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Stability and common stability for the systems
of linear equations and its applications
Mohsen Alimohammady* and Ali Sadeghi

Abstract

In this paper some results about the Hyers-Ulam-Rassias stability for the linear functional equations in general form
and its Pexiderized can be proved for given functions on general domain to a complex Banach spaces under some
suitable conditions. In connection with the problem of G. L. Forti in the 13st ICFEI we consider the common stability
for the systems of functional equations and our aim is to establish some common Hyers-Ulam-Rassias stability for
systems of homogeneous linear functional equations. The results is applied to the study of some superstability results
for the exponential functional equation.
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Introduction
The starting point of the stability theory of functional
equations was the problem formulated by S. M. Ulam
in 1940 (see [1]), during a conference at Wisconsin
University:

Let (G, .) be a group (B, ., d) be a metric group. Does for
every ε > 0, there exists a δ > 0 such that if a function
f : G → B satisfies the inequality

d(f (xy), f (x)f (y)) ≤ δ, x, y ∈ G,

there exists a homomorphism g : G → B such that

d(f (x), g(x)) ≤ ε, x ∈ G?

In 1941, D.H. Hyers [2] gave an affirmative partial answer
to this problem. This is the reason for which today this
type of stability is called Hyers-Ulam stability of func-
tional equation. In 1950, Aoki [3] generalized Hyers’
theorem for approximately additive functions. In 1978,
Th. M. Rassias [4] generalized the theorem of Hyers
by considering the stability problem with unbounded
Cauchy differences. Taking this fact into account, the
additive functional equation f (x + y) = f (x) + f (y) is
said to have the Hyers-Ulam-Rassias stability on (X, Y ).
This terminology is also applied to the case of other
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functional equations. On the other hand, J. M. Rassias
[5-7] considered the Cauchy difference controlled by
a a product of different powers of norm. However,
there was a singular case; for this singularity a coun-
terexample was given by P. Gavruta [8]. This stabil-
ity is called Ulam-Gavruta-Rassias stability. In addition,
J. M. Rassias considered the mixed product-sum of pow-
ers of norms as the control function. This stability is
called J.M.Rassias stability (see also [9-12]). For more
detailed definitions of such terminologies one can refer
to [13] and [14]. Thereafter, the stability problem of
functional equations has been extended in various direc-
tions and studied by several mathematicians (see, e.g.,
[15-29]).

The Hyers-Ulam stability of mappings is in development
and several authors have remarked interesting applica-
tions of this theory to various mathematical problems.
In fact the Hyers-Ulam stability has been mainly used
to study problems concerning approximate isometries or
quasi-isometries, the stability of Lorentz and conformal
mappings, the stability of stationary points, the stability
of convex mappings, or of homogeneous mappings, etc
[30-34].

Of the most importance is the linear functional equation
in general form (see [35])

f (ρ(x)) = p(x)f (x) + q(x) (1.1)
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where ρ, p and q are given functions on an interval I and
f is unknown. When q(x) ≡ 0 this equation, i.e.,

f (ρ(x)) = p(x)f (x) (1.2)

is called homogeneous linear equation. We refer the
reader to [35,36] for numerous results and references con-
cerning this equation and its stability in the sense of
Ulam.

In 1991 Baker [37] discussed Hyers-Ulam stability for
linear equations (1.1). More concretely, the Hyers-Ulam
stability and the generalized Hyers-Ulam-Rassias stability
for equation

f (x + p) = kf (x) (1.3)

were discussed by Lee and Jun [38]. Also the gamma
functional equation is a special form of homogeneous lin-
ear equation (1.2) were discussed by S. M. Jung [39-41]
proved the modified Hyers-Ulam stability of the gamma
functional equation. Thereafter, the stability problem of
gamma functional equations has been extended and stud-
ied by several mathematicians [42-46].

Throughout this paper, assume that X is a nonempty set,
F = Q, R or C and B is a Banach spaces over F and also
ψ : X → R+, f , g : X → B, p : X → F\{0} and q : X → B
are functions and also σ : X → X is a arbitrary map.

