c

b

)
f (t)

√
t(c − t)

t − x
dt + M0 Sgn (x − a)

π2√x(c − x)(x − a)(x − b)

+ 1
π2√x(c − x)

(∫ a

0
+
∫ c

b

)
f (t)

√
t(c − t)dt

t − x
+ 1

π2√x(c − x)

×
[(∫ a

0
−
∫ c

b

)
f (t)

√
t(c − t)(t − a)(t − b)dt√

(x − b)(x − a) (t − x)
Sgn (x − a)

]
, x ∈ (0, a) ∪ (b, c),

= M0 Sgn (x − a)

π2√x(c − x)(x − a)(x − b)
− 1

π2√x(c − x)

×
[(∫ a

0
+
∫ c

b

)
f (t)

√
t(c − t)(t − a)(t − b)√

(x − b)(x − a) (t − x)

Sgn(t − a)

Sgn (x − a)
dt
]

, x ∈ (0, a) ∪ (b, c).

(127)
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From the Equations 119 and 127, the general solution of the singular integral equation
(Equation 103) can be obtained as

⇒ φ(x) = (N0 + Ĥ0x) Sgn (x − a)√
x(c − x)

√
(x − b)(x − a)

− 1
π2√x(c − x)

[(∫ a

0
+
∫ c

b

)
f (t)

√
t(c − t)(t − a)(t − b)√

(x − b)(x − a) (t − x)

Sgn(t − a)

Sgn (x − a)
dt
]

, for x ∈ (0, a) ∪ (b, c),

(128)

where N0 = Ĝ0 + M0
π2 (note that N0 and Ĥ0 are two arbitrary constants).

Now, we set

t = a(τ + 1)

1 − k
, x = a(ξ + 1)

1 − k
, b = a(1 + k)

1 − k
, c = 2a

1 − k
, φ(x) = ψ(ξ), f (t) = g(τ )

(129)

and get (note that the integral equation (Equation 103) transforms to a new equation (see
[13]))

ψ(ξ) = (A + Bξ) Sgn (ξ)√
(1 − ξ2)(ξ2 − k2)

− 1
π2

[(∫ −k

−1
+
∫ 1

k

)
g(τ )

√
(1 − τ 2)(τ 2 − k2)√

(1 − ξ2)(ξ2 − k2) (τ − ξ)

Sgn(τ )

Sgn (ξ)
dτ

]
, (130)

which exactly matches with the result obtained by Tricomi [13], where A =
N0(1−k)2+Ĥ0a(1−k)

a2 , B = H0
a (1 − k) are two arbitrary constants.

Verification of the solutions for homogeneous Cauchy-type singular integral equation of

the first kind

In this section, we verify the solutions obtained in the ‘Solution of Cauchy-type singular
integral equations of the first kind over an interval with a gap’ section for the homo-
geneous equation involving a Cauchy-type singular integral associated with the disjoint
intervals (0, a) ∪ (b, c) and (−1, −k) ∪ (k, 1).

Problem 1. Prove that

φ(t) = (c1 + c2t) Sgn(t − a)√
t(t − a)(t − b)(c − t)

(131)

is a solution of the homogeneous integral equation∫ a

0

φ(t)dt
t − x

+
∫ c

b

φ(t)dt
t − x

= 0, x ∈ (0, a) ∪ (b, c). (132)

Solution: Substituting Equation 131 in the left-hand side of Equation 132, we get

I = −
∫ a

0

(c1 + c2t)√
t(a − t)(b − t)(c − t)

dt
t − x

+
∫ c

b

(c1 + c2t)√
t(a − t)(b − t)(c − t)

dt
t − x

. (133)

For evaluation of the integrals, we will consider two cases: Case I: x ∈ (0, a) and Case II:
x ∈ (b, c).

For t ∈ (0, a) ∪ (b, c), take

x =
⎧⎨⎩

a
1−k

(
1 −

√
k2 cos2 φ + sin2 φ

)
for the case x ∈ (0, a),

a
1−k

(
1 +

√
k2 cos2 φ + sin2 φ

)
for the case x ∈ (b, c),
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b = (1 + k)a
1 − k

, and c = 2a
1 − k

.

