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Abstract

Purpose: This paper studies the �-four equation that appears in relativistic quantum mechanics. The primary
purpose of this paper is to address the numerical simulations of this model.

Methods: The singular soliton solution is also obtained by the ansatz method.

Results: The constraint conditions are indicated for the existence of the soliton. Numerical solutions are obtained by
using the spectral method where rational Chebyshev functions are used as basis functions.

Conclusions: Results are validated by finding error estimates.
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Introduction
The �-four (P4) equation is a nonlinear evolution
equation that is studied in the context of relativistic quan-
tum mechanics. This equation was studied by several
scientists in the past. The soliton perturbation theory as
well as other integrability aspects and bifurcation analysis
are all addressed before. The primary focus of this paper is
to develop numerical algorithms in order to ‘visualize’ the
soliton solution that supports the P4 model. There is yet a
lesser known soliton solution that is occasionally studied.
This is the singular soliton. The ansatz method will be first
implemented in order to extract the singular soliton solu-
tion of this equation. The constraint conditions are also
going to be identified for its existence.

The P4 equation is a special case of Klein-Gordon
equation (KGE) that is studied with several forms of non-
linearity that includes quadratic nonlinearity, power law
nonlinearity, as well as log law nonlinearity. It is primarily
the perturbation theory, numerical simulation, and inte-
grability issues that have been addressed thus far in such
models [1-14].

*Correspondence: biswas.anjan@gmail.com
Department of Mathematical Sciences, Delaware State University, Dover, DE,
19901-2277, USA

Governing equation
The P4 equation that is going to be studied in this paper is
given by

qtt − k2qxx = aq + bq3. (1)

In Equation 1, the dependent variable q(x, t) is the wave
profile, while the spatial and temporal independent vari-
ables, respectively, are x and t. The coefficients a, b, and
k2 are real-valued parameters. As mentioned before, this
equation was studied earlier on several ocassions. The
topological 1-soliton solution was lately obtained by the
ansatz method, and the corresponding bifurcation analy-
sis was also studied. The soliton perturbation theory was
studied for this equation where the adiabatic dynamics
of the soliton velocity was obtained [3]. Subsequently,
this equation was extended to (1+2)-dimensions where
soliton solutions were also obtained. The numerical
simulation was touched upon by the aid of variational iter-
ation method although that was for quadratic nonlinear
KGE [1].

Singular soliton solution
The starting hypothesis for the singular soliton solution is
given by

q(x, t) = A cschpτ , (2)
© 2012 Chowdhury and Biswas; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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where

τ = B(x − vt).

In Equation 2, the constant parameters are A and B,
while v is the velocity of the soliton. Now, substituting
Equation 2 into Equation 1 gives
(
v2 − k2) p2AB2 cschpτ + (

v2 − k2) p(p + 1)AB2 cschp+2τ

= aA cschpτ + bA2 csch3pτ . (3)

It is well known that the solitons evolve due to a delicate
balance between dispersion and nonlinearity. Therefore,
by the aid of this balancing principle, equating the expo-
nents np and p + 2 implies

3p = p + 2

that gives

p = 1.

Now, the linearly independent functions in Equation 3
are cschp+jτ for j = 0, 2. Therefore, setting their respec-
tive coefficients to zero implies

A =
√

3a
2b

(4)

and

B =
√

a
v2 − k2 . (5)

Now Equation 4 poses the restriction

ab > 0, (6)

while Equation 5 introduces the constraint

a
(
v2 − k2) > 0. (7)

Therefore, the singular 1-soliton solution to Equation 1
is given by

q(x, t) = A csch[ B(x − vt)] ,

where the parameters A and B are given by Equations 4
and 5, respectively. The domain restriction that is given by
restriction (6) and constraint (7) must also hold in order
for the singular soliton to exist.

Methods
Numerical analysis
The following equation is known as the cubic Klein-
Gordon equation

utt = uxx + 2u − u3, (8)

and the initial conditions are given as follows:

u(x, 0) = 1
2

⎛
⎜⎝tanh

x − x1√
1 − c2

1

+ tanh
x − x2√
1 − c2

2

⎞
⎟⎠

and

ut(x, 0) = − 1
2

c1√
1 − c2

1

⎛
⎜⎝sech

x − x1√
1 − c2

1

⎞
⎟⎠

2

− 1
2

c2√
1 − c2

2

⎛
⎜⎝sech

x − x2√
1 − c2

2

⎞
⎟⎠

2

.

In the next sections, this partial differential equation will
be solved by transforming it into a system of ordinary dif-
ferential equations (ODEs) by a judiciously chosen spec-
tral method whose basis functions are rational Chebyshev
functions.