In the first section of this paper, we present some
results about Hyers-Ulam-Rassias stability via a fixed
point approach for the linear functional equation in gen-
eral form (1.1) and its Pexiderized

f (ρ(x)) = p(x)g(x) + q(x) (1.4)

under some suitable conditions. Note that the main results
of this paper can be applied to the well known stabil-
ity results for the gamma, beta, Abel, Schröder, iterative
and G-function type’s equations, and also to certain other
forms.

In 1979, another type of stability was observed by
J. Baker, J. Lawrence and F. Zorzitto [47]. Indeed, they
proved that if a function is approximately exponential,
then it is either a true exponential function or bounded.
This result was the first result concerning the superstabil-
ity phenomenon of functional equations see also [48-51]).
Later, J. Baker [52] (see also [51]) generalized this famous
result as follows:

Let (S, ·) be an arbitrary semigroup, and let f map S
into the field C of all complex numbers. Assume that f is
an approximately exponential function, i.e., there exists a
nonnegative number ε such that

‖f (x · y) − f (x)f (y)‖ ≤ ε

for all x, y ∈ S. Then f is either bounded or exponential.
The result of Baker, Lawrence and Zorzitto [47] was

generalized by L. Székelyhidi [53] in another way and he
obtained the following result.

Theorem 1.1. [53] Let (G, .) be an Abelian group with
identity and let f , m : G → C be functions such that there
exist functions M1, M2 :→[ 0, ∞) with

‖f (x.y) − f (x)m(y)‖ ≤ min{M1(x), M2(y)}
for all x, y ∈ G. Then either f is bounded or m is an
exponential and f (x) = f (1)g(x) for all x ∈ G.

During the thirty-first International Symposium on
Functional Equations, Th. M. Rassias [54] introduced the
term mixed stability of the function f : E → R (or C),
where E is a Banach space, with respect to two operations
‘addition’ and ‘multiplication’ among any two elements of
the set {x, y, f (x), f (y)}. Especially, he raised an open prob-
lem concerning the behavior of solutions of the inequality

‖f (x.y) − f (x)f (y)‖ ≤ θ(‖x‖p + ‖y‖p).

During the 13st International Conference on Functional
Equations and Inequalities 2009, G. L. Forti posed follow-
ing problem.

Problem. Consider functional equations of the form
n∑

i=1
aif (

ni∑
k=1

bikxk) = 0
n∑

i=1
ai �= 0 (1.5)

and
n∑

i=1
αif (

ni∑
k=1

βikxk) = 0
n∑

i=1
βi �= 0 (1.6)

where all parameters are real and f : R → R. Assume that
the two functional equations are equivalent, i.e., they have
the same set of solutions. Can we say something about the
common stability? More precisely, if (1.5) is stable, what
can we say about the stability of (1.6). Under which addi-
tional conditions the stability of (1.5) implies that of (1.6)?

In connection the above problem we consider the term
of common stability for systems of functional equations.
In this paper, Usually the functional equations

E1(f ) = E2(f ); (1.7)

D1(f ) = D2(f ) (1.8)

is said to have common Hyers-Ulam stability if for a
common approximate solution fs such that

‖E1(fs(x)) − E2(fs(x))‖ ≤ δ1; (1.9)

‖D1(fs(x)) − D2(fs(x))‖ ≤ δ2 (1.10)

for some fixed constant δ1, δ2 ≥ 0 there exists a common
solution f of equations (1.7) and (1.8) such that

‖f (x) − fs(x)‖ ≤ ε; (1.11)

for some positive constant ε.
www.SID.ir
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In the last section of this paper, In connection with
the problem of G. L. Forti we consider some systems of
homogeneous linear equations and our aim is to estab-
lish some common Hyers-Ulam-Rassias stability for these
systems of functional equations. As a consequence of
these results, we give some superstability results for the
exponential functional equation. Furthermore, in connec-
tion with problem of Th. M. Rassias, we generalized the
theorem of Baker, Lawrence and Zorzitto and theorem of
L. Székelyhidi.

