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of the Laguerre polynomials and its
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Abstract

Purpose: In this paper, we construct the operational matrix of fractional integration of arbitrary order for Laguerre
polynomials.

Methods: We introduce some necessary definitions and give some relevant properties of Laguerre polynomials. The
fractional integration is described in the Riemann-Liouville sense. We develop a direct solution technique for solving
the integrated forms of fractional differential equations (FDEs) on the half line using the Laguerre tau method based
on operational matrix of fractional integration in the Riemann-Liouville sense.

Results: In order to show the fundamental importance of the Laguerre operational matrix, we apply it together with
the spectral Laguerre tau method for the numerical solution of general linear multi-term FDEs on a semi-infinite
interval.

Conclusions: The results obtained by the present methods reveal that the present method is very effective and
convenient for linear FDEs. Illustrative examples are included to demonstrate the validity and applicability of the new
technique for linear muti-term FDEs on a semi-infinite interval.

Keywords: Operational matrix, Laguerre polynomials, Tau method, Multi-term FDEs, Riemann-Liouville derivative

Introduction
Fractional calculus has been used to model physical and
engineering processes that are found to be best described
by fractional differential equations (FDEs) (see [1-3] and
references therein). Spectral methods have high accu-
racy [4-8]. The usual spectral methods are only available
for bounded domains for solving FDEs (see [9-13]). How-
ever, it is also interesting to consider spectral methods for
FDEs on the half line. Some authors have developed the
Laguerre spectral method for the half line for ordinary,
partial, and delay differential equations (see [14-19]).

The operational matrix of fractional derivatives has
been determined for some types of orthogonal polyno-
mials, such as Chebyshev polynomials [20], Legendre
polynomials [10], and Jacobi polynomials [21]. Moreover,
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the operational matrices for integer derivatives have been
used for solving differential and integral equations (see
for instance [22-24]). Recently, Lakestani et al. [25] con-
structed the operational matrix of fractional derivatives
using B-spline functions. Also, Bhrawy and Alofi [26]
introduced the shifted Chebyshev operational matrix of
fractional integration, in the Riemann-Liouville sense, of
arbitrary order and applied together with the spectral tau
method for solving linear FDEs. The fractional integration
is described.

The operational matrix of integer integration has been
determined for several types of orthogonal polynomials,
such as the Laguerre series [27], Chebyshev polynomials
[28], Legendre polynomials [29], Bessel series [30], and
Laguerre and Hermite poynomials [31]. Recently, Singh et
al. [32] derived the Bernstein operational matrix of inte-
gration (see also [33]). Up to now, and to the best of
our knowledge, most of formulae corresponding to those
mentioned previously are unknown and are traceless in
the literature for fractional integration in the Riemann-
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Liouville sense. This partially motivates our interest in
operational matrix of fractional integration for Laguerre
polynomials.

Another motivation is concerned with the direct solu-
tion techniques for solving the integrated forms of FDEs
on the half line using the Laguerre tau method based
on operational matrix of fractional integration in the
Riemann-Liouville sense. Finally, the accuracy of the pro-
posed algorithm is demonstrated by test problems.

The paper is organized as follows. In the ‘Preliminar-
ies and notation’ subsection of the ‘Methods’ section,
we introduce some necessary definitions and give some
relevant properties of the Laguerre polynomials. In the
‘Laguerre operational matrix of fractional integration’
subsection, the Laguerre operational matrix of fractional
integration is introduced. In the ‘Application of Laguerre
operational matrix for multi-order FDEs’ subsection of
the ‘Methods’ section, we apply the Laguerre operational
matrix of fractional integration for solving linear multi-
order FDEs. In the ‘Illustrative examples’ subsection in
the ‘Results and discussion’ section, the proposed method
is applied to several examples. Finally, some concluding
remarks in the ‘Conclusions’ section.

