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Abstract

Purpose: In this paper, we will consider the interpolation of fuzzy data by using the fuzzy-valued piecewise quartic
polynomials Qy0,y1,..., yn(x) induced from E(3) cubic spline functions.

Method: It has been many years since researchers have attended to the problem of interpolation of fuzzy data. Here,
for Lagrange interpolation of fuzzy data, we will use the piecewise quartic polynomial induced from E(3) cubic spline
functions to interpolate the fuzzy data. To do this, we will apply the extension principle to construct the membership
function of Qy0,y1,..., yn(x).

Results: By using piecewise quartic polynomials, a new set of fuzzy spline functions was defined to interpolate given
fuzzy data.

Conclusions: In our previous study, we used E(3) cubic spline to construct E(3) fuzzy cubic spline. In this article, we
added one extra term to this spline to compute the piecewise quartic polynomials and hence the fuzzy-valued
piecewise quartic polynomials.
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Introduction
The following problemwas first posed by L.A. Zadeh (see,
for example, [1]). Suppose that we have n + 1 distinct real
numbers x0, x1, . . . , xn and for each of these numbers,
a fuzzy value in R, rather than a crisp value, is given.
Zadeh asked the question whether it is possible to con-
struct some kind of smooth function on R to fit with the
collection of fuzzy data at these n + 1 points.
Lagrange interpolation of fuzzy data was first inves-

tigated by Lowen [1]. Later, Kaleva [2] avoided the
well-known computational troubles associated with crisp
Lagrange interpolation by using linear spline and not-a-
knot cubic spline approximations. If the fuzzy data are not
convex, then a technical difficulty arises, and in this case,
the Bernstein approximation can be constructed (see, for
example, Diamond and Ramer [3]). The interpolation of
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fuzzy data by using spline functions of odd degree was
considered in [4] with complete splines, in [5] with natu-
ral splines, in [6] with fuzzy splines, and finally in [7] with
E(3) cubic splines. Constructing consistent fuzzy surfaces
from fuzzy data in the sense of Lagrange polynomials, lin-
ear splines and not-a-knot cubic splines were described in
[8]. As it has been mentioned by Behforooz [9], the con-
vergence of the E(3) cubic spline is higher than that of
the not-a-knot cubic spline and the natural cubic spline,
and also, it has superconvergence properties that the other
two cubic splines do not have. These superconvergence
properties of the E(3) cubic spline suggested to construct
a E(3) cubic fuzzy spline to approximate the fuzzy data
(see [7]).
In this paper, we will use piecewise quartic polynomi-

als induced from a E(3) cubic spline to approximate given
fuzzy data. In the ‘Interpolation of fuzzy data by quartic
polynomials induced from E(3) cubic spline’ section, we
will introduce these quartic polynomials induced from
E(3) cubic fuzzy spline to interpolate the fuzzy data.

© 2012 Behforooz et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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Finally, in the ‘Numerical examples’ section, some numeri-
cal examples will be presented to compare our new results
with the results of other studies in [4-7].

Methods
It is clear that the E(3) cubic spline S(x) is more accurate
than natural and not-a-knot cubic splines, particularly at
the end subintervals. So, the authors of [7] constructed a
new set of fuzzy splines called ‘E(3) fuzzy cubic spline’
by using the E(3) cubic spline. In this work, we will add
one extra term to S(x) to compute the piecewise quartic
polynomials Q(x) and hence the fuzzy-valued piecewise
quartic polynomials Qy0,y1,..., yn(x). First of all, we recall
some fundamental results of fuzzy numbers and fuzzy
interpolations (see also [10]).

Preliminaries
Definition 1. A fuzzy number is a mapping u : R →

I =[ 0, 1] with the following properties [10]:

(i) u is an upper semicontinuous function on R.
(ii) u(x) = 0 outside of some interval [ c, d]⊂ R.
(iii) There exist real numbers a, b such that

c ≤ a ≤ b ≤ d and

(1) u(x) is a monotonic increasing function on
[ c, a] ,

(2) u(x) is a monotonic decreasing function on
[ b, d] ,

(3) u(x) = 1 for all x in [ a, b].