For the reader’s convenience and explicit later use, we
will recall two fundamental results in fixed point theory.

Definition 1.2. The pair (X, d) is called a general-
ized complete metric space if X is a nonempty set and
d : X2 →[ 0, ∞] satisfies the following conditions:

1. d(x, y) ≥ 0 and the equality holds if and only if x = y;
2. d(x, y) = d(y, x);
3. d(x, z) ≤ d(x, y) + d(y, z);
4. every d-Cauchy sequence in X is d-convergent.

for all x, y ∈ X.

Note that the distance between two points in a general-
ized metric space is permitted to be infinity.

Definition 1.3. Let (X, d) be a metric space. A mapping
J : X → X satisfies a Lipschitz condition with Lipschitz
constant L ≥ 0 if

d(J(x), J(y)) ≤ Ld(x, y)

for all x, y ∈ X. If L < 1, then J is called a strictly
contractive map.

Theorem 1.4. (Banach’s contraction principle) Let (X, d)
be a complete metric space and let J : X → X be strictly
contractive mapping. Then

1. the mapping J has a unique fixed point x∗ = J(x∗);
2. the fixed point x∗ is globally attractive, i.e.,

lim
n→∞ Jn(x) = x∗

for any starting point x ∈ X;
3. one has the following estimation inequalities:

d(Jn(x), x∗) ≤ Lnd(x, x∗),

d(Jn(x), x∗) ≤ 1
1 − L

d(Jn(x), Jn+1(x)),

d(x, x∗) ≤ 1
1 − L

d(J(x), x)

for all nonnegative integers n and all x ∈ X.

Theorem 1.5. [55] Let (X, d) be a generalized complete
metric space and J : X → X be strictly contractive
mapping. Then for each given element x ∈ X, either

d(Jn(x), Jn+1(x)) = ∞
for all nonnegative integers n or there exists a positive
integer n0 such that

1. d(Jn(x), Jn+1(x)) < ∞, for all n ≥ n0;
2. the sequence {Jn(x)} converges to a fixed point y∗ of J ;
3. y∗ is the unique fixed point of J in the set

Y = {y ∈ X : d(Jn0(x), y) < ∞};
4. d(y, y∗) ≤ 1

1−L d(J(y), y).

Stability of the linear functional equation and its
Pexiderized
In this section, First we consider the Hyers-Ulam-Rassias
stability via a fixed point approach for the linear func-
tional equation (1.1) and then applying these result we will
investigate Pexiderized linear functional equation (1.4).

Theorem 2.1. Let f : X → B be a function and

‖f (ρ(x)) − p(x)f (x) − q(x)‖ ≤ ψ(x) (2.1)

for all x ∈ X. If there exists a real 0 < L < 1 such that

ψ(ρ(x)) ≤ L|p(ρ(x))|ψ(x) (2.2)

for all x ∈ X. Then there is an unique function T : X → B
such that T(ρ(x)) = p(x)T(x) + q(x) and

‖f (x) − T(x)‖ ≤ ψ(x)

(1 − L)|p(x)|
for all x ∈ X.

Proof. Let us consider the set A := {h : X → B} and
introduce the generalized metric on A:

d(u, h) = sup
{x∈X ; ψ(x) �=0}

|p(x)|‖g(x) − h(x)‖
ψ(x)

.

It is easy to show that (A, d) is generalized complete
metric space. Now we define the function J : A → A with

J(h(x)) = 1
p(x)

h(ρ(x)) − q(x)

p(x)

for all h ∈ A and x ∈ X. Since ψ(ρ(x)) ≤ L|p(ρ(x))|ψ(x)

for all x ∈ X and ρ is a surjection map, so

d(J(u), J(h)) = sup
{x∈X;ψ(x) �=0}

|p(x)|‖u(ρ(x)) − h(ρ(x))‖
|p(x)|ψ(x)

≤ sup
{x∈X;ψ(ρ(x)) �=0}

L
|p(ρ(x))|‖u(ρ(x))−h(ρ(x))‖

ψ(ρ(x))

