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A comparative study of numerical integration
based on block-pulse and sinc functions and
Chebyshev wavelet
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Abstract

In this paper, numerical integration rules based on block-pulse functions and Chebyshev wavelet are proposed to find
approximate values of definite integrals. Errors of these numerical integrations are given. These numerical integrations
are compared by sinc functions numerical integration method. Some numerical examples are provided to illustrate
the accuracy of proposed rules and comparison between them. The main advantage of proposed numerical
integration methods are their efficiency and simple applicability.
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Background
Numerical integration is the approximate computation of
an integral using numerical techniques. There are several
reasons for carrying out numerical integration. The inte-
grand f (x) may be known only at certain points, such as
obtained by sampling. Some embedded systems and other
computer applicationsmay need numerical integration for
this reason. A formula for the integrand may be known,
but it may be difficult or impossible to find an antideriva-
tive which is an elementary function. An example of such
an integrand is f (x) = exp(−x2), the antiderivative of
which cannot be written in elementary form. It may be
possible to find an antiderivative symbolically, but it may
be easier to compute a numerical approximation than to
compute the antiderivative. That may be the case if the
antiderivative is given as an infinite series or product, or
if its evaluation requires a special function which is not
available. There are a wide range of methods available for
numerical integration. A good source for such techniques
is in the work of Press et al. [1].
Numerical integration has many applications in sci-

ence and engineering. In recent years, the wavelet
approach is becoming more popular in the field of
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numerical approximations. Different types of wavelets
and approximating functions have been used in numer-
ical approximations. Among them Chebyshev wavelets
([2,3]) and block-pulse functions ([4-6]) have gained pop-
ularity among researchers due to their useful proper-
ties. Motivated by the excellent performance of these
methods, we will apply the same techniques for numer-
ical integration by these two functions. We also present
numerical integration based on sinc functions that has
been mentioned by Stenger [7] and compared block-
pulse and Chebyshev wavelet results by sinc method
results.
The paper is organized as follows: In section ‘Numer-

ical integration using Chebyshev wavelets,’ we briefly
review the concept and some properties of the block-pulse
functions and proposed method of numerical integration
based on block-pulse functions. In section ‘Numerical
integration using Chebyshev wavelets,’ the concepts of the
Chebyshev wavelets are presented, and then numerical
integration using them is described. In the ‘Numerical
integration using sinc functions’ section, sinc functions
are used for numerical integration. In the ‘Error estimates’
section, the convergence analysis of the described meth-
ods are discussed. It is shown that the Sinc procedure
converges to the solution at an exponential rate. Numeri-
cal experiments are given in the ‘Error estimates’ section
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to verify the exponential convergence rate and to demon-
strate the efficiency and accuracy of the proposed numer-
ical scheme. Finally, the ‘Numerical examples’ section
concluded the paper.

Results and discussion

Numerical integration using block-pulse functions
Block-pulse functions
Definition 1. An m-set of block-pulse function (BPFs) is
defined as follows:

φi(t) =
⎧⎨⎩ 1 for (i−1)T

m ≤ t < iT
m ,

0 otherwise.
(1)

with t ∈ [ 0,T) and i = 1, 2, . . . ,m and h = T
m .

The elementary properties of BPFs are as follows:

1) Disjointness: The BPFs are disjoined with each other
in the interval t ∈ [ 0,T):

φi(t)φj(t) = δijφi(t), (2)

for i, j = 1, 2, . . . ,m.
2) Orthogonality: The BPFs are orthogonal with each

other in the interval t ∈ [ 0,T):∫ T

0
φi(t)φj(t)dt = hδij, (3)

for i, j = 1, 2, . . . ,m.
3) Completeness: The BPFs set is complete when m

approaches infinity. This means that for every
f ∈ L2([ 0,T)), when m approaches to the infinity,
Parseval’s identity holds,∫ T

0
f 2(t)dt =

∞∑
i=1

f 2i ‖φi(t)‖2, (4)

where

fi = 1
h

∫ T

0
f (t)φi(t)dt. (5)

The orthogonality property of BPFs is the basis of ex-
panding functions into their block pulse series. An
arbitrary real bounded function f (t), which is square
integrable in the interval t ∈ [ 0,T), can be expanded
into a block pulse series in the sense of minimizing
the mean square error between f(t) and its appro-
ximation:

f (t) � f̂m(t) =
m∑
i=1

fiφi(t), (6)

where f̂m(t) is the Block pulse series of the original
function f (t), and f i is the Block pulse coefficient
with respect to the i th BPF φi(t).