Definition 2. A fuzzy number u = (m, α, β)LR of type
LR is a function from the reals into the interval [ 0, 1]
satisfying

u(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L(
m − x

α
), m − α ≤ x ≤ m,

R(
x − m

β
), m ≤ x ≤ m + β ,

0, otherwise,

(1)

where L and R are decreasing and continuous functions
from [ 0, 1] to [ 0, 1] satisfying L(0) = R(0) = 1 and L(1) =
R(1) = 0.
The set of all fuzzy numbers is denoted by F . A popular

type of fuzzy number is the set of triangular fuzzy number
u = (c, α, β) defined by

u(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x−c+α
α

, c − α ≤ x ≤ c,

c+β−x
β

, c ≤ x ≤ c + β ,

0, otherwise,

where α > 0 and β > 0. Note that the triangular
fuzzy numbers are special cases of L − L fuzzy numbers
(see [11]).

Definition 3. If u ∈ F , then the α-level set of u is
denoted by [u]α and defined by [ u]α = {x ∈ R| u(x) ≥ α},
where 0 < α ≤ 1. Also, [u]0 is called the support of u and
it is given by [ u]0 = ⋃

α∈(0,1][ u]α . It follows that the level
sets of u are closed and bounded intervals in R.
It is well known that the addition and multiplication

operations of real numbers can be extended toF . In other
words, for any 0 < α ≤ 1, λ ∈ R, and u, v ∈ F , we have

[ u + v]α =[ u]α +[ v]α and [ λu]α = λ[ u]α .

Consider n + 1 distinct real numbers x0 ≤ x1 ≤ x2 ≤
. . . ≤ xn. For each xi, we associate a fuzzy number
ui ∈ F . To solve Zadeh’s problem, wemust find a con-
tinuous function F : R → F such that F(xi) = ui for
i = 0, 1, . . . , n.
Let Py0,y1,..., yn(x) be the Lagrange interpolation polyno-

mial of degree nwhich interpolates the data (xi, yi) , where
i = 0, 1, . . . , n. According to the extension principle in
[11], we can write the membership function F(x) for each
x ∈ R as follows:

μF(x)(t) = sup
y0,y1,..., yn
t=Py0...yn (x)

min
i=0,1,...,n

μui(yi) if P−1
y0...yn(t) �= ∅,

= 0, otherwise,

where μui is the membership function of ui.

For each α ∈(0,1] and i = 0, 1, . . . , n, let Jαi =[ ui]α =
μ−1
ui [ α, 1] and Fα(x) be the α-level sets of ui and F(x),

respectively. Hence,

F α(x) = {t ∈ R | μF(x)(t) ≥ α}
= {t ∈ R | ∃ y0, y1, . . . , yn : μui(yi) ≥ α,

i = 0, 1, . . . , n and Py0,y1,..., yn(x) = t}
= {t ∈ R | ∃ y ∈

∏n
i=0

Jαi : Py0, y1..., yn(x) = t},

where y = (y0, y1, . . . , yn) ∈ R n+1. Now, we have

μF(x)(t)=sup{α ∈ (0, 1] | ∃ y ∈
n∏

i=0
Jαi : Py0,y1,..., yn(x)= t},

where, as mentioned by Lowen in [1], the supremum is
attained; hence, from Nguyen [12], we have

F α(x) = {y ∈ R| y = Py0,y1,..., yn(x), yi ∈ Jαi }.
www.SID.ir
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However, from the Lagrange interpolation formula, we
have

F α(x) =
n∑

i=0
Li(x)Jαi ,

where Li(x) represents the Lagrange polynomials.