= Ld(u, h)
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for all u, h ∈ A, that is J is a strictly contractive self-
mapping of A, with the Lipschitz constant L (note that
0 < L < 1). From (2.1), we get∥∥∥∥ f (ρ(x))

p(x)
− q(x)

p(x)
− f (x)

∥∥∥∥ ≤ ψ(x)

|p(x)|
for all x ∈ X, which says that d(J(f ), f ) ≤ 1 < ∞. So, by
Theorem (1.4), there exists a mapping T : X → B such
that

1. T is a fixed point of J , i.e.,

T(ρ(x)) = p(x)T(x) + q(x) (2.3)

for all x ∈ S. The mapping T is a unique fixed point
of J in the set Ã = {h ∈ A : d(f , h) < ∞}. This
implies that T is a unique mapping satisfying (2.3)
such that there exists C ∈ (0, ∞) satisfying

‖f (x) − T(x)‖ ≤ C
ψ(x)

|p(x)|
for all x ∈ X.

2. d(Jn(f ), T) → 0 as n → ∞. This implies that

T(x) = lim
n→∞

f (ρn(x))∏n−1
i=0 p(ρi(x))

−
n−1∑
k=0

q(ρi(x))∏k
i=0 p(ρi(x))

for all x ∈ X.
3. d(f , T) ≤ 1

1−L d(J(f ), f ), which implies,

d(f , T) ≤ 1
1 − L

or

‖f (x) − T(x)‖ ≤ ψ(x)

(1 − L)|p(x)|
for all x ∈ X.

Z. Gajda in his paper [56] showed that the theorem of
Th. Rassias [4] is false for some special control function
and give the following co-counterexample.

Theorem 2.2. Let f : R → R be a function and

|f (x + y) − f (x) − f (y)| ≤ θ(|x| + |y|) (2.4)

for all x, y ∈ R and some θ > 0. But there is no constant
δ ∈[ 0, ∞) and no additive function T : R → R satisfying
the condition

|f (x) − T(x)| ≤ δ|x| (2.5)

for all x ∈ R.

With the above Theorem, its easy to show that the
following result.

Corollary 2.3. Let f : R → R be a function and

|f (2x) − 2f (x)| ≤ |x| (2.6)

for all x ∈ R. But there is no constant δ ∈[ 0, ∞) and no
function T : R → R satisfying the conditions

T(2x) = 2T(x) (2.7)

|f (x) − T(x)| ≤ δ|x| (2.8)

for all x ∈ R.

Its obvious that the above corollary is a counterexample
for the Theorem (2.1), when L = 1.

With Theorem (2.1), its easy to show that the following
Corollary.

Corollary 2.4. Let f : X → B be a function and

‖f (ρ(x)) − p(x)f (x) − q(x)‖ ≤ δ (2.9)

for all x ∈ X and some δ > 0. If a ≤ |p(x)| for all x ∈
X and some real a > 1, then there is an unique function
T : X → B such that T(ρ(x)) = p(x)T(x) + q(x)

‖f (x) − T(x)‖ ≤ δ

a − 1

for all x ∈ X.

Similarly we prove that a Hyers-Ulam-Rassias stability
for the linear functional equation with another suitable
conditions.

Theorem 2.5. Let f : X → B be a function and

‖f (ρ(x)) − p(x)f (x) − q(x)‖ ≤ ψ(x) (2.10)

for all x ∈ X. Let there exists a positive real L < 1 such that

|p(x)|ψ(ρ−1(x)) ≤ Lψ(x) (2.11)

for all x ∈ X and also ρ be a permutation of X. Then there
is an unique function T : X → B such that T(ρ(x)) =
p(x)T(x) + q(x)

‖f (x) − T(x)‖ ≤ 1
1 − L

ψ(ρ−1(x))

for all x ∈ X.

Proof. Let us consider the set A := {h : X → B} and
introduce the generalized metric on A:

d(u, h) = sup
{x∈X ; ψ(x) �=0}

‖g(x) − h(x)‖
ψ(ρ−1(x))

.