Method of numerical integration based on BPFs

We consider the integral
∫ b
a f (x)dx. By using x = (b − a)

t + a, we have∫ b

a
f (x)dx = (b − a)

∫ 1

0
f ((b − a)t + a)dt.

Theorem 1. The approximate value of the integral is∫ 1

0
f (t)dt � 1

m

m∑
i=1

fi. (7)

Proof.∫ 1

0
f (t)dt �

m∑
i=1

fi
∫ 1

0
φi(t)dt = 1

m

m∑
i=1

fi.

To calculate the coefficients f i, we consider the nodal
points,

tk = 2k − 1
2m

k = 1, 2, . . . ,m. (8)

The discretized form of Equation 6 can be written as

f (tk) =
m∑
i=1

fiφi(tk) = fk k = 1, 2, . . . ,m. (9)

so, the approximate value of the integral based on BPFs is∫ 1

0
f (t)dt � 1

m

m∑
i=1

f
(
2i − 1
2m

)
, (10)

or, ∫ b

a
f (x)dx � b − a

m

m∑
i=1

f
(
a + (b − a)

2i − 1
2m

)
. (11)

Numerical integration using Chebyshev wavelets
Chebyshevwavelets
Definition 2. The Chebyshev wavelets, ψn,m(x), n =
1, 2, . . . , 2k−1 and m = 0, 1, . . . ,M − 1, is defined on the
interval [ 0, 1) as,

ψn,m(x) =
⎧⎨⎩ 2

k
2 T̃m(2kx − 2n + 1) n−1

2k−1 ≤ x < n
2k−1 ,

0 otherwise.
(12)

where

T̃m(t) =
⎧⎨⎩

1√
π

m = 0,√
2
π
Tm(t) m > 0.

(13)

and k can assume any positive integer andm is the degree
of Chebyshev polynomials of the first kind. In Equation 13,
the coefficients are used for orthonormality. Here, Tm(t)
is the Chebyshev polynomials of the first kind of degree
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m which is orthogonal with respect to the weight func-
tionW (t) = 1√

1−t2
, on the interval [−1, 1] and satisfy the

following recursive formula :⎧⎨⎩Tm+1(t) = 2tTm(t)− Tm−1(t) m = 1, 2, 3, . . . ,

T0(t) = 1, T1(t) = t.
(14)

Any function f (x), which is square integrable in the inter-
val x ∈ [ 0, 1) , can be expressed as

f (x) =
∞∑
n=1

∞∑
m=0

cn,mψn,m(x) x ∈ [ 0, 1), (15)

so, we can approximate f (x) as

f (x) �
2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(x) x ∈ [ 0, 1). (16)

Method of numerical integrationbased on Chebyshev
wavelets
We consider the integral

∫ b
a f (x)dx. By using x = (b − a)

t + a, we have,∫ b

a
f (x)dx = (b − a)

∫ 1

0
f ((b − a)t + a)dt.

Theorem 2. The approximate value of the integral is

∫ 1

0
f (x)dx � 21− k

2√
π

2k−1∑
n=1

⎡⎢⎢⎣cn,0 +

[
M−1
2

]∑
l=1

√
2

1 − 4l2
cn,2l

⎤⎥⎥⎦ .

(17)

Proof.

∫ 1

0
f (x)dx �

2k−1∑
n=1

M−1∑
m=0

cn,m
∫ 1

0
ψn,m(x)dx,

∫ 1

0
ψn,m(x)dx = 2

k
2

∫ n
2k−1

n−1
2k−1

T̃m(2kx − 2n + 1)dx

= 2− k
2

∫ 1

−1
T̃m(t)dt,

since,∫ 1

−1
Tm(t)dt =

{
0 m is odd,

−2
m2−1 m is even,

(18)

we have,

∫ 1

0
ψn,m(x)dx =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
21−

k
2√
π

m = 0,
0 m is odd,

21−
k
2

1−m2

√
2
π

m is even.

