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Convergence in probability and almost surely
convergence in probabilistic normed spaces
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Abstract

Our purpose in this paper is researching about characteristics of convergent in probability and almost surely
convergent in S̆erstnev space. We prove that if two sequences of random variables are convergent in probability
(almost surely), then, sum, product and scalar product of them are also convergent in probability (almost surely).
Meanwhile, we will prove that each continuous function of every sequence convergent in probability sequence is
convergent in probability too. Finally, we represent that for independent random variables, every almost surely
convergent sequence is convergent in probability. In this paper, we conclude results in S̆erstnev space are similar to
probability space.
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Background
Menger introduced probabilistic metric space in 1942 [1].
The notion of probabilistic normed space was introduced
by S̆erstnev [2]. Alsina et al. generalized the definition
of probabilistic normed space [3,4]. Lafuerza-Guillén and
Sempi for probabilistic norms of probabilistic normed
space induced the convergence in probability and almost
surely convergence [5].
The structure of paper is as follows: the ‘Preliminar-

ies’ section recalls some notions and known results in
probabilistic metric space, probabilistic normed space and
special case of probabilistic normed space which is called
S̆erstnev space. In the ‘Main results’ section, we prove
some theorems which show convergence in probability
for sum, product, scaler product and division of two
sequences in S̆erstnev space.We provewhether every con-
tinuous function of a sequence converges if it converges
in probability. Also, we prove almost surely convergence
for sum, product and scaler product in S̆erstnev space.
At the end, the relationship between almost surely con-
vergence and convergence in probability is proved in
S̆erstnev space.
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Preliminaries
We recall some concepts from probabilistic metric space
[6,7] and convergence concept. For more details, we refer
the reader to Chung’s study [8]. A distance distribution
function is a mapping F :[ 0,∞]→[ 0, 1] which is nonde-
creasing, left continuous on (0,∞) and F(0) = 0. The
class of all distribution functions is denoted by �+. D+ is
the subset of �+ containing all functions F which satisfy
the condition limt→∞ F(t) = 1. If S is a nonempty set, a
mapping F from S × S to �+ is called a probabilistic dis-
tance on S, and F(x, y) is denoted by Fxy. The function ε0
is defined 0 if t = 0 and 1 if t > 0.
A triangular norm (shorter t-norm) is a binary operation

on the unit interval [ 0, 1] which the following conditions
are satisfied [9]:

1) T(a, 1) = a for every a ∈[ 0, 1] ,
2) T(a, b) = T(b, a) for every a, b ∈[ 0, 1] ,
3) a ≥ b, c ≥ d ⇒ T(a, c) ≥ T(b, d) a, b, c, d ∈[ 0, 1] ,
4) T(T(a, b), c) = T(a,T(b, c)).

Basic examples are t-norms TL (Lukasiewicz t-norm),
TP and TM , defined by TL(a, b) = max{a + b − 1, 0},
TP(a, b) = ab and TM(a, b) = min{a, b}.

Definition 2.1. A generalized Menger space is a
triple (S, F, T) where T is a t-norm, satisfying the
following conditions:

1) Fxy = ε0 ⇔ x = y,
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2) ∀ x, y ∈ S, Fxy = Fyx,
3) ∀ x, y, z ∈ S, ∀ s, t ≥ 0, Fxz(s+ t) ≥ T(Fxy(s), Fyz(t)).

Definition 2.2. A triangle function is a binary operation
on �+ that is commutative, associative, nondecreasing in
place and has ε0 as identity.
For more details about this subject, we refer the reader

to Hadzic and Pap’s study [10].

Definition 2.3. A probabilistic normed space is a quadru-
ple (V ,�, τ , τ∗), where V is a real vector space, τ and τ ∗
are continuous triangle functions, and� is amapping from
V into �+ such that for every p, q ∈ V the following
conditions hold:

1) �p = ε0 iff p = 0 (p is the null set vector in V ),
2) �−p = �p,
3) �p+q ≥ τ(�p,�q),
4) �p ≤ τ ∗(�αp,�(1−α)p) for each α ∈[ 0, 1] .
If τ ∗ = τM and equality holds in (4), then (V ,�, τ ,

τM) is a S̆erstnev probabilistic normed space [2]. In
fact, in S̆erstnev probabilistic normed space, �p =
τM(�αp,�(1−α)p) for each α ∈[ 0, 1], and instead of sec-
ond condition, we have:

�λp(x) = �p

(
x
|λ|

)
for all λ ∈ R − {0} and x ∈ R.