It is easy to show that (A, d) is generalized complete
metric space. Now we define the function J : A → A with

J(h(x)) = p(ρ−1(x))h(ρ−1(x)) + q(ρ−1(x))
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for all h ∈ A and x ∈ X. Since |p(x)|ψ(ρ−1(x)) ≤ Lψ(x)

for all x ∈ X, so

d(J(u), J(h)) = sup
{x∈X ; ψ(x)�=0}

|p(ρ−1(x))|‖u(ρ−1(x))−h(ρ−1(x))‖
ψ(ρ−1(x))

≤ sup
{x∈X ; ψ(ρ−1(x))�=0}

L
‖u(ρ−1(x))−h(ρ−1(x))‖

ψ(ρ−2(x))

= Ld(u, h)

for all u, h ∈ A, that is J is a strictly contractive self-
mapping of A, with the Lipschitz constant L (note that
0 < L < 1). From (2.10), we get∥∥f (x) − p(ρ−1(x))f (ρ−1(x))

∥∥ ≤ ψ(ρ−1(x))

for all x ∈ X, which says that d(J(f ), f ) ≤ 1 < ∞. So, by
Theorem (1.4), there exists a mapping T : X → B such
that

1. T is a fixed point of J , i.e.,

T(ρ(x)) = p(x)T(x) + q(x) (2.12)

for all x ∈ S. The mapping T is a unique fixed point
of J in the set Ã = {h ∈ A : d(f , h) < ∞}. This
implies that T is a unique mapping satisfying (2.12)
such that there exists C ∈ (0, ∞) satisfying

‖f (x) − T(x)‖ ≤ C
ψ(x)

|p(x)|
for all x ∈ X.

2. d(Jn(f ), T) → 0 as n → ∞. This implies that

T(x) = lim
n→∞

n∏
i=1

p(ρ−i(x))f (ρ−n(x)) −
n∑

k=1
q(ρk(x))

×
k−1∏
i=0

p(ρ−i(x))

for all x ∈ X and in the above formula, we set
p(ρ−i(x)) := 1, when i = 0.

3. d(f , T) ≤ 1
1−L d(J(f ), f ), which implies,

d(f , T) ≤ 1
1 − L

.

‖f (x) − T(x)‖ ≤ 1
1 − L

ψ(ρ−1(x))

for all x ∈ X.

Similar to the Corollary (2.3), we get the following result,
where its counterexample for the Theorem (2.5), when
L = 1.

Corollary 2.6. Let f : R → R be a function and∣∣∣∣f (1
2

x) − 1
2

f (x)

∣∣∣∣ ≤ |x| (2.13)

for all x ∈ R. But there is no constant δ ∈[ 0, ∞) and no
function T : R → R satisfying the conditions

T
(

1
2

x
)

= 1
2

T(x) (2.14)

|f (x) − T(x)| ≤ δ|x| (2.15)

for all x ∈ R.

Corollary 2.7. Let f : X → B be a function and

‖f (ρ(x)) − p(x)f (x) − q(x)‖ ≤ δ (2.16)

for all x ∈ X and some δ > 0. If |p(x)| ≤ L for all x ∈ X
and some real 0 < L < 1, then there is an unique function
T : X → B such that T(ρ(x)) = p(x)T(x) + q(x)

‖f (x) − T(x)‖ ≤ δ

1 − L

for all x ∈ X.

Corollary 2.8. Let f : X → B be a function such that X
be a normed linear space over F and

‖f (ax) − kf (x)‖ ≤ ‖x‖p (2.17)

for all x ∈ X, in which p ∈ R, a ∈ F. If p ≤ 0, |a| > 1 and
|k| > 1 or p ≤ 0, |a| < 1 and |k| < 1 or p ≥ 0, |a| > 1
and |k| < 1 or p ≥ 0, |a| < 1 and |k| > 1, then there is a
unique function T such that T(ax) = aT(x)

‖f (x) − T(ρ,k)(x)‖ ≤ ‖x‖p

||k| − 1|
for all x ∈ X.