Methods
Preliminaries and notation
Let � = (0, ∞), w(x) = e−x, and L�(x) be the Laguerre
polynomial of degree �, defined by the following:

L�(x) = 1
�!

ex∂�
x (x� e−x), � = 0, 1, . . . . (1)

They satisfy the equations

∂x(x e−x∂xL�(x)) + �e−xL�(x) = 0 x ∈ �,

and

L�(x) = ∂xL�(x) − ∂xL�+1(x), � ≥ 0.

The set of Laguerre polynomials is the L2
w(�)-

orthogonal system, namely,
∫

�

Lj(x)Lk(x)w(x)dx = δjk , ∀i, j ≥ 0, (2)

where δjk is the Kronecher function.
The special value

DqLi(0) = (−1)q
i−q∑
j=0

(i − j − 1)!
(q − 1)! (i − j − q)!

, (3)

where q, a positive integer, will be of important use later.

A function u(x), square integrable in �, may be
expressed in terms of Laguerre polynomials as follows:

u(x) =
∞∑

j=0
ajLj(x),

where the coefficient aj is given as follows:

aj =
∫

�

u(x)Lj(x)w(x)dx, j = 0, 1, . . . . (4)

In practice, only the first (N +1)-term Laguerre polyno-
mials are considered. We then have the following:

uN (x) =
N∑

j=0
ajLj(x) = CTφ(x). (5)

where the Laguerre coefficient vector C and the Laguerre
vector φ(x) are given as follows:

CT = [ c0, c1, . . . , cN ] ,

φ(x) = [ L0(x), L1(x), . . . , LN (x)]T . (6)

If we define q times repeated the integration of the
Laguerre vector φ(x) by Jqφ(x), then

Jqφ(x) � P(q)φ(x), (7)

where q is an integer value, and P(q) is the operational
matrix of integration of φ(x).

There are several definitions of a fractional integration
of order ν > 0, and they are not necessarily equivalent to
each other (see [34]). The most used definition is due to
Riemann-Liouville, which is defined as follows:

Jν f (x) = 1
�(ν)

∫ x

0
(x − t)ν−1f (t)dt, ν > 0, x > 0,

J0f (x) = f (x).
(8)

One of the basic properties of the operator Jν is

Jνxβ = �(β + 1)

�(β + 1 + ν)
xβ+ν . (9)

The Riemann-Liouville fractional derivative of order ν

will be denoted by Dν . The next equation defines the
Riemann-Liouville fractional derivative of order:

Dν f (x) = dm

dxm (Jm−ν f (x)), (10)
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where m − 1 < ν ≤ m, m ∈ N , and m is the smallest
integer greater than ν.

Lemma 1. If m − 1 < ν ≤ m, m ∈ N , then

Dν Jν f (x)= f (x), JνDν f (x)= f (x)−
m−1∑
i=0

f (i)(0+)
xi

i!
, x > 0.

(11)

Laguerre operational matrix of fractional integration
The main objective of this section is to find the frac-
tional integration of the Laguerre vector in the Riemann-
Liouville sense.

Theorem 1. Let φ(x) be the Laguerre vector and ν > 0,
then

Jνφ(x) � P(ν)φ(x), (12)

where P(ν) is the (N + 1) × (N + 1) operational matrix of
fractional integration of order ν in the Riemann-Liouville
sense and is defined as follows:

P(ν) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


ν(0, 0) 
ν(0, 1) 
ν(0, 2) · · · 
ν(0, N)


ν(1, 0) 
ν(1, 1) 
ν(1, 2) · · · 
ν(1, N)


ν(2, 0) 
ν(2, 1) 
ν(2, 2) · · · 
ν(2, N)

...
...

... · · · ...

ν(i, 0) 
ν(i, 1) 
ν(i, 2) · · · 
ν(i, N)

...
...

... · · · ...