Spectral method
The rational Chebyshev functions (TB functions), intro-
duced by Boyd (for complete reference, see [15]), are well
known as radiation basis functions as nonlocal solitions
as well as radiation function basis for quantum scattering
(continuous spectrum). These functions are defined as

TBn (x) = cos(nθ), where cot θ = x.

The rational Chebyshev functions are orthogonal on
(−∞, ∞) with the weight function chosen as w(x) =
1/(1 + x2). The set of the first 11 basis functions, i.e., from
TB0 to TB10 can be found in [15]. In Appendix 1, the nec-
essary formulas of the first 21 basis functions are cited to
make the paper self-content.

By choosing TB functions as basis functions, one can
express u(x, t) as

u(x, t) =
N∑

l=0
al(t) TBl (x).

Now, by differentiating u twice with respect to t, we get,

utt(x, t) =
N∑

l=0
äl(t) TBl (x),

where äl(t) = d2 a
d t2 .

Again, by differentiating u twice with respect to x, we
get,

uxx(x, t) =
∑

al(t) TB′′
l (x).
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One can express TB′′
l (x) as TB′′

l (x) = ∑
�l(x), where

�l(x) will render a nine-diagonal matrix when we will
take the inner product with respect to another TB func-
tion multiplied by suitable weight function (please refer to
Appendix 2 for the required formula of TB′′

l (x) in terms of
other TB functions).

So, the second derivative of u(x, t) with respect to x can
be expressed as

uxx(x, t) =
N∑
m

am(t) �ml(x).

Also, u3(x, t) can be written as

u3(x, t) =
N∑

m1=1

N∑
m2=1

N∑
m3=1

am1(t) TBm1 (x) am2(t)

× TBm2 (x) am3(t) TBm3 (x).

Since TB functions are actually cosine functions, we can
use the additive and multiplicative properties of cosine
functions for TB functions in a similar fashion.

cos(m1x) cos(m2x)= 1
2

[cos(m1+m2)x + cos(m1−m2)x] .

This yields

TBm1(x)TBm2(x) = 1
2

TBm1+m2(x) + 1
2

TBm1−m2(x).

Similarly, for the product of three TB functions,

TBm1(x)TBm2(x)TBm3(x) =1
4

TBm1 + m2 + m3(x)

+ 1
4

TBm1+m2−m3(x)

+ 1
4

TB|m2 + m3 − m1|(x)

+ 1
4

TB|m1 − |m2 − m3||(x).

So, the product of three TB functions can be written as

TBm1(x)TBm2(x)TBm3(x) =
∑

l
�m1 m2 m3 lTBl(x).

Equation 8 can be written as

N∑
l=1

äl(t) TBl (x) −
N∑

l=1

N∑
m

am(t) �ml(x)

− 2
N∑

l=1
al(t) TBl (x)

+
∑

l
�m1 m2 m3 lTBl(x) = 0, (9)

where

äl(t) =
N∑

m=1
am(t) ∗ Mml + 2al(t)

−
N∑

m1=1

N∑
m2=1

N∑
m3=1

am1(t) am2(t) am3(t)�m1 m2 m3 l.

(10)

Now, by using the orthogonality property of TB func-
tions, we have the inner product:

(TBl, TBj) =
∫ ∞

−∞
W (x) TBl(x) TBj(x) dx

=

⎧⎪⎨
⎪⎩

π/2 if l = j > 0,
0 if l �= j,
π if l = j = 0.

We also observe that the fourth term in Equation 10 can
be simplified in the following way:

�m1 m2 m3 l =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1/4 for l = m1 + m2 + m3,

1/4 for l = m1 − m2 − m3,

1/4 for l = m1 + m2 − m3,

1/4 for l = m1 − |m2 − m3|.
It was noted by Christov [16] that the derivative of a

rational orthogonal function is the sum of some basis
functions, at most three basis functions for the first
derivative. It is argued by Boyd [17] that while using
a Galerkin’s method to transform a partial differential
equation into a matrix problem, one eventually encoun-
ters the matrix with only a few nonzero elements in
each row. The inner product (�ml(x), TBj(x)) yields the
aforementioned nine-diagonal matrix Mml.

Equation 10 is a system of ordinary differential
equations of variable t. So, if N is chosen to be 20,
Equation 9 turns out to be a system of 20 ordinary dif-
ferential equations of order two. For solving this system
of equations, we need 40 initial conditions, i.e., for each
l, two initial conditions are required since this is ODE
of order two. These initial conditions for each l are con-
structed in the following way:

al(0) =
∫ ∞

−∞
W (x) TBl(x)u(x, 0)dx,

and

a′
l(0) =

∫ ∞

−∞
W (x) TBl(x)ut(x, 0)dx.

u(x, 0) and ut(x, 0) are the initial conditions for
Equation 8.
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(a)
Comparison between numerical
result (Dotted line) and analytical
result (dashed line).

