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Lie symmetry analysis of the two-dimensional
generalized Kuramoto-Sivashinsky equation
Mehdi Nadjafikhah1* and Fatemeh Ahangari2

Abstract

Purpose: In this paper, a detailed analysis of an important nonlinear model system, the two dimensional generalized
Kuramoto-Sivashinsky (2D gKS) equation, is presented by group analysis.

Methods: The basic Lie symmetry method is applied in order to determine the general symmetry group of our
analyzed nonlinear model.

Results: The symmetry group of the equation and some results related to the algebraic structure of the Lie algebra of
symmetries are obtained. Also, a complete classification of the subalgebras of the symmetry algebra is resulted.

Conclusions: It is proved that the Lie algebra of symmetries admits no three dimensional subalgebra. Mainly, all the
group invariant solutions and the similarity reduced equations associated to the infinitesimal symmetries are obtained.

Keywords: Two dimensional generalized Kuramoto-Sivanshsky (2D gKS) equation, Lie symmetry method, Invariant
solutions, Optimal system, Similarity reduced equations

Background
The idea of studying the differential equations by applying
the transformation groups implied a new theory: the sym-
metry group theory, which is due to Sophus Lie [1]. This
method, the so called classical Lie method of infinitesimal
transformations, has been applied last year to impor-
tant partial differential equations (PDEs) which arise from
mathematics and physics. Indeed, the symmetry group
of a PDEs system can be regarded as the largest (con-
nected) local Lie group of transformations acting on the
space of the independent and dependent variables of the
system, with an important property of conserving the set
of solutions. This group in the Lie’s theory is consists of
geometric transformations which act on the set of solu-
tions by transforming their graphs. A lot of properties
both of the system and their solutions can be implied
from the knowledge of the symmetry group. Determining
the group invariant solutions, construction of new solu-
tions for the system from the known ones, classification
of the group invariant solutions, reduction of the order
of ordinary differential equations, detection of linearizing
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transformations, and mapping solutions to other solu-
tions are the other important applications of Lie groups
in the theory of differential equations. For many other
applications of Lie symmetries refer to [2-5].

In this paper, we analyze the problem of symmetries of
the two-dimensional generalized Kuramoto-Sivashinsky
(2D gKS) equation:

∂H
∂t

−c
∂H
∂x

+4H
∂H
∂x

+ ∂2H
∂x2 +δ

∂

∂x
∇2H+∇4H = 0. (1)

where ∇2 ≡ ∂2

∂x2 + ∂2

∂z2 is the Laplacian in two dimensions
and already transformed with x −→ x − ct to a coordi-
nate system with constant speed c, x, and z are streamwise
and spanwise surface coordinates, respectively, and H =
H(x, z, t) denotes the local film thickness [6].

In the work of Toh et al. [7], the original equation
was presented as a model system to study the pattern
formation in nonlinear systems with dispersion and dis-
sipation. More generally, in the strongly dispersive limit,
Equation (1) describes a variety of physical phenom-
ena that involve localized structures in two dimensions
including Rossby waves, solitary vortices in plasma, mag-
mons in magma segregation in earth’s mantle, and local-
ized rolls in nematic crystals (see [6] and the references
therein). In the context of thin liquid films, the 2D gKS
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equation has been derived by Frenkel and Indireshkumar
[8] for a film falling down a vertical plane assuming strong
face tension and near critical conditions. However, for
the same problem, different limits of Equation (1) were
obtained in [9-11].

The structure of the present paper is as follows: In
section 2, using the basic Lie symmetry method, the most
general Lie point symmetry group of the 2D gKS equation
is determined. In section 3, some results obtained from
the algebraic structure of the Lie algebra of symmetries are
given. Section 4 is devoted to obtaining the one-parameter
subgroups and the most general group-invariant solutions
of 2D gKS equation. In section 5, the classification of the
subalgebras of the 2D gKS equation symmetry Lie alge-
bra is presented. In section 6, the Lie invariants and the
similarity solutions of the analyzed model are computed,
and its reduced form corresponding to the infinitesimal
symmetries are determined. Some concluding remarks are
mentioned at the end of the paper.