Main results and discussion
Now, we recall some concepts and theorems about ran-
dom variables and convergence from Lafuerza-Guillén
and Sempi’s work [5]. Let (�,A, P) be a probability space.
S = L0(A) is called the linear space of equivalence classes
of random variables. Suppose that ν : S → �+ be defined
for all X ∈ L0(A) and for each x ∈ R+ by

νX(x) = P{ω ∈ � : |X(ω)| < x, },

the pair (L0(A), ν) is called an equivalence normed space.
In Lafuerza-Guillén et al.’s study [11], an equivalence rela-
tionship in the equivalence normed space (L0(A), ν) was
defined by X ∼ Y if and only if νX = νY .

Convergence in probability
We start this paragraph with a theorem from Lafuerza-
Guillén and Sempi’s study [5].

Theorem 3.1. For a sequence of (equiv alence classes of )
E-valued random variables {Xn}, the following statements
are equivalent:

1) {Xn} converges in probability to θS, Xn →P θS (θS is
the null element of S), when n → ∞

2) the corresponding sequence {νXn} of probability norms
converges weakly to ε0 it means dS(νXn , ε0) → 0 when
n → ∞
3) {Xn} converges to θS in the strong topology of S̆erstnev

space (L0, ν, τL)

We will study the relation of two sequences of E-
valued random variables in the probabilistic normed
space, specially about their convergence in probability and
almost surely. Note that, in probability space, we know
that if two sequences of random variables {Xn}, {Yn}
are convergent in probability then the sequences {Xn +
Yn}, {XnYn}, {αXn} (α ∈ R) also converge in probabil-
ity. The same results hold for almost sure convergence.
An interesting consequence in probability space is conver-
gence in probability of all continuous functions on every
convergent in probability sequence. Also, convergence
almost surely implies convergence in probability.
Now, we show in the same way the consequence in

the space which Lafuerza-Guillén and Sempi introduced
means S = L0(A).
Real and complex valued random variables are exam-

ples of E-valued random variables.

Example 3.2. Let � =[ 0, 1], and P is Lebesgue measure
on [ 0, 1]. Set Xn(ω) is one if ω ∈[ 0, 1n ] and is zero, other-
wise. Therefore, Xn = I(An), where An = {ω | ω ∈[ 0, 1] }.
Since P(An) = 1

n , we have P(An) → 0 where n → ∞ and

νXn(ε) = 1− P{| Xn |> ε} = 1− P(An) = 1− 1
n

→ 1.

It means that Xn is convergent in probability to zero.
Then, limXn(ω) is equal to one when ω = 0 and is
equal to zero when ω ∈ (0, 1). So, limXn = I(0) = X
and {| Xn − X |≥ ε} = (0, 1n ). The probability of the
above event tends to zero when n → ∞. It means that
νXn−X(ε) → 1.

Theorem 3.3. For two sequences of (equivalence class of )
E-valued random variables {Xn} and {Yn}, and α ∈ R, if
{Xn} and {Yn} converge in probability to θs, then we have
the following statements:

(a) {Xn + Yn} converges in probability to θs
(b) {αXn} converges in probability to θs
(c) {XnYn} converges in probability to θs.

Proof. By theorem 0.4, the sequences {Xn} and {Yn}
converge to θs in probability if and only if for every x >

0, y > 0, limn→∞ νXn(x) = 1 and limn→∞ νYn(y) = 1. On
the other hand, for each x > 0 and t ∈[ 0, x] ,

1 − νXn+Yn(x) = P(|Xn + Yn| ≥ x)
≤ P(|Xn| + |Yn| ≥ x)
≤ P({|Xn| ≥ t} ∪ {|Yn| ≥ x − t})
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≤ P({|Xn| ≥ t} + {|Yn| ≥ x − t})
=[ 1 − νXn(t)]+[ 1 − νYn(x − t)]

If n → ∞, then the right-hand side of the above
inequality tends to zero. Since νX(x) ≤ 1 for all X ∈ L0(A)

and x ∈ R
+, the proof of (a) is complete.