Proof. Set ρ(x) := ax and ψ(x) := ‖x‖p for all x ∈ X
and then apply Theorem (2.1) and Theorem (2.5).

Now in the following we consider the Hyers-Ulam-
Rassias stability of Pexiderized linear functional equation
(1.4).

Theorem 2.9. Let f , g : X → B be a function and

‖f (ρ(x)) − p(x)g(x) − q(x)‖ ≤ ψ(x) (2.18)

for all x ∈ X. If there exists a positive real L < 1 such that

ψ(ρ(x)) ≤ L|p(ρ(x))|ψ(x); (2.19)

‖f (ρ(x)) − g(ρ(x))‖ ≤ L‖f (x) − g(x)‖ (2.20)
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for all x ∈ X. Then there is an function T such that
T(ρ(x)) = p(x)T(x) + q(x)

‖f (x) − T(x)‖ ≤ ψ̃(x)

(1 − L)|p(x)|

‖g(x) − T(x)‖ ≤ L
1 − L

[
ψ̃(x) + ψ(x)

|p(x)|
]

for all x ∈ X, in which ψ̃(x) = ψ(x) + |p(x)|‖f (x) − g(x)‖
for all x ∈ X.

Proof. Applying (2.18), we get

‖f (ρ(x)) − p(x)f (x) − q(x)‖ ≤ ψ(x) + |p(x)|‖f (x)

− g(x)‖ (2.21)

≤ ψ̃(x) (2.22)

for all x ∈ X. From (2.19) and (2.20), its easy to show that
the following inequality

ψ̃((ρ(x)) ≤ L|p(ρ(x))|ψ̃(x)

for all x ∈ X. So, by Theorem (2.1), there is an unique
function T : X → B such that T(ρ(x)) = p(x)T(x) + q(x)

‖f (x) − T(x)‖ ≤ ψ̃(x)

(1 − L)|p(x)|
for all x ∈ X. So from the above inequality, we have

‖f (ρ(x)) − T(ρ(x))‖ ≤ ψ̃(ρ(x))

(1 − L)|p(ρ(x))|
for all x ∈ X. We show that T is a linear equation, thus
from the above inequality and (2.18), we get

‖g(x) − T(x)‖ ≤ L
1 − L

[
ψ̃(x) + ψ(x)

|p(x)| ]

for all x ∈ X. The proof is complete.

Common stability for the systems of homogeneous
linear equations
Throughout this section, assume that {pi : X → F\{0}}i∈I ,
{ρi : X → X}i∈I and {ψi : X → R+}i∈I be three family
of functions. Here i is a variable ranging over the arbitrary
index set I. Also we define the functions Pi,n : X → F\{0}
and θi,n(x) : X → R+ with

Pi,n(x) =
n−1∏
k=0

pi(ρ
k
i (x))

and

θi,n(x) = (1 − Ln
i )ψi(x)

(1 − Li)|pi(x)|
for a family of positive reals {Li}i∈I , all x ∈ X, any index i
and positive integer n.

In this section, we consider some systems of homoge-
neous linear equations

f (ρi(x)) = pi(x)f (x), (3.1)

and our aim is to establish some common Hyers-Ulam-
Rassias stability for these systems of functional equations.
As a consequence of these results, we give some gen-
eralizations of well-known Baker’s superstability result
for exponential functional equation to the a family of
functional equations. Note that the following Theorem is
partial affirmative answer to problem 1, in the 13st ICFEI.

Theorem 3.1. Let f : X → B be a function and

‖f (ρi(x)) − pi(x)f (x)‖ ≤ ψi(x) (3.2)

for all x ∈ X and i ∈ I. Assume that

1. there exists a family of positive reals {Li}i∈I such that
Li < 1 and

ψi(ρi(x)) ≤ Li|pi(ρi(x))|ψi(x)

for all x ∈ X and i ∈ I;
2. ρi ◦ ρj = ρi ◦ ρj for all i, j ∈ I;
3. pi(ρj(x)) = pi(x) for all distinct i, j ∈ I ;
4. limn→∞

θi,n(ρn
j (x))

|Pj,n(x)| = 0 for all x ∈ X and every distinct
i, j ∈ I.