Lie symmetries of the 2D gKS equation
In this section, we will perform the Lie group method for
Equation (1). Firstly, let us consider a one-parameter Lie
group of infinitesimal transformation:

x̄ = x + εξ1(x, z, t, H) + O(ε2),
z̄ = t + εξ2(x, z, t, H) + O(ε2),
t̄ = t + εξ3(x, z, t, H) + O(ε2),

H̄ = H + εη(x, z, t, H) + O(ε2),

with a small parameter ε << 1. The symmetry generator
associated with the above group of transformations can be
written as:

V = ξ1(x, z, t, H)
∂

∂x
+ ξ2(x, z, t, H)

∂

∂z

+ ξ3(x, z, t, H)
∂

∂t
+ η(x, z, t, H)

∂

∂H
.

(2)

The fourth prolongation of V is the vector field

V(4) = V + ηx ∂

∂Hx
+ ηz ∂

∂Hz
+ ηt ∂

∂Ht
+ η2x ∂

∂H2x

+ ηxz ∂

∂Hxz
+ ηxt ∂

∂Hxt
+ η2z ∂

∂H2z

+ ηzt ∂

∂Hzt
+ η2t ∂

∂H2t
+ η3x ∂

∂H3x
+ ...

+ η4x ∂

∂H4x
+ η4z ∂

∂H4z
+ ...

(3)

with coefficients

ηJ = DJ (η −
3∑

i=1
ξ iHα

i ) +
3∑

i=1
ξ iHJ ,i , (4)

where J = (i1, ..., ik), 1 ≤ ik ≤ 3, 1 ≤ k ≤ 4, and the sum
is over all J ′s of order 0 < #J ≤ 4.

By theorem (6.5) in the work of Olver [12], the invari-
ance condition for the 2D gKS equation is given by the
relation:

V(4)[Ht − cHx + 4HHx + Hxx + δ(H3x + H(2x)z)

+ H4x + 2H(2x)(2z) + H4z] = 0
(5)

The invariance condition in Equation (5) is equivalent
with the following equation:

ηt − cηx + 4ηηx + ηxx + δ(η3x + η(2x)z)

+ η4x + 2η(2x)(2z) + η4z = 0
(6)

In substituting Equation (4) into invariance condition
in Equation (6), we are left with a polynomial equation
involving the various derivatives of H(x, z, and t) whose
coefficients are certain derivatives of ξ1, ξ2, ξ3, and η.
Since ξ1, ξ2, ξ3, and η depend only on x, z, t, and H , we
can equate the individual coefficients to zero, leading to
the complete set of determining equations:

ξ1
H =0, ξ1

x =0, ξ1
z =0, ξ1

2t =0
ξ2

t =0, ξ2
H =0, ξ2

x =0, ξ2
y =0

ξ3
t =0, ξ3

H =0, ξ3
x =0, ξ3

y =0, η − 1
4
ξ1

t =0.

By solving this system of PDEs, we find that:

Theorem 2.1. The Lie group of point symmetries of the
2D gKS equation has a Lie algebra generated by the vector
fields V = ξ1 ∂

∂x + ξ2 ∂
∂z + ξ3 ∂

∂t + η ∂
∂H , where

ξ1(x, z, t, H) = c1t + c2, ξ2(x, z, t, H) = c4,

ξ3(x, z, t, H) = c3, η(x, z, t, H) = 1
4

c1.

and ci, i = 1, ..., 4 are arbitrary constants.

Corollary 2.2. The infinitesimal generators of every one-
parameter Lie group of point symmetries of the 2D gKS
equation are:

V1 = ∂

∂x
, V2 = ∂

∂z
, V3 = ∂

∂t
, V4 = t

∂

∂x
+ 1

4
∂

∂H
.

The commutator table of symmetry generators of the 2D
gKS equation is given in Table 1, where the entry in the
ith row and jth column is defined as [ Vi, Vj] = ViVj −
VjVi, i, j = 1, ..., 4.