(19)

so,

∫ 1

0
f (x)dx � 21− k

2√
π

2k−1∑
n=1

⎡⎢⎢⎣cn,0 +

[
M−1
2

]∑
l=1

√
2

1 − 4l2
cn,2l

⎤⎥⎥⎦ .

(20)

In order to calculate the coefficients cn,0 and cn,2l of
Chebyshev wavelets, we consider the nodal points

xp = 2p − 1
2kM

p = 1, 2, 3, . . . , 2k−1M. (21)

Substituting these points in Equation 16 , we obtain

f (xp)=
2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(xp) p = 1, 2, 3, . . . , 2k−1M.

(22)

We can calculate the coefficients cn,0 and cn,2l from
the above system of equations. By using the definition
Chebyshev wavelets, we have

n − 1
2k−1 ≤ 2p − 1

2kM
<

n
2k−1 ,

so,

p = (n − 1)M + i , i = 1, 2, 3, . . . ,M,

f (xp) = f
(
2(n − 1)M + 2i − 1

2kM

)
i = 1, 2, 3, . . . ,M,

ψn,0(xp) = 2
k
2√
π
,

ψn,m(xp) =
√

2
π
2

k
2Tm

(
2kxp − 2n + 1

)
=
√

2
π
2

k
2Tm

(
2i − 1
M

− 1
)
.
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Therefore, the above system of equations converted to
the below system of equations is given as

f
(
2(n − 1)M + 2i − 1

2kM

)
= 2

k
2√
π
cn,0

+
M−1∑
m=1

√
2
π
2

k
2Tm

×
(
2i − 1
M

− 1
)
cn,m

i = 1, 2, 3, . . . ,M.
(23)

The coefficients cn,0 and cn,2l can be easily calculated from
the below system of equations,⎡⎢⎢⎢⎢⎢⎢⎣

√
2
2 T1(

1
M − 1) . . . TM−1(

1
M − 1)

√
2
2 T1(

3
M − 1) . . . TM−1(

3
M − 1)

...
... . . .

...
√
2
2 T1(

2M−1
M − 1) . . . TM−1(

2M−1
M − 1)

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

cn,0
cn,1
...

cn,M−1

⎤⎥⎥⎥⎥⎥⎦ =
√
π

2
2− k

2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f
(
2(n−1)M+1

2kM

)
f
(
2(n−1)M+3

2kM

)
...

f
(
2(n−1)M+2M−1

2kM

)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(24)

ForM = 1, the coefficients cn,0 and the approximate value
of the integral are given as

cn,0 = √
π2− k

2 f
(
2n − 1
2k

)
, (25)

∫ 1

0
f (x)dx � 1

2k−1

2k−1∑
n=1

f
(
2n − 1
2k

)
. (26)

ForM = 2,

∫ 1

0
f (x)dx � 1

2k

2k−1∑
n=1

[
f
(
4n − 3
2k+1

)
+ f

(
4n − 1
2k+1

)]
.

(27)

ForM = 3,∫ 1

0
f (x)dx � 1

2k+2

2k−1∑
n=1

[
3f

(
6n − 5
3 × 2k

)

+2f
(
6n − 3
3 × 2k

)
+ 3f

(
6n − 1
3 × 2k

)]
.

(28)

ForM = 4,∫ 1

0
f (x)dx � 1

3 × 2k+3

2k−1∑
n=1

[
13f

(
8n − 7
2k+2

)

+11f
(
8n − 5
2k+2

)
+ 11f

(
8n − 3
2k+2

)

+13f
(
8n − 1
2k+2

)]
.