Then there is a unique function T such that

T(ρi(x)) = pi(x)T(x)

for all x ∈ X and i ∈ I and also

‖f (x) − T(x)‖ ≤ inf
i∈I

{
ψi(x)

(1 − Li)|pi(x)|
}

for x ∈ X.

Proof. It follows from (2.1), there is an unique set of
functions Ti : X → B such that Ti(ρi(x)) = pi(x)Ti(x)

‖f (x) − Ti(x)‖ ≤ ψi(x)

(1 − Li)|pi(x)|
for all x ∈ X. Moreover, The function Ti is given by

Ti(x) = lim
n→∞

f (ρn
i (x))∏n−1

k=0 pi(ρ
k
i (x))

= lim
n→∞ Jn

i (f )

for all x ∈ X and any fixed i ∈ I. In the proof of Theorem
(2.1), we show that

d(Ji(f ), f ) ≤ 1.

By induction, its easy to show that

d(Jn
i (f ), f ) ≤ 1 − Ln

i
1 − Li

,
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which means that∥∥∥∥∥f (ρn
i (x)) −

n−1∏
k=0

pi(ρ
k
i (x))f (x)

∥∥∥∥∥ ≤
( n−1∏

k=0
pi(ρ

k
i (x))

)

× (1 − Ln
i )ψi(x)

(1 − Li)|pi(x)|

for all x ∈ X and i ∈ I. Now we show that Ti = Tj for
any i, j ∈ I. Let i and j be two arbitrary fixed indexes of I.
So, from last inequality, we obtain

‖f (ρn
i (x)) − Pi,n(x)f (x)‖ ≤ |Pi,n(x)|θi,n(x); (3.3)

‖f (ρn
j (x)) − Pj,n(x)f (x)‖ ≤ |Pj,n(x)|θj,n(x) (3.4)

for all x ∈ X. On the replacing x by ρn
j (x) in (3.3) and x by

ρn
i (x) in (3.4), we have

‖f (ρn
i (ρn

j (x))) − Pi,n(ρn
j (x))f (ρn

j (x))‖ ≤ |Pi,n(ρn
j (x))|θi,n

× (ρn
j (x)); (3.5)

‖f (ρn
j (ρn

i (x))) − Pj,n(ρn
i (x))f (ρn

i (x))‖ ≤ |Pj,n(ρn
i (x))|θj,n

× (ρn
i (x)) (3.6)

for all x ∈ X. From assumption (3.1), its obvious that
f (ρn

i (ρn
j (x))) = f (ρn

j (ρn
i (x))), Pi,n(ρn

j (x)) = Pi,n(x) and
Pj,n(ρn

i (x)) = Pj,n(x) for all x ∈ X. So, Combining (3.5)
and (3.6), we have
‖Pi,n(x)f (ρn

j (x))−Pj,n(x)f (ρn
i (x))‖ ≤ |Pi,n(x)|θi,n(ρn

j (x))

+ |Pj,n(x)|θj,n(ρn
i (x))

or ∥∥∥∥∥ f (ρn
j (x))

Pj,n(x)
− f (ρn

i (x))

Pi,n(x)

∥∥∥∥∥ ≤ θi,n(ρn
j (x))

|Pj,n(x)| + θj,n(ρn
i (x))

|Pi,n(x)|

for all x ∈ X. From assumption limn→∞
θi,n(ρn

j (x))

|Pj,n(x)| = 0 for
all x ∈ X and every distinct i, j ∈ I, so, its implies that
Ti = Tj.

Now set T = Ti and since ‖f (x) − Ti(x)‖ ≤ ψi(x)
(1−Li)|pi(x)|

for all x ∈ X and all x ∈ I, there is a unique function T
such that

T(ρi(x)) = pi(x)T(x)

for all x ∈ X and i ∈ I and also

‖f (x) − T(x)‖ ≤ inf
i∈I

{
ψi(x)

(1 − Li)|pi(x)|
}

for x ∈ X.