The structure of the Lie algebra of symmetries
In this part, we determine the structure of symmetry Lie
algebra of the 2D gKS equation. The g has no non-trivial
Levi decomposition in the form g = r × g1, because g has
no any non-trivial radical, i.e., if r be the radical of g, then
g = r. The Lie algebra g is solvable and non-semisimple.
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Table 1 Commutation relations satisfied by infinitesimal
generators

[ , ] V1 V2 V3 V4

V1 0 0 0 0

V2 0 0 0 0

V3 0 0 0 V1

V4 0 0 −V1 0

It is solvable, because if g(1) =< Vi, [ Vi, Vj] >=[ g, g],
we have:

g(1) =[ g, g] =< V1 >,

and

g(2) =[ g(1), g(1)] = 0.

Thus, we have the following chain of ideals g(1) ⊃ g(2) =
{0}. Also, g is not semisimple because its killing form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

is degenerated. Taking into account the table of commu-
tators, g has two abelians, and four and two dimensional
subalgebras which are spanned by < V1, V2, V3 > and
< V4 >, respectively, such that the first one is an ideal in g.

Symmetry transformations and group invariant
solutions of 2D gKS equation
The Equation (1) can be regarded as a submanifold of
the jet space J4(R3, R). Thus, in order to obtain the group
transformation which is generated by the infinitesimal
generators Xi = ξ1

i ∂x + ξ2
i ∂z + ξ3

i ∂t + ηi∂H for i =
1, ..., 4, it is necessary to solve the following four systems
of differential equations:

dx̄(ε)
dε

=ξ1
i (x̄(ε), z̄(ε), t̄(ε), H̄(ε)), x̄(0)=x,

dz̄(ε)
dε

=ξ2
i (x̄(ε), z̄(ε), t̄(ε), H̄(ε)), z̄(0)=z, (7)

dt̄(ε)
dε

=ξ3
i (x̄(ε), z̄(ε), t̄(ε), H̄(ε)), t̄(0)= t, (8)

dH̄(ε)
dε

=ηi(x̄(ε), z̄(ε), t̄(ε), H̄(ε)), H̄(0)=H , i = 1, ..., 7.

Exponentiating the infinitesimal symmetries of
Equation (1), the one-parameter groups Gk(ε) generated
by Vk for k = 1, ..., 4, are determined as follows.

Theorem 4.1. The one-parameter groups Gi(ε) generated
by the Vi, i = 1, ..., 4, are given in the following:

G1(ε) : (x, z, t, H) �−→ (x + ε, z, t, H),

G2(ε) : (x, z, t, H) �−→ (x, z + ε, t, H),

G3(ε) : (x, z, t, H) �−→ (x, z, t + ε, H),

G4(ε) : (x, z, t, H) �−→ (x + εt, z, t, H + 1
4
ε).

where entries give the transformed point exp(εVi)(x, z,
t, H) = (x̄, z̄, t̄, H̄).

Recall that generally, to each one-parameter subgroups
of the full symmetry group of a system, there will cor-
respond a family of solutions called invariant solutions.
Consequently, we can state the following theorem:

Theorem 4.2. If H = f (x, z, t) is a solution of Equation
(1), so are the functions

H1 = G1(ε).f (x, z, t) = f (x + ε, z, t), (9)

H2 = G2(ε).f (x, z, t) = f (x, z + ε, t),

H3 = G3(ε).f (x, z, t) = f (x, z, t + ε),

H4 = G4(ε).f (x, z, t) = f (x + εt, z, t) − 1
4
ε.

Now, the general group of symmetries can be obtained
by considering a general linear combination κ1V1 + · · · +
κ7V4 of the given vector fields. Particularly, if G is the
action of the symmetry group near identity, it can be
represented in the form G = exp(ε4V4)o · · · o exp(ε1V1).
Consequently, from the above theorem it is deduced that:

Corollary 4.3. For the arbitrary combination of infinites-
imal symmetry generators of the form V = ∑4

i=1 Vi ∈ g,
the 2D gKS equation has the following solution

H = f (x + ε4t + ε1, z + ε2, t + ε3) − 1
4
ε4.

where εi, i = 1 · · · 4 are arbitrary real numbers.