(29)

ForM = 5,∫ 1

0
f (x)dx � 1

9 × 2k+6

2k−1∑
n=1

[
275f

(
10n − 9
5 × 2k

)

+ 100f
(
10n − 7
5 × 2k

)
+ 402f

(
10n − 5
5 × 2k

)

+100f
(
10n − 3
5 × 2k

)
+ 275f

(
10n − 1
5 × 2k

)]
.

(30)

ForM = 6,∫ 1

0
f (x)dx � 1

5 × 2k+7

2k−1∑
n=1

[
247f

(
12n − 11
3 × 2k+1

)

+ 139f
(
12n − 9
3 × 2k+1

)
+ 254f

(
12n − 7
3 × 2k+1

)

+ 254f
(
12n − 5
3 × 2k+1

)
+ 139f

(
12n − 3
3 × 2k+1

)

+247f
(
12n − 1
3 × 2k+1

)]
.

(31)

Numerical integration using sinc functions
Sinc functions
Definition 3. The sinc function is defined on the whole
real line by,

Sinc(x) =
{ sin(πx)

πx x �= 0,

1 x = 0.
(32)

For any h > 0, the translated sinc functions with evenly
spaced nodes are given as follows :

S(j, h)(x) = Sinc
(
x − jh
h

)
, j = 0,±1,±2, . . . , (33)

which are called the jth sinc functions.
The sinc function for the interpolating points xk = kh is
given by

S(j, h)(kh) = δ
(0)
jk =

{
1 k = j,
0 k �= j. (34)
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If f is defined on the real line, then for h > 0 the series

f (x) =
∞∑

j=−∞
f (jh)S(j, h), (35)

is called the Whittaker cardinal expansion of f whenever
this series converges.

Definition 4. Let D be a simply connected domain in the
complex plane having boundary ∂D. Let a and b denote
two distinct points of ∂D, and φ denote a conformal map
of D onto Dd = {w ∈ C : |Im(w)| < d}, such that φ(a) =
−∞ and φ(b) = +∞. Let ζ = φ−1 denote the inverse
map, and let � be defined by

� = {z ∈ C : z = ζ(u), u ∈ R}.
Given φ, ζ and a positive number h, let us set

zk = zk(h) = ζ(kh), k = 0,±1,±2, . . . .

Let us also define ρ by

ρ(z) = eφ(z).

Definition 5. Let Lα(D) be the set of all analytic functions
f, for which there exists a constant, C, such that

|f (z)| ≤ C
|ρ(z)|α

[ 1 + |ρ(z)|]2α , z ∈ D, 0 < α ≤ 1. (36)

Theorem 3. Let f ∈ Lα(D), let N be a positive integer, and
let h be selected by the formula

h =
(
πd
αN

) 1
2
,

Then there exist positive constant C1, independent of N,
such that

sup
z∈�

∣∣∣∣∣∣f (z)−
N∑

j=−N
f (zj)S(j, h) ◦ φ(z)

∣∣∣∣∣∣ ≤ C1e−(πdαN)
1
2 .

(37)

Method of numerical integration based on sinc functions
In this section, we consider numerical integration for
single integrals using sinc functions.
Let � = (a, b), where −∞ < a < b < ∞. In this case,

we take

φ(x) = ln
(
x − a
b − x

)
,

φ′(x) = b − a
(x − a)(b − x)

.

This map carries the eye-shaped complex domain

DE =
{
z ∈ C :

∣∣∣∣arg (
z − a
b − z

)∣∣∣∣ < d
}
,

onto the infinite strip Dd. The basis function on (a,b) is
then given by

S(j, h) ◦ φ(x) = Sinc
(
φ(x) − jh

h

)
.

Notice that these functions exhibit Kronecker delta behav-
ior on the grid points xk ∈ (a, b) defined by

xk = φ−1(kh) = a + bekh

1 + ekh
.