For x ∈ (0, a) ∪ (b, c), take

t =
⎧⎨⎩

a
1−k

(
1 −

√
k2 cos2 θ + sin2 θ

)
for t ∈ (0, a),

a
1−k

(
1 +

√
k2 cos2 θ + sin2 θ

)
for t ∈ (b, c).

Case I: When x ∈ (0, a)

I = (1 − k)2

a2

∫ π/2

0

1√
k2 cos2 θ + sin2 θ

⎡⎣ c1 + c2a
1−k

(
1 −

√
k2 cos2 θ + sin2 θ

)
√

k2 cos2 θ + sin2 θ −
√

k2 cos2 φ + sin2 φ

+
c1 + c2a

1−k

(
1 +

√
k2 cos2 θ + sin2 θ

)
√

k2 cos2 θ + sin2 θ +
√

k2 cos2 φ + sin2 φ

⎤⎦ dθ .

=
2(1 − k)2

{
c1 + c2a

1−k

(
1 −

√
k2 cos2 φ + sin2 φ

)}
a2∫ π/2

0

dθ

(k2 cos2 θ + sin2 θ) − (k2 cos2 φ + sin2 φ)

=
2(1 − k)2

{
c1 + c2a

1−k

(
1 −

√
k2 cos2 φ + sin2 φ

)}
a2{1 − (k2 cos2 φ + sin2 φ)}∫ π/2

0

d(tan θ)

tan2 θ − (k2 cos2 φ+sin2 φ)−k2

1−(k2 cos2 φ+sin2 φ)

= 0. (134)

Case II: When x ∈ (b, c)

I = (1 − k)2

a2

∫ π/2

0

1√
k2 cos2 θ + sin2 θ

[ c1 + c2a
1−k

(
1 −

√
k2 cos2 θ + sin2 θ

)
√

k2 cos2 θ + sin2 θ +
√

k2 cos2 φ + sin2 φ

+
c1 + c2a

1−k

(
1 +

√
k2 cos2 θ + sin2 θ

)
√

k2 cos2 θ + sin2 θ −
√

k2 cos2 φ + sin2 φ

]
dθ .

=
2(1 − k)2

{
c1 + c2a

1−k

(
1 −

√
k2 cos2 φ + sin2 φ

)}
a2∫ π/2

0

dθ

(k2 cos2 θ + sin2 θ) − (k2 cos2 φ + sin2 φ)
= 0. (135)

Hence, the problem gets solved. �

Problem 2. Prove that

φ(τ) = (A + Bτ) Sgn(τ )√
(1 − τ 2)(τ 2 − k2)

(136)

is a solution of the homogeneous integral equation∫ −k

−1

φ(τ)dτ

τ − ξ
+
∫ 1

k

φ(τ)dτ

τ − ξ
= 0, ξ ∈ (−1, −k) ∪ (k, 1). (137)
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Solution: Substituting Equation 136 in the left-hand side of equation 137, we get

I = −
∫ −k

−1

(A + Bτ)√
(1 − τ 2)(τ 2 − k2)

dτ

τ − ξ
+
∫ 1

k

(A + Bτ)√
(1 − τ 2)(τ 2 − k2)

dτ

τ − ξ

for ξ ∈ (−1, −k) ∪ (k, 1),

=
∫ 1

k

1√
(1 − τ 2)(τ 2 − k2)

[
(A − Bτ)

τ + ξ
+ (A + Bτ)

τ − ξ

]
dτ

= (A + Bξ)

∫ 1

k

2τdτ√
(1 − τ 2)(τ 2 − k2)(τ 2 − ξ2)

.

Putting τ 2 = u and ξ2 = v, we get

I = (A + B
√

v)
∫ 1

k2

du√
(1 − u)(u − k2)(u − v)

. (138)

Now, substituting u = k2 cos2 θ + sin2 θ , we get

I = 2(A + B
√

v)
∫ π/2

0

dθ

k2 cos2 θ + sin2 θ − v

= 2(A + B
√

v)
1 − v

∫ π/2

0

d(tan θ)

tan2 θ + k2−v
1−v

= 0. (139)

This solves the problem. �

Approximate solution of singular integral equations of the Cauchy type

Here, we find an approximate solution of singular integral equations of the Cauchy type,
involving the intervals (0,1), (−1, −k) ∪ (k, 1), and (0, a) ∪ (b, c).