For proof of (b), we know in S̆erstnev space;

∀ α ∈ R − {0} ∀x > 0 ναXn = νXn

(
x

|α|
)

proof of (c) is analogue to that of (a). In fact for every
x > 0, t > 0

1 − νXnYn(x) = P(|XnYn| ≥ x)

= P(|Xn||Yn| ≥ x)

≤ P
(
{|Xn| ≥ t} ∪

{
|Yn| ≥ x

t

})

≤ P
(
{|Xn| ≥ t} +

{
|Yn| ≥ x

t

})

=[ 1 − νXn(t)]+
[
1 − νYn

(x
t

)]

1 − νXnYn(x) ≤[ 1 − νXn(t)]+
[
1 − νYn

(x
t

)]
.

Theorem 3.4. Let {Xn} be a sequence of E-valued random
variables and {Xn} converges in probability to X (X 
= θs
and Xn, X are bounded) then the sequence { 1

Xn
} converges

in probability to 1
X .

Proof.

1 − ν(
1
Xn − 1

X

)(x) = P
(∣∣∣∣ 1

Xn
− 1

X

∣∣∣∣ ≥ x
)

= P(|Xn − X| ≥ |Xn||X|x)

= 1 − ν(Xn−X)(x|Xn||X|)

Since {Xn} and {X} are bounded, then the right-hand
side tends to zero when n → ∞, and the proof is
complete.
After showing convergence in probability for the sum

of two convergent sequences, scalar product and product
of two sequence, we will show that each continuous func-
tion of convergent in probability sequence is convergent
in probability.

Theorem 3.5. Let {Xn} be a sequence of E-valued ran-
dom variable and ϕ is a continuous function from R to
R. If {Xn} converges in probability to X, then the sequence
{ϕ(Xn)} converges in probability to ϕ(X).

Proof. Since ϕ is continuous, the following relation
is derived:

∀ε > 0, ∃δ > 0, |Xn(ω) − X(ω)| < δ ⇒ |ϕ(Xn(ω))

− ϕ(X(ω))| < ε,

therefore,

P(|Xn − X| < δ) ≤ P(|ϕ(Xn) − ϕ(X)| < ε)

or

ν(Xn−X)(δ) ≤ ν(ϕ(Xn)−ϕ(X))(ε),

but limn→∞ νXn−X(δ) = 1, thus limn→∞ νϕ(Xn)−ϕ(X)(ε) =
1 ∀ε > 0.

Almost surely convergence
Let the family V = {L0(A)}N of all the sequences of
(equivalence classes of) E-valued random variables. The
set V is a real vector space with respect to the componen-
twise operations; specifically, if s = {Xn} and s′ = {Yn}
are two sequences in V and if α is a real number, then
s ⊗ s′, s ⊕ s′ of s and s′ and the scalar product α � s of α

and s are defined via

s ⊗ s′ = {Xn} ⊗ {Yn} :={XnYn},
s⊕s′ = {Xn}⊕{Yn} :={Xn+Yn}, α�s = α�{Xn}:={αXn}

A mapping ϕ : V → �+ will be defined on V via

ϕs(x) := P(sup
n∈N

|Xn| < x) = P(
⋂
n∈N

{|Xn| < x}),

where x > 0 and s = {Xn}. Then, Lafuerza-Guillén and
Sempi [5] proved the next theorem.

Theorem 3.6. The triple (V , ϕ, τL) is a S̆erstnev space.

If s is an element ofV, which defined by s = {Xk : k ∈ N}
of E-valued random variables such that Xk ∈ L0(A) for all
n ∈ Z+, we can consider the relation of the n-shift sn of
s, sn = {Xk+n : k ∈ N} which is an element of V . They
proved the next theorem, too.

Theorem 3.7. A sequence s = {Xk : k ∈ N} of E-valued
random variable converges almost surely to θS, the null
vector of S, if and only if, the sequence {φsn : n ∈ Z+} of
the probabilistic norms of the n-shifts of s converges weakly
to ε0 or equivalently, if and only if the sequence {sn} of the
n-shifts of s converges to O := {θS , θS, . . .} in the strong
topology of (V , ϕ, τL).

Like the theorem we showed for convergence in proba-
bility, we will prove for almost surely convergence.

Theorem 3.8. Let two sequences s = {Xk ; k ∈ N } and
s′ = {Yk ; k ∈ N } of E-valued random variable converge
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a.s. to θS the null vector of S and α ∈ R, then the following
statements are satisfied:

(a) The sequence s ⊗ s′ is converges a.s. to θS,
(b) the sequence s ⊕ s′ is converges a.s. to θS,
(c) the sequence α � s is converges a.s. to θS.