(b)
Absolute value of the difference
between the numerical result
and the analytical result.

Figure 1 Comparison between the analytical solution and numerically obtained solution at t = 0 for x1 = −2, x2 = 2, c1 = 0.1, and
c2 = −0.1. (a) Comparison between the numerical result (dotted line) and analytical result (dashed line). (b) Absolute value of the difference
between the numerical result and the analytical result.

Results and discussion
Numerical simulation and results
Here, we can use any standard numerical ODE integration
algorithm, e.g., MATHEMATICA’s NIntegrate, to calcu-
late all the integrations for finding initial values as well as
for determining the numerical value of all the integrations
which are defined to find the inner product. Then, we
have used NDSolve for solving the initial value problem in
Equation 10 and subsequently Equation 9.

Numerical results are provided by taking two sets
of values for x1, x2, c1, and c2. In Figures 1 and 2,

the comparison between the chosen boundary condition
u(x, 0) = uanal(x, 0) and numerically obtained u(x, 0) =
unum(x, 0) is shown. In the left hand panels of Figures 1
and 2, uanal(x, 0) and unum(x, 0) are drawn together in the
same window. The right hand panels of these figures are
used to show the absolute value of their difference, i.e., the
error estimates. Calculations for Figures 1 and 2 are per-
formed by assuming x1 = −2, x2 = 2, c1 = 0.1, c2 = −0.1
and x1 = −1, x2 = 1, c1 = 0.01, c2 = −0.005, respectively.

In Figures 3 and 4, the comparison between the cho-
sen boundary condition ut(x, 0) = d

dt uanal(x, 0) and

4 2 0 2 4
1.0

0.5

0.0

0.5

1.0

4 2 0 2 4
0.00000

0.00005

0.00010

0.00015

(a)
Comparison between numerical
result (Dotted line) and analytical
result (dashed line).

(b)
Absolute value of the difference
between the numerical result
and the analytical result.

Figure 2 Comparison between the analytical solution and numerically obtained solution at t = 0 for x1 = −1, x2 = 1, c1 = 0.01, and
c2 = −0.005. (a) Comparison the between numerical result (dotted line) and analytical result (dashed line). (b) Absolute value of the difference
between the numerical result and the analytical result.
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(a)
Comparison between numerical
result (Dotted line) and analytical
result (dashed line).

(b)
Absolute value of the difference
between the numerical result
and the analytical result.

Figure 3 Comparison between the profile of analytical ut(x, t) and numerically obtained profile of ut(x, t) at t = 0 for x1 = −2, x2 = 2,
c1 = 0.1, and c2 = −0.1. (a) Comparison between numerical result (dotted line) and analytical result (dashed line). (b) Absolute value of the
difference between the numerical result and the analytical result.

numerically obtained ut(x, 0) = d
dt unum(x, 0) is shown. In

the left hand panels of Figures 3 and 4, both d
dt uanal(x, 0)

and
d
dt

unum(x, 0) u(x, 0) are shown together in the same
window. Similarly, in the right hand panels of these
figures, the absolute value of their difference is shown.
Calculations for Figures 3 and 4 are carried out by assum-
ing x1 = −2, x2 = 2, c1 = 0.1, c2 = −0.1 and x1 = −1,
x2 = 1, c1 = 0.01, c2 = −0.005, respectively.

One can observe from Figures 1, 2, 3, and 4 that
both sets of numerically obtained initial solution and the
chosen initial conditions are matching with each other

almost perfectly for both given sets of x1, x2, c1, and c2. As
far as the error is concerned, the ‘difference’ graphs in the
right hand panels of these figures show that the deviation
is in the range of 10−3 to 10−4 which is quite reasonable
considering the fact that the number of terms chosen is
N = 20 only.

In Figure 5, numerically obtained solutions for different
values of t are shown. It can be noticed that the graph of
u(x, t) remains bounded between [ −1, 1] for small t ≤ 1.
The solution remains bounded even for higher t as t =
40, though not necessarily between [ −1, 1]. For higher
values of t, the profile of u(x, t) tends to go outside the
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(a)
Comparison between numerical
result (Dotted line) and analytical
result (dashed line).

(b)
Absolute value of the difference
between the numerical result
and the analytical result.