Problem 1. Solve∫ 1

0

φ(t)dt
t − x

= f (x), x ∈ (0, 1). (140)

Solution: Let

φ(t) =

∞∑
n=0

antn

√
t(1 − t)

, f (x) =
∞∑

n=0
fnxn, (141)

where an(n = 0, 1, 2, . . .) and fn(n = 0, 1, 2, . . .) are real constants.
Substituting Equation 141 in Equation 140, we get

∞∑
n=0

an

(∫ 1

0

tn
√

t(1 − t)
dt

t − x

)
=

∞∑
n=0

fnxn,

⇒
∞∑

n=0
anπ PP

{
xn

√
x(x − 1)

}
x large

=
∞∑

n=0
fnxn (see [2]). (142)

For n=0,1,2,3, we obtain

π

[
a1 + a2(x + 1

2
) + a3(x2 + 1

2
x + 3

8
)

]
= f0 + f1x + f2x2 + f3x3. (143)
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Equating the coefficients of xn (n=0,1,2,3) from both sides, we get

x0 : a1 + a2
2

+ 3a3
8

= f0
π

, (144a)

x1 : a2 + a3
2

= f1
π

, (144b)

x2 : a3 = f2
π

, (144c)

x3 : f3 = 0. (144d)

Example: Let f (x) = 1 (i.e., f0 = 1, f1 = f2 = 0).

From Equations 144a to 144d, we obtain

a3 = 0, a2 = 0, and a1 = f0
π

= 1
π

. (145)

Hence,

φ(t) = a0 + 1
π

t√
t(1 − t)

, (146)

with a0 as an arbitrary constant.

A different approach

From Equations 97 and 102, the solution of Equation 140 can be written as

φ(t) = c0√
t(1 − t)

− 1
π2√t(1 − t)

∫ 1

0

√
x(1 − x)f (x)dx

x − t
, 0 < t < 1. (147)

For f (x) = 1,∫ 1

0

√
x(1 − x)

x − t
dx = −πPP

{√
t(t − 1)

}
t large

(see [2])

= −π

(
t − 1

2

)
. (148)

Substituting Equation 148 in Equation 147, we get

φ(t) = 1√
t(1 − t)

[
c0 + 1

π
(t − 1

2
)

]
= A0 + 1

π
t√

t(1 − t)
, (149)

which matches exactly with Equation 146, where A0 = c0 − 1
2π

is an arbitrary constant.

Problem 2. Find an approximate solution of the integral equation∫ −k

−1

φ(τ)dτ

τ − ξ
+
∫ 1

k

φ(τ)dτ

τ − ξ
= g(ξ), ξ ∈ (−1, −k) ∪ (k, 1). (150)

Solution: Assume

φ(τ) =

∞∑
n=0

anτn√
(1 − τ 2)(τ 2 − k2)

Sgn(τ ) (151)
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is a solution of the integral equation (Equation 150) and also assume that

g(ξ) =
∞∑

n=0
gnξn, (152)

where an(n = 0, 1, 2, . . .) and gn(n = 0, 1, 2, . . .) are real constants.
Substituting Equations 151 and 152 in Equation 150, we get

∫ 1

k

∞∑
n=0

an(−1)nτn√
(1 − τ 2)(τ 2 − k2)

dτ

τ + ξ
+
∫ 1

k

∞∑
n=0

anτn√
(1 − τ 2)(τ 2 − k2)

dτ

τ − ξ
=

∞∑
n=0

gnξn

⇒
∫ 1

k

1√
(1−τ 2)(τ 2−k2)

2τ

(τ 2−ξ2)

[ ∞∑
k=0

a2kτ
2k +ξ

∞∑
l=0

a2l+1τ
2l
]

dτ =
∞∑

n=0
gnξn.