Proof. Let x > 0 and t > 0 then we have:

P(
⋃
k∈N

{|Xk+nYk+n| ≥ x}) ≤ P(
⋃
k∈N

{|Xk+n||Yk+n| ≥ x})

≤ P[ (
⋃
k∈N

{|Xk+n| ≥ t} ∪ {|Yk+n| ≥ x
t
}]

= P(
⋃
k∈N

{|Xk+n| ≥ t}) + P(
⋃
k∈N

{|Yk+n| ≥ x
t
})

−P(
⋃
k∈N

{|Xk+n| ≥ t}) ∩ P(
⋃
k∈N

{|Yk+n| ≥ x
t
})

so that

P(
⋂
k∈N

{|Xk+nYk+n| < x}) = P(
⋂
k∈N

{|Xk+n||Yk+n| < x})

= 1 − P(
⋃
k∈N

{|Xk+n||Yk+n| ≥ x})

≥ 1 − P(
⋃
k∈N

{|Xk+n| ≥ t} − P(
⋃
k∈N

{|Yk+n| ≥ x
t
})

+P[ (
⋃
k∈N

{|Xk+n| ≥ t}) ∩ (
⋃
k∈N

{|Yk+n| ≥ x
t
})]

= P(
⋂
k∈N

{|Xk+n| < t} + P(
⋂
k∈N

{|Yk+n| <
x
t
})

−1 + P[ (
⋃
k∈N

{|Xk+n| ≥ t}) ∩ (
⋃
k∈N

{|Yk+n| ≥ x
t
})]

≥ P(
⋂
k∈N

{|Xk+n| < t} + P(
⋂
k∈N

{|Yk+n| <
x
t
}) − 1.

Thus, the following relation for every x > 0 and t > 0 is
reached;

ϕsn⊗s′n(x) ≥ ϕsn(t) + ϕs′n

(x
t

)
− 1.

If n → ∞, then ϕsn⊗s′n (x) = 1 which gives (a).
As in the above proof for x > 0 and t ∈ (0, x),

ϕsn⊕s′n(x) ≥ ϕsn(t) + ϕs′n(x − t) − 1

According to assumptions limn→∞ ϕsn(t) = 1, limn→∞
ϕs′n(x − t) = 1 we have limn→∞ ϕsn⊕s′n(x) = 1 and the
proof of (b) is complete.
Since ϕα�sn (x) = ϕsn(

x
|α| ), the proof of (c) is

immediately derived.

Relation between almost surely convergence and
convergence in probability
Now, let us turn to the relation between almost surely
convergence and convergence in probability in this space.

Theorem 3.9. Suppose that s = {Xk ; k ∈ N } is a sequence
of E-valued independent random variable which converges
almost surely to θS, then {Xk} is convergent in probability
to θS, too.

Proof. Suppose that {Xk} converges almost surely to θS,
so for every x > 0,

1 = lim
n→∞ ϕsn(x) = lim

n→∞P(
⋂
k∈N

|Xk+n| < x)

= lim
n→∞P(

⋂
k≥n

|Xk | < x)

Since {Xn} are independent, then:

= lim
n→∞

∞∏
k=n

P(|Xk | < x)

= lim
n→∞ lim

m→∞

m∏
k=n

[ 1 − P(|Xk | ≥ x)]

We know that if 0 ≤ a ≤ 1, then (1 − a) ≤ e−a. This
implies that:

1 ≤ lim
n→∞ lim

m→∞ e−�m
k=nP(|Xk |≥x)

= e− limn→∞ �∞
k=nP(|Xk |≥x)

Thus, limn→∞ �∞
k=nP(|Xk | ≥ x) = 0, namely the series

�∞
k=0P(|Xk | ≥ x) = �∞

k=0[ 1 − νXk (x)] converges, and
we obtain that limn→∞[ 1 − νXn(x)]= 0. It means that
limn→∞ νXn(x) = 1. This proves the result.

Conclusion
We proved convergent in probability and almost surely
convergent under algebraic operations on S̆erstnev space
are closed. In addition, every continuous function of each
sequence convergent in probability sequence is conver-
gent in probability. Also, if a sequence of independent
random variables is almost surely convergent, then it
is convergent in probability. There are some interesting
problems that we have not solved in S̆erstnev space, for
example, proof of above theorems about another type of
convergence like Lp.
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