ν(N , 0) 
ν(N , 1) 
ν(N , 2) · · · 
ν(N , N)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)

where


ν(i, j) =
i∑

k=0

j∑
r=0

(−1)k+r i! r! �(k + ν + r + 1)

(i − k)! k! (j − r)! (r! )2 �(k + ν + 1)
.

Proof. The analytic form of the Laguerre polynomials
Li(x) of degree i is given as follows:

Li(x) =
i∑

k=0
(−1)k i!

(i − k)! (k! )2 xk , (14)

where Li(0) = 1, applying the Riemann-Liouville frac-
tional integration of order ν of Equation 14. Using
Equations 8 and 9, and since the Riemann-Liouville’s

fractional integration is a linear operation, we get the
following:

JνLi(x) =
i∑

k=0
(−1)k i!

(i − k)! (k! )2 Jνxk

=
i∑

k=0
(−1)k i!

(i − k)! k! �(k + ν + 1)
xk+ν ,

i = 0, 1, · · · , N .
(15)

Now, by approximating xk+ν by the N + 1 terms of the
Laguerre series, we have the following:

xk+ν =
N∑

j=0
bjLj(x), (16)

where bj is given from Equation 4 with u(x) = xk+ν , that
is,

bj =
j∑

r=0

(−1)r j! �(k + ν + r + 1)

(j − r)! (r! )2 , j = 1, 2, · · · , N .

(17)

In virtue of Equations 15 and 16, we get the following:

JνLi(x) =
N∑

j=0

ν(i, j)Lj(x), i = 0, 1, · · · , N , (18)

where


ν(i, j) =
i∑

k=0

j∑
r=0

(−1)k+r i! r! �(k + ν + r + 1)

(i − k)! k! (j − r)! (r! )2 �(k + ν + 1)
,

j = 1, 2, · · · N .

Accordingly, Equation 18 can be written in a vector form
as follows:

JνLi(x) �
[

ν(i, 0), 
ν(i, 1), 
ν(i, 2), · · · , 
ν(i, N)

]
φ(x),

i = 0, 1, · · · , N . (19)

Equation 19 leads to the desired result.

Application of Laguerre operational matrix for multi-order
FDEs
In this section, the Laguerre tau method based on opera-
tional matrix is proposed to numerically solve the FDEs.
The basic idea of this technique is as follows: (1) The
FDE is converted to a fully integrated form via frac-
tional integration in the Riemann-Liouville sense. (2)
Subsequently, the integrated form equation is approxi-
mated by representing them as linear combinations of

www.SID.ir



Arc
hive

 of
 S

ID

Bhrawy and Taha Mathematical Sciences 2012, 6:41 Page 4 of 7
http://www.iaumath.com/content/6/1/41

the Laguerre polynomials. (3) Finally, the integrated form
equation is converted to an algebraic equation by intro-
ducing the operational matrix of fractional integration of
the Laguerre polynomials.

In order to show the fundamental importance of the
Laguerre operational matrix of fractional integration, we
apply it to solve the following multi-order FDE:

Dνu(x) =
k∑

i=1
γjDβi u(x) + γk+1u(x) + f (x), in �,

(20)

with initial conditions

u(i)(0) = di, i = 0, · · · , m − 1, (21)

where γi (i = 1, · · · , k + 1) are real constant coefficients
and also m − 1 < ν ≤ m, 0 < β1 < β2 < · · ·
< βk < ν. Moreover, Dνu(x) ≡ u(ν)(x) denotes the
Riemann-Liouville fractional derivative of order ν for
u(x); the values of di (i = 0, · · · , m − 1) describe the
initial state of u(x), and f (x) is a given source function.
If we apply the Riemann-Liouville integral of order ν on
Equation 20 and after making use of Equation 11, we get
the integrated form of Equation 20, namely

u(x)−
m−1∑
j=0

u(j)(0+)
xj

j!
=

k∑
i=1

γiJν−βi
[
u(x) −

mi−1∑
j=0

u(j)(0+)
xj

j!