Figure 4 Comparison between the profile of analytical ut(x, t) and numerically obtained profile of ut(x, t) at t = 0 for x1 = −1, x2 = 1,
c1 = 0.01, and c2 = −0.005. (a) Comparison between numerical result (dotted line) and analytical result (dashed line). (b) Absolute value of the
difference between the numerical result and the analytical result.
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Figure 5 Solution profile u(x, t) at different t.

region of [ −1, 1] because the amount of error accumu-
lated becomes considerably higher. It might be taken care
of by choosing more TB functions. The possible signifi-
cance of selecting higher numbers of spectral basis func-
tions on reducing the error estimates will be investigated
in future.

Now, it will be interesting to check our solution from a
different point of view. To further validate the robustness
of the spectral method used, we would like to investi-
gate the ‘TIME’ part of the numerically obtained solution
u(x, t). In order to do that, we have considered four dif-
ferent points of time, say t = 0, t = 0.1, t = 0.5, and

2 4 6 8 10
N

6

5

4

3

2

1

log aN t

2 4 6 8 10
N

20

15

10

5

log aN t

(a) t (b);0 t 0.1;

2 4 6 8 10
N

10

8

6

4

2

log aN t

2 4 6 8 10
N

8

6

4

2

log aN t

(c) t (d)5 t 1;
Figure 6 Scatterplot for odd and even time solutions. The odd time solutions are shown by the ‘circles,’ and even time solutions are shown by
the ‘rectangles.’ (a) t = 0, (b) t = 0.1, (c) t = 0.5, and (d) t = 1.

www.SID.ir



Arc
hive

 of
 S

ID

Chowdhury and Biswas Mathematical Sciences 2012, 6:42 Page 7 of 8
http://www.iaumath.com/content/6/1/42

t = 1 for the following set: x1 = −2, x2 = 2, c1 = 0.1,
and c2 = −0.1. In the numerical method used, we have
chosen N = 20, which means that out of these 20 terms,
10 of them are associated with the TB functions with odd
degrees, which we will call odd time solutions. The other
10 are associated with the TB functions with even degrees,
which can be called even time solutions. Upon obtaining
and separating these odd and even time solutions, they are
plotted in the same graph for different t, as shown in the
Figure 6.

To ensure the boundedness of the solutions, odd time
solutions should be decreasing, and the even time solu-
tions should be increasing. For t = 0, only the odd time
solutions are shown because at t = 0, the even time
solutions are found to be very trivial; that is why they
are considered to be equal to zero. From these scatter-
plot graphs, one can observe that odd time solutions are
showing a downward (decreasing) tendency, whereas even
time solutions are found to be demonstrating an upward
(increasing) tendency; in this process, the solutions are
minimizing each others’ effect to achieve boundedness. At
some point though, some solutions show waywardness.
This discrepancy in the time solution renders the error in
the original solution u(x, t).

Conclusions
This paper studied the analytical and numerical simula-
tions for the P4 equation that is studied in relativistic
quantum mechanics. The singular 1-soliton solution of
the equation is obtained by the ansatz method. This leads
to a couple of constraint conditions that must hold in
order for the soliton solution to exist. Subsequently, the
spectral method is employed to simulate the kink or topo-
logical solitons, which are also known as shock waves, by
the aid of TB functions. The agreement between the exact
solutions and the numerical simulations is excellent. In
addition to visualizing this, the error estimate plots also
additionally indicate that. Additionally, the log plots indi-
cate an almost perfect agreement too. In the future, these
studies will be extended to KGE with power law nonlin-
earity and also with perturbation terms. Such results will
be reported in the future.

Appendices
Appendix 1
Rational Chebyshev functions (TBn(x)) for the infinite interval

TB0(x) = 1; TB1(x) = x/
(
x2+1

) 1
2 ;

TB2(x) = (x2−1)/(x2+1); TB3(x) = x
(
x2−3

)
/
(
x2+1

) 3
2 ;

TB4(x) = (
x4 − 6x2 + 1

)
/
(
x2 + 1

)2 ;

TB5(x) = x
(
x4 − 10x2 + 5

)
/
(
x2 + 1

) 5
2 ;

TB6(x) = (
x6 − 15x4 + 15x2 − 1

)
/
(
x2 + 1

)3 ;

TB7(x) = x
(
x6 − 21x4 + 35x2 − 7

)
/
(
x2 + 1

) 7
2 ;

TB8(x) = (
x8 − 28x6 + 70x4 − 28x2 + 1

)
/
(
x2 + 1

)4 ;

TB9(x) = x
(
x8 − 36x6 + 126x4 − 84x2 + 9

)
/
(
x2 + 1

) 9
2 ;