Piecewise quartic polynomials induced from E(3) cubic
splines
Years ago, Behforooz and Papamichael [13] have intro-
duced a set of piecewise quartic polynomialsQ(x) induced
from certain cubic splines S(x) with certain end condi-
tions, and they have shown that for each Q(x), the order
of convergence of Q(x) is higher than the order of conver-
gence of the corresponding cubic spline S(x). Here, we
consider a E(3) cubic spline with joint points (xi, yi) with
equally spaced knots xi = x0 + ih, where i = 0, 1, . . . , n,
defined as follows.

Definition 4. For a given data {(xi, yi)}ni=0 with equally
spaced points xi = x0 + ih, where i = 0, 1, . . . , n, the E(3)
cubic spline with the knots xi is a piecewise polynomial
function S that possesses the following conditions:

(a) S ∈ C2[ x0, xn] ,
(b) S(x) is a polynomial of degree 3 for x ∈[ xi−1, xi],

where i = 1, 2, . . . , n,
(c) S(xi) = yi, where i = 0, 1, . . . , n (interpolation

conditions),
(d) m0 + 3m1 = 1

6h {−17y0 + 9y1 + 9y2 − y3} (left end
condition),

(e) mn + 3mn−1 = − 1
6h {−17yn + 9yn−1 + 9yn−2 − yn−3}

(right end condition),

where mi = S ′(xi). The n − 1 first derivative consistency
relation

mi−1 + 4mi + mi+1 = 3
h {yi+1 − yi−1}, where
i = 1, 2, . . . , n − 1,

together with the above two end conditions (d) and (e),
is enough to compute n + 1 parameter mi, where i =
0, 1, . . . , n. Then, we can compute S(x) by using the fol-
lowing cubic Hermite interpolation polynomial formula:

S(x) = φ1(x) yi−1 + φ2(x) yi + φ3(x)mi−1 + φ4(x)mi,

where x ∈[ xi−1, xi] ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ1 = 1
h3 {3h(x − xi)2 + 2(x − xi)3},

φ2 = 1
h3 {3h(x − xi−1)

2 − 2(x − xi−1)
3},

φ3 = 1
h2 {h(x − xi)2 + (x − xi)3},

φ4 = 1
h2 {−h(x − xi−1)

2 + (x − xi−1)
3}.

In general, for most of the interpolation cubic spline
functions S(x), the order of convergence of S and its first
derivative S′ are |S(x)−y(x)| = O(h4) and |S′(x)−y ′(x)| =
O(h3), respectively.
However, under certain end conditions like the peri-

odic cubic spline, the D1 cubic spline with end conditions
m0 = y ′

0 and mn = y ′
n, or the E(3) cubic spline with

end conditions (d) and (e), the order of convergence of
the first derivatives at the knots x i is 4 rather than 3, i.e.,
|S ′(x i) − y ′(x i)| = O(h4). By using these types of cubic
splines with these types of end conditions and adding
one extra term to S(x), the authors of [6] constructed a
set of interpolation quartic polynomials Q(x) such that
|Q(x)−y(x)| = O(h5). It means that by simply adding only
one extra term to S(x), the order of convergence increases
from 4 to 5. In this paper, we consider only quartic poly-
nomials Q(x) induced from E(3) cubic splines. Also, we
can use, for example, the D1 cubic spline or periodic
cubic spline as well to construct another set of quartic
polynomials Q(x).

Results and discussion
In this section, we recall the quartic polynomials Q(x)
induced from the E(3) cubic spline. Then, we use Q(x) to
construct fuzzy-valued piecewise quartic polynomials to
interpolate fuzzy data.

Interpolation of fuzzy data by quartic polynomials induced
from E(3) cubic spline
Suppose that S(x) is the E(3) cubic spline defined in the
‘Piecewise quartic polynomials induced from E(3) cubic
splines’ section.