Classification of subalgebras for the 2D gKS
equation
The main motivation for computing the symmetries of
a differential equation is the search for the so called
invariant solutions. It is well known that the problem of
classifying invariant solutions is equivalent to the prob-
lem of classifying the subgroups of the full symmetry
group under conjugation. Let H and H̃ be connected,
s−dimensional Lie subgroups of the Lie group G with cor-
responding Lie subalgebras h and h̃ of the Lie algebra g of
G. Then H̃ = gHg−1 are conjugate subgroups if and only
h̃ = Ad(g)·h are conjugate subalgebras. Thus, the problem
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of finding an optimal system of subgroups is equivalent
to that of finding an optimal system of subalgebras, and
thus, we concentrate on it [5,13]. The latter problem tends
to determine a list of conjugacy inequivalent subalgebras
with the property that any other subalgebra is equivalent
to a unique member of the list under some element of the
adjoint representation for some element of a considered
Lie group.

Optimal system of one-dimensional subalgebras of the 2D
gKS equation
In fact, for one-dimensional subalgebras, the classifica-
tion problem is essentially the same as the problem of
classifying the orbits of the adjoint representation. If we
take only one representative from each family of equiva-
lent subalgebras, an optimal set of subalgebras is created.
The corresponding set of invariant solutions is then the
minimal list from which we can get all other invari-
ant solutions of one-dimensional subalgebras simply via
transformations.

Each Vi, i = 1, ..., 4, of the basis symmetries gener-
ates an adjoint representation (or interior automorphism)
Ad(exp(εVi)) defined by the Lie series

Ad(exp(ε.Vi).Vj) = Vj − ε.[ Vi, Vj]

+ ε2

2
.[ Vi, [ Vi, Vj] ] − · · ·

(10)

where [ Vi, Vj] is the commutator for the Lie algebra, ε is
a parameter, and i, j = 1, · · · , 4 ([5]). In Table 2, all the
adjoints are representations of the 2D gKS Lie group, with
the (i, j) entry indicating Ad(exp(εVi))Vj. Therefore, we
can state the following theorem:

Theorem 5.1. An optimal system of one-dimensional sub-
algebras of the 2D gKS equation Lie algebra g is given
by

(1) : V 1 : = V1 + aV2 = ∂

∂x
+ a

∂

∂z
,

(2) : V 2 : = aV2 + bV3 + cV4

= ct
∂

∂x
+ a

∂

∂z
+ b

∂

∂t
+ c

1
4

∂

∂H
.

where a, b, c ∈ R.

Table 2 Adjoint representation generated by the basis
symmetries of the 2D gKS Lie algebra

Ad V1 V2 V3 V4

V1 V1 V2 V3 V4

V2 V1 V2 V3 V4

V3 V1 V2 V3 V4 − εV1

V4 V1 V2 V3 + εV1 V4

Proof. Fs
i : g → g defined by V �→ Ad(exp(siVi).V ) is

a linear map, for i = 1, · · · , 4. The matrix Ms
i of Fs

i with
respect to basis {V1, · · · , V7} is,

Ms
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Ms
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Ms
3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 1 0 0

0 0 1 0

−s 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Ms
4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

s 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)

respectively. Let V = ∑4
i=1 aiVi, then

Fs4
4 ◦ Fs3

3 ◦ · · · ◦ Fs1
1 : V �→ (12)

a1V1 + a2V2 + (a3 + s4a1)V3 + (a4 − s3a1)V4.

Now, we can simplify V as follows:

Case (1): If a1 �= 0, then we act on V by Ad(exp(− a3
a1

)V4)),
and hence, we can make the coefficient of V3 vanish. Then,
we tend to the new form

V ′ = a1V1 + a2V2 + a4V4.

By acting Ad(exp( a4
a1

)V3)) on V ′, we can make the coef-
ficient of V4 vanish, so we obtain:

V ′′ = a1V1 + a2V2.