(153)

Now, consider the left side (LS) of Equation 153 and take k, l=0,1 and τ 2 = u, ξ2 = v, and
obtain (see [2])

LS =
∫ 1

k

1√
(1 − u)(u − k2)(u − v)

(a0 + a1v1/2 + a2u + a3uv1/2)du

= π

⎡⎣(a0 + a1v1/2) PP
{

1√
(v − 1)(v − k2)

}
v large

+(a2 + a3v1/2) PP
{

v√
(v − 1)(v − k2)

}
v large

⎤⎦ (see [2])

= π
[
a2 + a3v1/2] = π [a2 + a3ξ ] . (154)

Then, from Equations 153 and 154, we get

π [ a2 + a3ξ ] = g0 + g1ξ + g2ξ
2 + g3ξ

3. (155)

Equating the coefficients of ξn(n = 0, 1, 2, 3), we obtain

ξ0 : a2 = g0
π

(156a)

ξ1 : a3 = g1
π

(156b)

ξ2 : g2 = 0; ξ3 : g3 = 0. (156c)

In particular, taking g(ξ) = 1 (i.e., g0 = 1, g1 = g2 = g3 = 0), we get

a2 = 1
π

, a3 = 0.

Hence,

φ(τ) = a0 + a1τ + 1
π
τ 2√

(1 − τ 2)(τ 2 − k2)
Sgn(τ ), (157)

is the special case g=1, where a0 and a1 are two arbitrary constants.

Matching with the closed form solution (Equation 130): Using Equation 130, the
solution of Equation 150 can be written as

φ(τ) = (A + Bτ) Sgn (τ )√
(1 − τ 2)(τ 2 − k2)

− Sgn (τ )

π2
√

(1 − τ 2)(τ 2 − k2)
× Q, (158)
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where

Q =
[(∫ −k

−1
+
∫ 1

k

)
g(ξ)

√
(1 − ξ2)(ξ2 − k2)

(ξ − τ)
Sgn(ξ)dξ

]
. (159)

Now Q can be written as

Q =
∫ 1

k

√
(1 − ξ2)(ξ2 − k2)

[
g(−ξ)

ξ + τ
+ g(ξ)

ξ − τ

]
dξ .

In particular, taking g(ξ) = 1 (g(−ξ) = 1)

Q =
∫ 1

k

√
(1 − ξ2)(ξ2 − k2)

2ξdξ

ξ2 − τ 2

=
∫ 1

k2

√
(1 − u)(u − k2)

du
u − v

(by substituting u = ξ2, v = τ 2)

= −π PP
{√

(v − 1)(v − k2)
}

v large
(see [2])

= −π

(
v − 1 + k2

2

)
= −π

(
τ 2 − 1 + k2

2

)
. (160)

From Equations 158 and 160, we then get

φ(τ) = Sgn (τ )√
(1 − τ 2)(τ 2 − k2)

[
(A + Bτ) + 1

π

(
τ 2 − 1 + k2

2

)]
=

(
A1 + Bτ + 1

π
τ 2) Sgn (τ )√

(1 − τ 2)(τ 2 − k2)
, (161)

which exactly matches with Equation 157, where A1 = A − 1+k2

2π
.

Note that A1 and B are two arbitrary constants.

We can also find an approximate solution for the non-homogeneous integral
equation (Equation 150) involving the disjoint intervals (0, a) ∪ (b, c): Substituting
τ = 1

a t(1 − k) − 1, b = a(1+k)
1−k , c = 2a

1−k , and φ(τ) = φ(t) in Equation 157, we get

φ(t) = a2(a0 − a1 + 1) + (aa1 − 2a)(1 − k)t + (1 − k)2t2

(1 − k)2√t(t − a)(t − b)(c − t)

= B1 + B2t + t2
√

t(t − a)(t − b)(c − t)
, (162)

where B1 = a2

(1−k)2 (a0 − a1 + 1) and B2 = aa1−2a
1−k are two arbitrary constants.

Solutions of Cauchy-type singular integral equations over semi-infinite and infinite

intervals

Here, we consider a Cauchy-type singular integral equation of the first kind in the inter-
vals (−∞, b), (a, ∞), and (−∞, ∞) and obtain the solutions by a limiting process applied
to the solutions of similar equations associated with finite intervals.

Problem 1. Solve the singular integral equation∫ b

−∞
φ(t)dt
t − x

= f (x), x ∈ (−∞, b). (163)
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Solution: We know that the general solution of the singular integral equation∫ b

a

φ(t)dt
t − x

= f (x), x ∈ (a, b), (164)

is given by

φ(x) = c0√
(x − a)(b − x)

− 1
π2√(x − a)(b − x)

∫ b

a

f (t)
√

(t − a)(b − t)
(t − x)

dt, (165)

where c0 is an arbitrary constant.
Taking limit as a → −∞, keeping x fixed, we get

φ(x) = c1√
b − x

− 1
π2

∫ b

−∞

√
b − t
b − x

f (t)dt
(t − x)

, (166)

which is the general solution of the integral equation (Equation 163), where c1 is an
arbitrary constant as given by c1 = lima→−∞ c0√

(x−a)
.

