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Abstract

Purpose: This paper investigates an analytical approximate solution of a fourth-order differential equation with
nonlinear boundary conditions modeling beams on elastic foundations using iterative reproducing kernel method.

Methods: The solution obtained using the method takes the form of a convergent series with easily computable
components. However, the reproducing kernel method can not be used directly to solve the problems since there is
no method of obtaining a reproducing kernel satisfying nonlinear boundary conditions. The aim of this paper is to fill
this gap.

Results: Several illustrative examples are given to demonstrate the effectiveness of the present method.

Conclusions: Results obtained using the scheme presented here show that the numerical scheme is very effective
and convenient for the beam equation with third-order nonlinear boundary conditions.

Keywords: Iterative reproducing kernel method; Beam equation; Fourth-order boundary value problem; Nonlinear
boundary conditions

Background
This paper discusses the analytical approximate solution
for fourth-order equations with nonlinear boundary con-
ditions involving third-order derivatives which appears
in the study of deformations of elastic beams on elastic
bearings:{

uiv(x) = h(x, u(x)), 0 ≤ x ≤ 1,
u(0) = 0, u′(0) = 0, u′′(1) = 0, u′′′(1) = g(u(1)),

(1.1)

where h ∈ C([ 0, 1]×R) and g ∈ C(R).
Existence and multiplicity results for this kind of prob-

lem were studied recently by Grossinho and coworker
[1-3]. However, it is very difficult to obtain its numerical
solution due to the appearance of third-order nonlinear
boundary conditions. Recently, Ma and Silva [4] proposed
an iterative method for solving Equation 1.1.
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In this paper, we will apply the iterative reproducing ker-
nel method (IRKM) presented by Geng and Cui [5,6] to
the beam equation (Equation 1.1).
Reproducing kernel theory has important application in

numerical analysis, differential equation, probability and
statistics, and so on [5-17]. Recently, using the RKM, the
authors discussed two-point boundary value problems
and periodic boundary value problems. For fourth-order
equations with nonlinear boundary conditions, however,
it can not be applied directly since there is no method
of obtaining a reproducing kernel satisfying nonlinear
boundary conditions. The aim of this paper is to fill
this gap. We will show how IRKM can be used to solve
Equation 1.1.
The rest of the paper is organized as follows: An

equivalent equation is obtained in the next section. The
IRKM is applied to the equivalent equation in the
‘IRKM for Equation 2.1’ section. The numerical exam-
ples are presented in the ‘Numerical experiments’ section.
The ‘Conclusions’ section ends this paper with a
brief conclusion.

© 2012 Geng; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.
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Table 1 Maximum absolute errors in Example 4.1

n EN EN EN EN

(method in [4];N=11) (method in [4];N=21) (PM;N=11) (PM;N=21)

1 1.3243×10−2 1.5197×10−2 1.1852×10−1 1.2798×10−1

2 3.6212×10−2 1.1493×10−2 2.7107×10−2 1.8765×10−2

3 3.3284×10−2 7.9974×10−3 8.9798×10−3 6.7401×10−4

4 3.3653×10−2 8.4501×10−3 1.1391×10−2 3.0623×10−3

5 3.3607×10−2 8.3914×10−3 1.1107×10−2 2.7495×10−3

PM, proposed method.

Results and discussion
Numerical experiments
In this section, two numerical examples are studied to
demonstrate the accuracy of the present method. The
examples are computed using Mathematica 5.0. Results
obtained by the present method are compared with those
by the method in [4] and show that the present method is
effective for the beam equation (Equation 1.1).

Example 4.1
We consider the problem (Equation 1.1) with

h(x, u) = 24
61

(
183x2 − 116x − 2

)
,

g(u) = 24 sinu
61 sin(48/61)

.

The exact solution is given by u(x) = x6
5 − 116x5

305 − 2x4
61 +x.

Using the present method, choosing initial approximation
u0(x) = 0 and taking n = 1, 2, 3, 4, 5; N = 11, 21; and
xi = i−1

N−1 , where i = 1, 2, · · · ,N , the maximum absolute
errors EN= sup

0≤x≤1
| uNn (x)−u(x) | between the approximate

solution and the exact solution are given in Table 1.

Example 4.2
We consider the problem (Equation 1.1) with

h(x, u) = u2 − x10 + 4x9 − 4x8 − 4x7 + 8x6 − 4x4

+ 120x − 48, g(u) = 12u.

The exact solution is given by u(x) = x5 − 2x4 + 2x2.
Using the present method, choosing initial approximation

u0(x) = 0 and taking n = 1, 2, 3, 4, 5; N = 11, 21; and
xi = i−1

N−1 , where i = 1, 2, · · · ,N , the maximum absolute
errorsEN= sup

0≤x≤1
| uNn (x)−u(x) | between the approximate

solution and the exact solution are given in Table 2.

Conclusions
In this paper, we apply IRKM to fourth-order boundary
value problems with nonlinear boundary conditions aris-
ing in the study of deformations of elastic beams on
elastic bearings and obtain approximate solutions with a
high degree of accuracy. Results of numerical experiments
show that IRKM is an accurate and reliable analytical tech-
nique for this class of fourth-order boundary value prob-
lems with a third-order nonlinear boundary condition.