At this stage, by acting adjoint representations Ms
i (ai)

on V ′′, we find that no more simplification of V ′′ is pos-
sible. Thus, each of a1 and a2 are arbitrary. By scaling if
necessary, we can assume that a1 = 1. This assumption
suggests Case (1).

Case (2): If a1 = 0, no further simplification is possible,
and then V is reduced to Case (2).

There are no more possible cases for investigation, and
the proof is complete. �

Two-dimensional optimal system
The next step is constructing the two-dimensional opti-
mal system, i.e., the classification of two-dimensional sub-
algebras of g. This process is performed by selecting one
of the vector fields as stated in theorem (5.1). Let us
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consider V 1 (or V 2). Corresponding to it, a vector field
V = a1V1 + · · · + a4V4, where ai’s are smooth functions
of (x, z, t, and H) is chosen, so we must have:

[ V 1, V ] = λV1 + μV . (13)

Equation (13) leads us to the system

Ci
jkαjak = λai + μαi (i = 1, · · · , 7). (14)

The solutions of Equation (14) give one of the two-
dimensional generator, and the second generator is
V 1 ors V 2 if selected. After the construction of all
two-dimensional subalgebras, for every vector fields of
theorem 6, they need to be simplified by the action of
adjoint matrices (5.11) in the manner analogous to the way
of one-dimensional optimal system. Hence, we can state
the following theorem:

Theorem 5.2. An optimal system of two-dimensional Lie
algebra of 2D gKS equation is provided by those generated
by

(1) : < β1V1 + β2V2, β3V3 + β4V4 >

(2) : < V1, β2V2 + β3V3 > .
(15)

where βi , i = 1, ..., 4, are arbitrary real numbers, and all of
these subalgebras are abelian.

Three-dimensional optimal system
This system can be developed by the method of the expan-
sion of the two-dimensional optimal system. For this, we
take any of the two-dimensional subalgebras in Equation
(15); let us consider the first two vector fields of Equation
(15) and call them Y1 and Y2; thus, we have a subalge-
bra with basis {Y1, Y2}; and we should find a vector field
Y = a1V1 + · · · + a4V4, where ai’s are smooth func-
tions of (x, z, t, and H), such that the triple {Y1, Y2, and Y }
generates a basis of a three-dimensional algebra. For this
purpose, it is necessary and sufficient that the vector field
Y satisfies the following equations:

[ Y1, Y ] = λ1Y + μ1Y1 + ν1Y2,

[ Y2, Y ] = λ2Y + μ2Y1 + ν2Y2,
(16)

and following from Equation (16), we obtain the system

Ci
jkβ

j
rak = λ1ai + μ1β

i
r + ν1β

i
s ,

Ci
jkβ

j
sak = λ2ai + μ2β

i
r + ν2β

i
s .

(17)

The solutions of Equation (17) is linearly independent
of {Y1, Y2} and give a three-dimensional subalgebra. This
process is used for another two couples of vector fields in
Equation (15).

Assume that g̃ = SpanR{Y1, Y2, Y } be a three-
dimensional Lie subalgebra of g, by performing the above
procedure for all two couples of vector fields in Equation
(15); hence, it is concluded that Y = β1Y1 + β2Y2. By a
suitable change of the bases for g̃, we can assume that
Y = 0 so that g̃ is not a three-dimensional subalgebra.
Thus, we infer that:

Corollary 5.3. The 2D gKS equation Lie algebra g admits
no three-dimensional Lie subalgebra.