Problem 2. Solve the singular integral equation∫ ∞

a

φ(t)dt
t − x

= f (x), x ∈ (a, ∞). (167)

Solution: Taking limit as b → ∞, keeping x fixed, in Equation 165, we get

φ(x) = c2√
x − a

− 1
π2

∫ ∞

a

√
t − a
x − a

f (t)dt
(t − x)

, (168)

which is the general solution of the integral equation (Equation 167), where c2 is an
arbitrary constant as given by c2 = lim

b→∞
c0√
b−x .

Problem 3. Solve the singular integral equation∫ ∞

−∞
φ(t)dt
t − x

= f (x), x ∈ (−∞, ∞). (169)

Solution: We know that the general solution of the singular integral equation∫ a

−a

φ(t)dt
t − x

= f (x), x ∈ (−a, a), (170)

is given by

φ(x) = c3√
a2 − x2

− 1
π2

√
a2 − x2

∫ a

−a

f (t)
√

a2 − t2

t − x
dt, (171)

where c3 is an arbitrary constant.
Taking limit as a → ∞, keeping x fixed, we get

φ(x) = c4 − 1
π2

∫ ∞

−∞
f (t)dt
t − x

, (172)

where c4 = lima→∞ c3√
a2−x2 is an arbitrary constant.

Now, for consistency, we must have c4 = 0, since φ(x) must tend to 0 as x → ∞. Hence,
from Equation 172, we get

φ(x) = − 1
π2

∫ ∞

−∞
f (t)dt
t − x

, (173)

which is the general solution of the integral equation (Equation 169). Equations 169 and
173 exactly match with the results obtained in [14], known as Hilbert’s pair of formulae.
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Solution of Cauchy-type singular integral equations of the first kind over infinite intervals

with a gap

Here, we consider a Cauchy-type singular integral equation of the first kind over two dis-
joint intervals (−∞, b1) ∪ (c1, d1); (a1, b1) ∪ (c1, ∞); and (−∞, −k) ∪ (k, ∞) and obtain
its solution by limiting process applied to the known solution for equations involving two
disjoint finite intervals.

Problem 1. Solve the singular integral equation of the first kind, involving a semi-
infinite interval with a gap, as given by∫ b1

−∞
ψ(t)dt
t − x

+
∫ d1

c1

ψ(t)dt
t − x

= g(x), x ∈ (−∞, b1) ∪ (c1, d1). (174)

Solution: We know that the solution of the integral equation∫ a

0

φ(τ)dτ

τ − ξ
+
∫ c

b

φ(τ)dτ

τ − ξ
= f (ξ), ξ ∈ (0, a) ∪ (b, c). (175)

is given by

φ(ξ) = (N0 + H0ξ) Sgn (ξ − a)√
ξ(c − ξ)

√
(ξ − b)(ξ − a)

− 1
π2√ξ(c − ξ)

[(∫ a

0
+
∫ c

b

)
f (τ )

√
τ(c − τ)(τ − a)(τ − b)√

(ξ − b)(ξ − a) (τ − ξ)

Sgn(τ − a)

Sgn (ξ − a)
dτ

]
, for ξ ∈ (0, a) ∪ (b, c),

(176)

where N0 and H0 are two arbitrary constants.
Now, we put

τ = a(t − a1)

b1 − a1
, ξ = a(x − a1)

b1 − a1
, b= a(c1 − a1)

b1 − a1
, c= a(d1 − a1)

b1 − a1
, φ(ξ)=ψ(x), f (τ )=g(t)

(177)

in Equations 175 and 176 and find that the solution of the integral equation∫ b1

a1

ψ(t)dt
t − x

+
∫ d1

c1

ψ(t)dt
t − x

= g(x), x ∈ (a1, b1) ∪ (c1, d1) (178)

is given by

ψ(x) = (A + Bx) Sgn (x − b1)√
(x − a1)(d1 − x)(x − b1)(x − c1)