Methods
The equivalent equation of 1.1
Equation 1.1 can not be solved directly using IRKM since
it is impossible to obtain a reproducing kernel satisfying
nonlinear boundary conditions of Equation 1.1. So, we
will make great efforts to convert Equation 1.1 into an
equivalent equation, which is easily solved using IRKM.
Integrating both sides of Equation 1.1 from 1 to x and

substituting u′′′(1) = g(u(1)) leads to:

{
u′′′(x) = f (x, u), 0 ≤ x ≤ 1,
u(0) = 0, u′(0) = 0, u′′(1) = 0,

(2.1)

where f (x, u) = ∫ x
1 h(s, u)ds + g(u(1)).

Table 2 Maximum absolute errors in Example 4.2

n EN EN EN EN

(method in [4];N=11) (method in [4];N=21) (PM;N=11) (PM;N=21)

1 1.6881×10−2 4.9903×10−3 2.0228×10−2 1.5271×10−2

2 1.2110×10−2 2.8544×10−3 7.2134×10−3 2.0815×10−3

3 1.3148×10−2 3.3199×10−3 6.8622×10−3 1.7228×10−3

4 1.2922×10−2 3.2181×10−3 6.8527×10−3 1.7130×10−3

5 1.2971×10−2 3.2404×10−3 6.8524×10−3 1.7128×10−3

PM, proposed method.
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Obviously, Equations 1.1 and 2.1 are equivalent. There-
fore, it suffices for us to solve Equation 2.1.

IRKM for Equation 2.1
Equation 2.1 can be solved using IRKM presented byGeng
[5]. In order to apply IRKM, first, we construct a reproduc-
ing kernel spaceW 4

2 [ 0, 1] in which every function satisfies
the boundary conditions of Equation 2.1.
Reproducing kernel Hilbert spaceW 4

2 [ 0, 1] is defined as
W 4

2 [ 0, 1]= {u(x) | u(x), u′(x), u′′(x), u′′′(x) are absolutely
continuous real value functions, u′′′′(x) ∈ L2[ 0, 1] , u(0)=
0, u′(0) = 0, u′′(1) = 0}. The inner product and norm in
W 4

2 [ 0, 1] are given, respectively, by

(u(y), v(y))W4
2

= u(0)v(0)+ u(1)v(1)+ u′(0)v′(0)

+ u′(1)v′(1)+
∫ 1

0
u′′′′v′′′′dy

and

‖ u ‖W4=
√
(u, u)W4 , u, v ∈ W 4[ 0, 1] .

According to [5-7], it is easy to obtain its reproducing
kernel

k(x, y) =
{
k1(x, y), y ≤ x,
k1(y, x), y > x,

(3.1)

where k1(x, y) = 1
330281280y2(−3(3x7 − 7x6 + 3381x3 −

10101x2 +21844)y5 +7x(3x6 −7x5 +25225x2 −75633x+
65532)y4−7x2(1449x5−25225x4+327660x2−4308545x+
11307621)y + 21x2(1443x5 − 25211x4 + 65532x3 −
3769207x + 11000163)).
In Equation 2.1, put Lu(x) = u′′′(x), it is clear that

L : W 4
2 [ 0, 1]→ W 1

2 [ 0, 1] is a bounded linear operator. Put
ϕi(x) = k(xi, x) and ψi(x) = L∗ϕi(x), where k(xi, x) is
the RK of W 1

2 [ 0, 1] and L∗ is the adjoint operator of L.
The orthonormal system {ψ i(x)}∞i=1 of W 4

2 [ 0, 1] can be
derived from the Gram-Schmidt orthogonalization pro-
cess of {ψi(x)}∞i=1,

ψ i(x) =
i∑

k=1
βikψk(x), (βii > 0, i = 1, 2, . . .). (3.2)

Through the RKM presented in [5-7], we have the follow-
ing theorems:

Theorem 3.1. For Equation 2.1, if {xi}∞i=1 is dense on
[ 0, 1], then {ψi(x)}∞i=1 is the complete system of W 4

2 [ 0, 1]
and ψi(x) = Lykα(x, y)|y=xi .

Theorem 3.2. If {xi}∞i=1 is dense on [ 0, 1] and the solution
of Equation 2.1 is unique, then the solution of Equation 2.1
satisfies the form

u(x) = L−1f (x, u(x)) =
∞∑
i=1

i∑
k=1

βikf (xk , u(xk))ψ i(x).

(3.3)

Remark:
Case (1): Equation 2.1 is linear, that is, f (x, u(x)) = f (x).
Then, the analytical solution to Equation 2.1 can be
obtained directly from Equation 3.3.
Case (2): Equation 2.1 is nonlinear. In this case, the
approximate solution to Equation 2.1 can be obtained
using the following method.

According to Equation 3.3, we construct the following
iteration formula:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u0(x) = 0,
un+1(x) = L−1f (x, un(x))

=
∞∑
i=1

i∑
k=1

βik f (xk , un(xk))ψ i(x),

n = 0, 1, · · · .

(3.4)

For the proof of convergence of the iterative formula
(Equation 3.4), see [5].

Remark: In the iteration process of Equation 3.4, we can
guarantee that the approximationun(t) always satisfies the
boundary conditions of Equation 2.1.
Now, the approximate solution uNn (x) can be obtained

by finitely taking many terms in the series representation
of un(x) and

uNn (x) =
N∑
i=1

i∑
k=1

βik f (xk , un−1(xk), u′
n−1(xk))ψ i(x).

(3.5)
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