]

+ γk+1Jνu(x) + Jν f (x),

u(i)(0) = di, i = 0, · · · , m − 1, (22)

where mi − 1 < βi ≤ mi, mi ∈ N . This implies that

u(x) =
k∑

i=1
γiJν−βi u(x) + γk+1Jνu(x) + g(x),

u(i)(0) = di, i = 0, · · · , m − 1,

(23)

where

g(x) = Jν f (x) +
m−1∑
j=0

dj
xj

j!
+

k∑
i=1

γiJν−βi

⎛
⎝mi−1∑

j=0
dj

xj

j!

⎞
⎠ .

In order to use the tau method with the Laguerre oper-
ational matrix for solving the fully integrated problem
(Equation 23) with initial conditions (Equation 21), we
approximate u(x) and g(x) by the Laguerre polynomials as
follows:

uN (x) �
N∑

i=0
ciLi(x) = CTφ(x), (24)

g(x) �
N∑

i=0
giLi(x) = GTφ(x), (25)

where the vector G = [ g0, · · · , gN ]T is given, but
C = [ c0, · · · , cN ]T is an unknown vector.

Now, the Riemann-Liouville integral of orders ν and
(ν − βj) of the approximate solution (Equation 24), after
making use of Theorem 1 (relation (12)), can be written as
follows:

JνuN (x) � CT Jνφ(x) � CT P(ν)φ(x), (26)

and

Jν−βj uN (x) � CT Jν−βjφ(x)

� CT P(ν−βj)φ(x), j = 1, · · · , k, (27)

respectively, where P(ν) is the (N+1)×(N+1) operational
matrix of fractional integration of the order ν.

Employing Equations 24 to 27, the residual RN (x) for
Equation 23 can be written as follows:

RN (x) = (CT − CT
k∑

j=1
γjP(ν−βj) − γk+1CT P(ν) − GT )φ(x).

(28)

As in a typical tau method (see [20,26]), we generate
N − m + 1 linear algebraic equations by applying the
following:

〈RN (x), Lj(x)〉 =
∫ ∞

0
RN (x)w(x)Lj(x)dx = 0,

j = 0, 1, · · · , N − m. (29)

Also, by substituting Equations 4 and 24 in Equation 21,
we get the following:

u(i)(0) =
N∑

i=0
ciL(i)

i (0) = di, i = 0, 1, · · · , m−1.

(30)

Equations 29 and 30 generate the N − m + 1 and m set
of linear equations, respectively. These linear equations
can be solved for unknown coefficients of the vector C.
Consequently, uN (x) given in Equation 24 can be calcu-
lated, which gives a solution of Equation 20 with the initial
conditions (Equation 21).

Results and discussion
Illustrative examples
To illustrate the effectiveness of the proposed method in
the present paper, some test examples are carried out in
this section. The results obtained by the present methods

www.SID.ir



Arc
hive

 of
 S

ID

Bhrawy and Taha Mathematical Sciences 2012, 6:41 Page 5 of 7
http://www.iaumath.com/content/6/1/41

reveal that the present method is very effective and con-
venient for linear FDEs.

Example 1. As the first example, we consider the following
initial value problem

D
3
2 u(x) + 3u(x) = 3x3 + 8

�(0.5)
x1.5,

u(0) = 0, u′(0) = 0, x ∈ � = (0, ∞), (31)

whose exact solution is given by u(x) = x3.

If we apply the technique described in the ‘Application
of Laguerre operational matrix for multi- order FDEs’ sub-
section with N = 3, then the approximate solution can be
written as follows:

uN (x) =
3∑

i=0
ciLi(x) = CTφ(x),

and

P( 3
2 ) =

⎛
⎜⎜⎝

1 −3
2

3
8

1
16

0 1 −3
2

3
8

0 0 1 −3
2

0 0 0 1

⎞
⎟⎟⎠ , G =

⎛
⎜⎜⎝

g0
g1
g2
g3

⎞
⎟⎟⎠ .