TB10(x) = (
x10 − 45x8 + 210x6 − 210x4 + 45x2 − 1

)
/
(
x2 + 1

)5 ;

TB11(x) = x
(
x10 − 55x8 + 330x6 − 462x4 + 165x2 − 11

)
/
(
x2 + 1

) 11
2 ;

TB12(x) = (
x12−66x10+495x8−924x6+495x4−66x2+1

)
/
(
x2 + 1

)6 ;

TB13(x) = x
(
x12 − 78x10 + 715x8 − 1, 716x6 + 1, 287x4

−286x2 + 13
)
/
(
x2 + 1

) 13
2 ;

TB14(x) = (
x14 − 91x12 + 1, 001x10 − 3, 003x8 + 3, 003x6

−1, 001x4 + 91x2 − 1
)
/
(
x2 + 1

)7 ;

TB15(x) = x
(
x14−105x12+1, 365x10−5, 005x8+6, 435x6

−3, 003x4 + 455x2 − 15
)
/
(
x2 + 1

) 15
2 ;

TB16(x) = (
x16−120x14 + 1, 820x12 −8, 008x10+12, 870x8

−8, 008x6 + 1, 820x4−120x2+1
)
/
(
1+x2)8 ;

TB17(x) = x
(
x16−136x14+2, 380x12−12, 376x10+24, 310x8

−19, 448x6 + 6, 188x4−680x2+17
)
/
(
x2 + 1

) 17
2 ;

TB18(x) = (
x18 − 153x16+3, 060x14−18, 564x12

+43, 758x10 − 43, 758x8 + 18, 564x6−3, 060x4

+153x2 − 1
)
/
(
x2 + 1

)9 ;

TB19(x) = x
(
x18 − 171x16 + 3, 876x14 − 27, 132x12

+75, 582x10−92, 378x8+50, 388x6−11, 628x4

+969x2 − 19
)
/
(
x2 + 1

) 19
2 ;

TB20(x) = (
x20−190x18 + 4, 845x16−38, 760x14

+125, 970x12 −184, 756x10 + 125, 970x8

−38, 760x6+4, 845x4−190x2+1
)
/
(
x2+1

)10 .

Appendix 2
Expressing the second derivative of TB functions as a linear
combination of other TB functions
It can be shown that the double derivative of any TB func-
tion is indeed a linear combination of other TB functions.

We know that TBn(x) = cos nθ , where cot θ = x and
dθ
dx = − sin2 θ .

The following expression for d2

dx2 TBn(x) involves a com-
bination of some trigonometric functions involving vari-
ous degrees of sin θ and cos θ .
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TB′′
n(x) = − (

n2 cos nθ sin2 θ + 2n sin nθ cos θ sin θ
)

sin2 θ .
(11)

It is quite obvious that to have a linear combination
of TB functions of various orders, one has to express
the right hand side of Equation 11 only as combination
of cosine functions of the first degree, though of differ-
ent angles. In order to achieve that, one has to use the
following identities:

sin4 θ =
(

1
8

cos 4θ − 1
2

cos 2θ + 3
8

)
;

sin2 θ =
(

1
2

− 1
2

cos 2θ

)
;

2 cos α cos β = cos(α + β) + cos(α − β);
2 sin α sin β = cos(α − β) − cos(α + β);

Basic use of these identities allows us to achieve the
desired form of d2

dx2 TBn(x) in the following way:

TB′′
n(x) = − n2 cos nθ sin4 θ − 2n sin nθ cos θsin3θ

= − n2 cos nθ

(
1
8

cos 4θ − 1
2

cos 2θ + 3
8

)

− n sin nθ

(
1
2

sin 2θ − 1
4

sin 4θ

)

= − n2

16
cos(n + 4)θ − n2

16
cos(n − 4)θ

+ n2

4
cos(n + 2)θ + n2

4
cos(n − 2)θ

− 3n2

8
cos nθ + n

4
cos(n + 2)θ − n

4
cos(n − 2)θ

+ n
4

cos(n − 4)θ − n
8

cos(n + 4)θ

= −
(

n2

16
+ n

8

)
cos(n + 4)θ

+
(

n2

4
+ n

4

)
cos(n + 2)θ − 3n2

8
cos nθ

+
(

n2

4
− n

4

)
cos(n − 2)θ

−
(

n2

16
− n

8

)
cos(n − 4)θ

= −
(

n2 + 2n
16

)
TBn+4(x)

+
(

n2 + n
4

)
TBn+2(x) − 3n2

8
TBn(x)

+
(

n2 − n
4

)
TBn−2(x) −

(
n2 − 2n

16

)
TBn−4(x).
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