Definition 5. The quartic polynomial Q(x) induced
from the E(3) cubic spline is given by

Q(x) = S(x) + �i(x − xi−1)
2(x − xi)2, x ∈[ xi−1, xi] ,

i = 1, 2, . . . , n,

where �i, i = 1, 2, . . . , n − 1 are given by the following
divided differences:

�i = S[ xi−1, xi−1, xi, xi, xi+1]

= 1
4h4 {yi+1 + 4yi − 5yi−1 − h[ 4mi + 2mi−1] },

and in the last interval [ xn−1, xn], consider �n = �n−1.
In this section, we will use the Q(x) to interpolate the

fuzzy data. We denote the family of these quartic poly-
nomials by Q4(x0, xn). If the base spline qi ∈ Q4(x0, xn)
such that qi(xj) = 1 for i = j and qi(xj) = 0 for i �= j,
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Figure 1 Endpoints of the 0-, 0.5-, and 1-level sets of fuzzy-valued piecewise quartic polynomials (Example 1). The solid line represents the
support, the dashed line represents the 0.5-level set, and the thick line represents the 1-level set.

then similar to the Lagrange interpolation polynomial, the
fuzzy spline

Qy0,y1,..., yn(x) =
n∑

i=0
qi(x)yi

interpolates (xi, yi), where i = 0, 1, . . . , n. From the
‘Preliminaries’ section, we have

F α(x) ={t ∈ R|∃y ∈
n∏

i=0
Jαi : Qy0,y1 ,..., yn (x) = t}

=
n∑

i=0
qi(x) Jαi

and

F(x) =
n∑

i=0
qi(x)ui.

1.0 1.1 1.2 1.3 1.4 1.5

-2

0

2

4

6

8

Figure 2 Endpoints of the 0-, 0.5-, and 1-level sets of fuzzy-valued piecewise quartic polynomials (Example 2). The solid line represents the
support, the dashed line represents the 0.5-level set, and the thick line represents the 1-level set.
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Hence, if all ui are LL fuzzy numbers, then for each
x ∈[ x0, xn] , F(x) is an LL fuzzy number.

Numerical examples
Let Jαi =[ aα

i , bα
i ]. Then, the upper end point of Fα(x) is

the solution of the following problem:

Maximize Qy0,y1,..., yn

subject to aα
i ≤ yi ≤ bα

i , where i = 0, 1, . . . , n,
where the optimal solution is

yi =
{
bα
i ,if qi(x) ≥ 0,

aα
i ,if qi(x) < 0.

(2)

Similarly, the lower end point of Fα(x) can be obtained.
Hence, if ui = (mi, αi, βi) and F(x) = (m(x), α(x), β(x)),
then we will have

m(x) =
n∑

i=0
qi(x)mi

α(x) =
∑

qi(x)≥0
qi(x)αi −

∑
qi(x)<0

qi(x)βi

β(x) =
∑

qi(x)≥0
qi(x)βi −

∑
qi(x)<0

qi(x)αi

which are the same results as those of Kaleva [2].

Example 1. In this example, we have the data (xi, ui),
where i = 1, 2, 3, 4, 5, in the following table:

xi 1 1.1 1.2 1.3 1.4 1.5
mi 0 5 1 4 0 1
αi 2 1 0 4 3 1
βi 1 2 3 3 2 1

The endpoints of the 0-, 0.5-, and 1-level sets of the
fuzzy-valued piecewise quartic polynomials can be seen
in Figure 1.

Example 2. Here, we have ui = yi +A, where i = 0, 1, 2,
3, 4, 5 and A = (0, 1, 1):

xi 1 1.1 1.2 1.3 1.4 1.5
yi 0 4 -1 1 5 0

Figure 2 shows the endpoints of the 0-, 0.5- and 1-level
sets.

Conclusions
In the literature, there are some published articles on
using spline functions to construct fuzzy splines. At the

same time, we know that E(3) cubic spline S(x) is more
accurate than natural and not-a-knot cubic splines, partic-
ularly at the end subintervals. Hence, using the E(3) cubic
spline to construct E(3) fuzzy cubic spline was the main
idea in [7]. In this article, we added one extra term to
S(x) to compute the quartic polynomial Q(x) to easily
improve the order of convergence. The above examples
are our witnesses to our claims.
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