Theorem 4. Let f
φ′ ∈ Lα(D), with 0 < α ≤ 1, and 0 <

d ≤ π , let N be a positive integer, and let h =
(
πd
αN

) 1
2 . Then

there exists a positive constant, C2, which is independent of
N, such that∣∣∣∣∣∣

∫ b

a
f (t)dt − h

N∑
j=−N

f (xj)
φ′(xj)

∣∣∣∣∣∣ ≤ C2e−(πdαN)
1
2 . (38)

so, the approximate value of the integral based on Sinc
functions is∫ b

a
f (t)dt � h

N∑
j=−N

f (xj)
φ′(xj)

. (39)

Table 1 The absolute error of the approximate value of the integral for Example 1

BPFs Sinc Chebyshev wavelet

m E N E k,M E

16 1.76147E− 4 16 1.96016E− 6 k = 7,M = 2 2.74818E− 6

64 1.09935E− 5 32 1.20463E− 8 k = 9,M = 2 1.71757E− 7

256 6.87033E− 7 48 2.34518E − 10 k = 5,M = 3 2.97317E− 8

512 1.71757E− 7 64 8.35526E − 12 k = 7,M = 3 1.16064E− 10

1024 4.29393E− 8 80 4.39814E − 13 k = 7,M = 4 6.00400E− 11

4096 2.68371E− 9 96 3.04756E − 14 k = 7,M = 5 4.44089E− 16

214 1.67732E− 10 112 2.38697E − 15 k = 7,M = 6 2.22044E− 16

215 4.19344E− 11 128 2.77555E − 16 k = 8,M = 5 1.11022E− 16
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Table 2 The absolute error of the approximate value of the integral for Example 2

BPFs Sinc Chebyshev wavelet

m E N E k,M E

16 5.72841E− 5 16 1.90339E − 5 k = 7,M = 2 9.35567E − 7

64 3.74229E− 6 32 4.78903E − 8 k = 9,M = 2 5.84728E − 8

256 2.33891E− 7 48 6.16587E− 10 k = 5,M = 3 3.23897E − 7

512 5.84728E− 8 64 6.16914E− 11 k = 7,M = 3 3.87839E − 12

1024 1.46182E− 8 80 5.06328E− 12 k = 7,M = 4 1.96420E − 12

4096 9.13637E − 10 96 8.93174E− 14 k = 7,M = 5 1.20181E − 13

214 5.71022E − 11 112 2.89213E− 14 k = 7,M = 6 6.97775E − 14

215 1.42780E − 11 128 5.55111E− 17 k = 8,M = 5 1.11022E − 16

Table 3 The absolute error of the approximate value of the integral for Example 3

BPFs Sinc Chebyshev wavelet

m E N E k,M E

16 3.90705E− 4 16 4.72827E − 6 k = 7,M = 2 6.10445E − 6

64 2.44179E− 5 32 2.94841E − 8 k = 9,M = 2 3.81528E − 7

256 1.52611E− 6 48 5.74079E− 10 k = 5,M = 3 2.23131E − 9

512 3.81528E− 7 64 2.04526E− 11 k = 7,M = 3 1.06799E − 11

1024 9.53820E− 8 80 1.07636E− 12 k = 7,M = 4 5.52957E − 12

4096 5.96137E− 9 96 7.44959E− 14 k = 7,M = 5 1.22124E − 14

214 3.72588E − 10 112 6.21724E− 15 k = 7,M = 6 7.66053E − 15

215 9.31439E − 11 128 7.77156E− 16 k = 8,M = 5 1.11022E − 16

Error estimates
Error of numerical integration based on BPFs
Since we use block pulse approximation for numerical
integration, first, we compute upper bound for error of
functions approximation by using block-pulse functions.

Theorem 5. Suppose that f(t) is an arbitrary real bounded
function, which is square integrable in the interval t ∈ I =
[ 0, 1), and e(t) = f (t)− f̂m(t), t ∈ I =[ 0, 1), which f̂m(t) =∑m

i=1 fiφi(t) is the block pulse series f(t). Then,

‖e(t)‖ ≤ h
1
2

2
√
3
sup
t∈ I

|f ′(t)|. (40)

Proof. Let,

ei(t) = f (t)− fi, (i − 1)h ≤ t < ih, h = 1
m
.