Corollary 3.2. Let f : X → B be a function and

‖f (ρi(x)) − cif (x)‖ ≤ ψi(x) (3.7)

for all x ∈ X and i ∈ I, where {ci}i∈I and {δi}i∈I are two
family of real numbers such that δi ≥ 0 and |ci| > 1.
Assume that ρi ◦ ρj = ρi ◦ ρj for all i, j ∈ I and also

ψi(ρi(x)) ≤ ψi(x)

for all x ∈ X and any i ∈ I, then there is a unique function
T such that

T(ρi(x)) = ciT(x)

for all x ∈ X and i ∈ I and also

‖f (x) − T(x)‖ ≤ inf
i∈I

{
ψi(x)

ci − 1

}
for x ∈ X.

Proof. Sets pi := ci and ψi := δi and applying Theorem
(3.1).

In the following, the results are applied to the study of
some superstability results for the exponential functional
equation.

Theorem 3.3. Let (S, +) be an commutative semigroup
and f , g : S → C satisfying

‖f (x + y) − g(y)f (x)‖ ≤ φ(x, y) (3.8)

for all x, y ∈ S, where φ : S2 → R+ is function. Let g be a
unbounded function and

φ(x + i, y) ≤ φ(x, y)

for all x, y ∈ S and i ∈ I, where I = {i ∈ S |‖g(i)| > 1}.
Then f (x + y) = g(y)f (x) for all x, y ∈ S.

Proof. Let g be a unbounded function and I = {i ∈
S ‖ |g(i)| > 1}, then sets ρi(x) := x + i, ci := g(i) and
ψi := φ(x, i) for all x ∈ S and any i ∈ I. Since ρiρj = ρiρj
and ψi(ρi(x)) ≤ ψi(x) for all x ∈ S and any i ∈ I , so by
Corollary (3.2), there is an unique function T such that

T(ρi(x)) = ciT(x)

for all x ∈ X and i ∈ I and also

‖f (x) − T(x)‖ ≤ inf
i∈I

{ ψi
ci − 1

}

for x ∈ X. Since g is a unbounded function, from last
inequality T = f , which implies that

f (ρi(x)) = cif (x)

or

f (x + i) = g(i)f (x) (3.9)

for all x ∈ S and i ∈ I. On the replacing x by x + ni in (3.8)

‖f ((x + y) + ni) − g(y)f (x + ni)‖ ≤ φ(x, y)
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or ∥∥∥∥ f ((x + y) + ni)
g(i)n − g(y)f (x + ni)

g(i)n

∥∥∥∥ ≤ φ(x + ni, y)
|g(i)|n

for all x, y ∈ S, any fixed i ∈ I and positive integer n. From
equation (3.9), its easy to show that f (x + ni) = g(i)nf (x)

and φ(x + ni, y) ≤ φ(x, y) for all x ∈ S, any fixed i ∈ I and
positive integer n. So, we have

‖f (x + y) − g(y)f (x)‖ ≤ φ(x, y)
|g(i)|n

for all x, y ∈ S, any fixed i ∈ I and positive integer n (note
that |g(i)| > 1), which implies that f (x + y) = g(y)f (x) for
all x, y ∈ S. The proof is complete.

With the above Theorem, its obvious that the following
corollaries.

Corollary 3.4. Let (S, +) be a commutative semigroup
and f , g : S → C satisfying

‖f (x + y) − g(y)f (x)‖ ≤ δ (3.10)

for all x, y ∈ S and some δ > 0. Then g is either bounded or
f (x + y) = g(y)f (x) for all x, y ∈ S.

Corollary 3.5. Let (S, +) be a commutative semigroup
and f : S → C satisfying

‖f (x + y) − f (y)f (x)‖ ≤ δ (3.11)

for all x, y ∈ S. Then f is either bounded or f is exponential.
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