Similarity reduction of (2D)(KS) equation
The 2D gKS Equation (1) is expressed in the coordi-
nates (x, z, t, and H), so we should search for the form of
this equation in specific coordinates in order to reduce
it. The coordinates will be constructed by looking for
independent invariants (p, q, and r) corresponding to the
infinitesimal symmetry generators. Hence, by applying the
chain rule, the expression of the equation in the new
coordinate leads to the reduced equation. We can now
compute the invariants associated with the symmetry
operators. They can be obtained by integrating the char-
acteristic equations. For example for the operator, U9 :=
V2 + V3 + V4 = t∂x + ∂z + ∂t + 1

4
H ,

this means:

dx
t

= dz
1

= dt
1

= 4 dH
1

(18)

The corresponding invariants are as follows:

p = t2 − 2x, q = z − t, r = H − 1
4t

. (19)

Taking into account the last invariant, we assume a
similarity solution of the form:

H = f (p, q) + 1
4t

. (20)

and we substitute it into (1) to determine the form of the
function f (p, q): We obtain that f (p, q) has to be a solution
of the following differential equation:

− 4fq + 8cfp − 32ffp + 16fpp − 32δfppp − 8δfpqq

+ 64fpppp + 32fppqq + 4fqqqq + 1 = 0 (21)

Having determined the infinitesimals, the Lie invariants
and similarity solutions pj, qj, rj, and Hj are listed in
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Table 3 Lie invariants and similarity solutions

J Uj pj qj rj Hj

1 V1 z t H f (p, q)

2 V2 x t H f (p, q)

3 V3 x z H f (p, q)

4 V4 z t H − x

4t
f (p, q) + x

4t
5 V1 + V2 z − x t H f (p, q)

6 V2 + V3 x t − z H f (p, q)

7 V2 + V4 t z − x

t
H − x

4t
f (p, q) + x

4t
8 V3 + V4 z t2 − 2x H − 1

4t
f (p, q) + 1

4t
9 V2 + V3 + V4 t2 − 2x z − t H − 1

4t
f (p, q) + 1

4t

Table 4 Reduced equations corresponding to infinitesimal
symmetries

J Similarity Reduced Equations

1 fq + fpppp = 0

2 fq − cfp + 4ffp + fpp + δfppp + fpppp = 0

3 fpppp + fqqqq + 2fppqq + δfppp + δfpqq

+fpp + 4ffp − cfp = 0

4 4qfpppp + 4qfq + 4f − c = 0

5 4fpppp − 2δfppp + fpp − 4ffp + cfp + fq = 0

6 fpppp + 2fppqq + fqqqq + δfppp + δfpqq

+fpp + 4ffp − cf − p + fq = 0

7 4p4fp + 4cp3fq − cp3 − 16p3ffq + 4fp3 + 4p2fqq

−4δpfqqq − 4δp3fqqq + 4fqqqq + 8p2fqqqq + 4p4fqqqq = 0

8 8cfq − 32ffq + 16fqq − 32δfqqq − 2δfppq

+16fqqqq + 8fppqq + 4fpppp + 1 = 0

9 −4fq + 8cfp − 32ffp + 16fpp − 32δfppp − 8δfpqq

+64fpppp + 32fppqq + 4fqqqq + 1 = 0

Table 3. The similarity reduced forms of the 2D gKS
equation associated to symmetry generators are listed
in Table 4.

Results and Discussion
In this paper, following the classical Lie method, the
preliminary group classification and the algebraic struc-
ture of the symmetry group for the 2D gKS equation
are obtained. The classification is deduced by construct-
ing an optimal system with the aid of Theorems 5.1
and 5.2. The result of the work is summarized in Table
3. The corresponding reduced equations are presented
in Table 4.

Conclusions
In this paper, the criterion of invariance of the equation
under the infinitesimal prolonged infinitesimal generators

is applied in order to determine the most general Lie
point symmetry group of a well-known nonlinear dynam-
ical system: 2D gKS equation. The algebraic structure of
g, the Lie algbera of symmetries of the analyzed model
is discussed and it is proved that g is a solvable, non-
semisimple algebra. The one-parameter groups and the
symmetry transformations associated to symmetry gen-
erators are obtained. Also, a complete classification of
the subalgebras of g is presented, and it is shown that
g has no three-dimensional subalgebra. Mainly, the Lie
invariants and similarity reduced equations of 2D gKS
equation corresponding to infinitesimal symmetries are
obtained.

Methods
In this paper, the basic Lie symmetry method is performed
for the comprehensive analysis of the 2D gKS equation.
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