We have,
ei(t) = f (t)− 1

h

∫ ih

(i−1)h
f (s)ds= 1

h

∫ ih

(i−1)h

(
f (t)− f (s)

)
ds

= f ′(ηi)
h

∫ ih

(i−1)h
(t − s)ds = f ′(ηi)

(
t + (−i + 1

2
)h

)
,

(i − 1)h ≤ ηi < ih.
(41)

then,

‖ei(t)‖2 =
∫ ih

(i−1)h
|ei(t)|2dt = (f ′(ηi))2

∫ ih

(i−1)h

×
(
t + (−i + 1

2
)h

)2
dt = h3

12
(f ′(ηi))2,

or,

‖ei(t)‖ = h
3
2

2
√
3
|f ′(ηi)|, i = 1, 2, . . . ,m.

Consequently,

‖e(t)‖ ≤ h
3
2

2
√
3

m∑
i=1

|f ′(ηi)| ≤ h
1
2

2
√
3
sup
t∈ I

|f ′(t)|.

Theorem 6. Suppose that f(t) is an arbitrary real bounded
function, which is square integrable in the interval t ∈ I =
[ 0, 1), and e(t) = f (t)− f̂m(t), t ∈ I =[ 0, 1), which f̂m(t) =∑m

i=1 fiφi(t) is the block pulse series f(t), and Em(f ) is error
of numerical integration based on BPFs. Then,

|Em(f )| ≤ h
1
2

2
√
3
sup
t∈ I

|f ′(t)|. (42)
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Proof. we can write Em(f ) as follows :

Em(f ) =
∫ 1

0
f (t)dt−h

m∑
i=1

fi =
∫ 1

0
e(t)dt, h = 1

m
.

Thus,

|Em(f )| ≤
∫ 1

0
‖e(t)‖dt ≤ h

1
2

2
√
3
sup
t∈ I

|f ′(t)|.

Error of numerical integrationbased on sinc functions

Theorem 7. Let f
φ′ ∈ Lα(D), with 0 < α ≤ 1, and 0 <

d ≤ π , let N be a positive integer, and let h =
(
πd
αN

) 1
2 . Then

there exists a positive constant, K, which is independent of
N, such that∣∣EN (f )∣∣ ≤ Ke−(πdαN)

1
2 , (43)

where,

EN (f ) =
∫ b

a
f (t)dt − h

N∑
j=−N

f (xj)
φ′(xj)

.

Proof : see [7].

Numerical examples
The following examples are given to show the accuracy
and efficiency numerical integration by using BPFs and
Sinc functions and Chebyshev wavelets.

Example 1.∫ 1

0
sin(x2)dx.

The approximate value of the integral with Matlab
7 programming is quad(sin(x2), 0, 1) = 0.31026830172
3381. The absolute error approximate value of the integral
is defined as E = |quad(sin(x2), 0, 1)− Intf |, where Intf is
the approximate value of the integral with BPFs and Sinc
functions and Chebyshev wavelets. The absolute error are
shown in Table 1.

Example 2. (Improper integral)∫ 1

0

e− 1
x

x2
dx.

The approximate value of the integral with Matlab 7

programming is quad( e
− 1

x
x2 , 0, 1) = 0.367879441171442.

The absolute error approximate value of the integral is

defined as E = |quad( e−
1
x

x2 , 0, 1) − Intf |, where Intf is
the approximate value of the integral with BPFs and Sinc

functions and Chebyshev wavelets. The absolute error are
shown in Table 2.

Example 3.∫ e

1

cos(lnx)
x

dx.

The exact value of the integral is sin(1) = 0.841470984
807897. The absolute error approximate value of the inte-
gral is defined as E = |sin(1) − Intf |, where Intf is the
approximate value of the integral with BPFs and Sinc
functions and Chebyshev wavelets. The absolute error are
shown in Table 3.

Conclusions
This paper presents two numerical integration methods
based on Block-Pulse function and Chebyshev wavelet. A
comparative analysis of Block-Pulse function, Chebyshev
wavelet and Sinc function is performed to find numeri-
cal integration. Error analysis of these methods besides
numerical examples provide a solid foundation for using
these functions in the context of numerical approxima-
tion of integral equations, partial differential equations
and ordinary differential equations.
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