− 1
π2

[(∫ b1

a1
+
∫ d1

c1

)
√

(t − a1)(d1 − t)(t − b1)(t − c1)√
(x − a1)(d1 − x)(x − b1)(x − c1)

Sgn(t − b1)

Sgn (x − b1)

g(t)dt
(t − x)

]
,

for x ∈ (a1, b1) ∪ (c1, d1), (179)

where A =
[

N0(b1−a1)

a2 − H0a1
a

]
(b1 − a1) and B = H0(b1−a1)

a are arbitrary constants.
Then, taking limit as a1 → −∞, keeping x fixed, we get

ψ(x) = A1 Sgn (x − b1)√
(d1 − x)(x − b1)(x − c1)

− 1
π2

[(∫ b1

−∞
+
∫ d1

c1

)
√

(d1 − t)(t − b1)(t − c1)√
(d1 − x)(x − b1)(x − c1)

Sgn(t − b1)

Sgn (x − b1)

g(t)dt
(t − x)

]
,

for x ∈ (−∞, b1) ∪ (c1, d1), (180)
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which is the general solution of the integral equation (Equation 174), where
A1 = lim

a1→−∞
A√

x−a1
is an arbitrary constant.

Problem 2. Solve the singular integral equation of the first kind, involving a semi-
infinite interval with a gap, as given by∫ b1

a1

ψ(t)dt
t − x

+
∫ ∞

c1

ψ(t)dt
t − x

= g(x), x ∈ (a1, b1) ∪ (c1, ∞). (181)

Solution: Taking limit as d1 → ∞, keeping x fixed, in Equation 179, we obtain

ψ(x) = A2 Sgn (x − b1)√
(x − a1)(x − b1)(x − c1)

− 1
π2

[(∫ b1

a1
+
∫ ∞

c1

)
√

(t − a1)(t − b1)(t − c1)√
(x − a1)(x − b1)(x − c1)

Sgn(t − b1)

Sgn (x − b1)

g(t)dt
(t − x)

]
,

for x ∈ (a1, b1) ∪ (c1, ∞), (182)

which is the general solution of the integral equation (Equation 181), where
A2 = lim

d1→∞
A√

d1−x is an arbitrary constant.

Problem 3. Solve the singular integral equation of the first kind, involving an infinite
interval with a gap, as given by∫ −k

−∞
ψ(t)dt
t − x

+
∫ ∞

k

ψ(t)dt
t − x

= g(x), x ∈ (−∞, −k) ∪ (k, ∞). (183)

Solution: Taking limit as a1 → −∞, d1 → ∞, b1 → −k, and c1 → k, keeping x fixed,
in Equation 179, we obtain

ψ(x) = A3 Sgn (x + k)√
x2 − k2

− 1
π2

⎡⎣(∫ −k

−∞
+
∫ ∞

k

)√
t2 − k2

x2 − k2
g(t)

(t − x)

Sgn(t + k)

Sgn (x + k)
dt

⎤⎦ ,

for x ∈ (−∞, −k) ∪ (k, ∞),
(184)

which is the required solution of the integral equation (183), where A3 =
lim

a1→−∞
d1→+∞

A√
(x−a1)(d1−x)

is an arbitrary constant.

Conclusions
Methods involving evaluation of real improper integrals by the use of the ideas of the
theory of functions of real variables only are highlighted, and solutions of certain real
singular integral equations of the Cauchy type have been re-derived. Particular examples
have been worked out in detail, and the final results have been compared with the known
ones.

Methods
The principal methods used in the present work involve application of the theory of func-
tions of real variables only to analyze and solve singular integral equations involving real
valued functions everywhere. As a result, the presently developed methods are free from
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other complicated methods used earlier by various workers to determine the solutions of
such integral equations.

Endnotes
Methods of solution of singular integral equations involve, generally speaking, details of
complex function theory needing to analyze new types of boundary value problems of the
Riemann Hilbert type. In this paper, we have demonstrated, in a systematic manner, that if
our concern is to determine solutions of singular integral equations in which the unknown
function, the kernel, as well as the forcing term are all functions of real variables, then
methods based on the theory of functions of real variables only help in finding out the all
wanted real valued solution function. The methods developed in this paper replaces the
detailed use of complex function theory and the final forms of the solutions are expected
to be useful for direct application to practical problems.
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