Using Equation 29, we obtain the following:

9
8

c0 − 9
2

c1 + 4c2 − g2 = 0,

3
16

c0 + 9
8

c1 − 9
2

c2 + 4c3 − g3 = 0,
(32)

Now, applying Equation 30, we get the following:

CTφ(0) = c0 + c1 + c2 + c3 = 0,

CT D(1)φ(0) = −c1 − 2c2 − 3c3 = 0.
(33)

Solving the linear system, Equations 32 to 33 yield the
following:

c0 = 6, c1 = −18, c2 = 18, c1 = −6.

Thereby, we can write

uN (x) =
3∑

i=0
ciLi(x) = x3.

Numerical results will not be presented since the exact
solution is obtained.

Example 2. Consider the equation

D2u(x) + D
3
4 u(x) + u(x) = x3 + 6x + 128

15 �( 1
4 )

x
9
4 ,

u(0) = 0, u′(0) = 0, x ∈ �, (34)

whose exact solution is given by u(x) = x3.

If we apply the technique described in the ‘Application
of Laguerre operational matrix for multi- order FDEs’ sub-
section with N = 3, then the approximate solution can be
written as follows:

uN (x) =
3∑

i=0
ciLi(x) = CTφ(x),

and

P( 5
4 ) =

⎛
⎜⎜⎝

1 −5
4

5
32

5
128

0 1 −5
4

5
32

0 0 1 −5
4

0 0 0 1

⎞
⎟⎟⎠ , P2 =

⎛
⎜⎜⎝

1 −2 1 0
0 1 −2 1
0 0 1 −2
0 0 0 1

⎞
⎟⎟⎠ ,

G =

⎛
⎜⎜⎝

g0
g1
g2
g3

⎞
⎟⎟⎠ .

Using Equation 29, we obtain the following:

(1 + 5
32

)c0 − (2 + 5
4
)c1 + 3c2 − g2 = 0,

5
128

c0 + (1 + 5
32

)c1 − (2 + 5
4
)c2 + 3c3 − g3 = 0,

(35)

Now, applying Equation 30, we get the following:

CTφ(0) = c0 + c1 + c2 + c3 = 0,

CT D(1)φ(0) = −c1 − 2c2 − 3c3 = 0.
(36)

By solving the linear system (Equations 35 to 36), we
have the following:

c0 = 6, c1 = −18, c2 = 18, c1 = −6.

Thereby, we can write

uN (x) =
3∑

i=0
ciLi(x) = x3.

Numerical results will not be presented since the exact
solution is obtained.
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Example 3. Consider the equation

D2u(x) − 2Du(x) + D
1
2 u(x) + u(x) = x7 + 2048

429
√

π
x6.5

− 14x6 + 42x5 − x2 − 8
3
√

π
x1.5 + 4x − 2,

u(0) = 0, u′(0) = 0, x ∈ �,
(37)

whose exact solution is given by u(x) = x7 − x2.

Now, if we apply the technique described in Examples 1
and 2, with N = 7, then we have the following:

c0 = 5038, c1 = −35276, c2 = 105838,

c3 = −176400, c4 = 176400, c5 = −105840,

c6 = 35280, c7 = −5040.

Thus, we can write

uN (x) =
7∑

i=0
ciLi(x) = x7 − x2,

which is the exact solution.

Conclusions
In this article, we have presented the operational matrix
of fractional integration of the Laguerre polynomials,
and as an important application, we describe how to
use the operational tau technique to numerically solve
the general multi-term linear fractional-order differen-
tial equations with initial conditions on a semi-infinite
domain. The fractional integration is described in the
Riemann-Liouville sense. The numerical results given in
the previous section show that the proposed algorithm
with a small number of Laguerre polynomials is giving a
satisfactory result.
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