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Abstract

For a sequence of Hilbert spaces and continuous linear operators, the curvature is defined to be the composition of any
two consecutive operators. This is modeled on the de Rham resolution of a connection on a module over an algebra.

Purpose: We wish to study those sequences for which the curvature is ‘small’ at each step, e.g., belongs to a fixed
operator ideal.

Methods: Our methods are based on combining homological algebra with the theory of Fredholm operators in
Hilbert spaces.

Results: We elaborate the theory of Fredholm sequences and show that any Fredholm sequence of trace class
curvature can be reduced to a Fredholm complex. This allows one to introduce the Lefschetz number for cochain
self-mappings of Fredholm sequences of ‘small’ curvature.

Conclusion: Our results raise fixed point theory for Fredholm complexes of trace class curvature.
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Introduction
Let F be a smooth vector bundle over a compact manifold
X and ∂ a connection on F. This is a first-order differential
operator C∞(X , F) → �1(X , F) on X , satisfying ∂(ωf ) =
dω f + ω ∂f for all f ∈ C∞(X , F) and ω ∈ C∞(X ). As
usual, we denote by �i(X , F) the space of all smooth dif-
ferential forms of degree i with coefficients in F on X . On
keeping the Leibniz rule, the connection extends to a first-
order differential operator ∂ i : �i(X , F) → �i+1(X , F)

for each i = 1, . . . , n, where n is the dimension of X .
An easy computation shows that ∂ i+1∂ if = � f , where
� is a differential form of degree 2 with coefficients in
C∞(Hom(F)). The form � is said to be the curvature
of the connection ∂ , which generalizes to the curvature
homomorphism related to a connection on a module over
an algebra (see [1], 2.10).

In a scale of Sobolev spaces on X , if there is any, the
operators ∂ i assemble into a sequence
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0 → Hs(X , F0)
∂0→ Hs−1(X , F1)

∂1→ . . .
∂n−1→ Hs−n(X , Fn) → 0,

(1.1)

where Fi = F ⊗ �iT∗X , ∂0 := ∂ , and s ≥ n is any
fixed number. The compositions ∂ i+1 ◦ ∂ i act through the
embeddings Hs−i(X , Fi+2) ↪→ Hs−i−2(X , Fi+2), which
are compact by the Rellich theorem, so ∂ i+1 ◦ ∂ i are com-
pact operators from Hs−i(X , Fi) to Hs−i−2(X , Fi+2). On
using the scale of Schatten ideals Sp with p > 0, we can
even further specify the ‘smallness’ of the curvature of
sequence (1.1); more precisely, ∂ i+1∂ i is of class Sp with
any p > n/2, see for instance § 15 of [2].

A connection ∂ on the bundle F is said to be flat if its cur-
vature vanishes, that is, ∂ i+1◦∂ i = 0 for all i = 0, . . . , N−1.
In this case, complex (1.1) possesses a well-defined coho-
mology, which allows one to define the Euler characteristic
for sequence (1.1). In the general case, the cohomology is
no longer available, so sequence (1.1) bears no analytical
index although the topological index can be easily intro-
duced. In [3], a Fredholm complex is constructed whose
differential differs from ∂ i by compact operators. Hence,
it follows that the Euler characteristic of this Fredholm
complex does not depend on its concrete choice. In this

© 2012 Tarkhanov and Wallenta; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

www.SID.ir



Arc
hive

 of
 S

ID

Tarkhanov and Wallenta Mathematical Sciences 2012, 6:44 Page 2 of 8
http://www.iaumath.com/content/6/1/44

way, the analytical index is introduced for sequence (1.1),
which has led to a substantial index theory, see [4].

More generally, let (L·, d) stand for a sequence of Hilbert
spaces Li and continuous linear operators di : Li → Li+1.
We simply write df := dif for f ∈ Li, if it causes no confu-
sion. When considering bounded sequences, we can cer-
tainly assume that Li = 0 for i is different from 0, 1, . . . , N ;
for if not, we shift the indexing. We thus arrive at

0 → L0 d0→ L1 d1→ . . .
dN−1→ LN → 0. (1.2)

To adhere to geometric language, we say that the com-
positions di+1 ◦ di characterize the curvature of the
sequence (L·, d). The sequences of zero curvature are not
stable relative to small perturbations of the differential d.
Hence, we will be interested in those sequences which
have a ‘small’ curvature. What is meant by ‘smallness’ is
that all the compositions di+1 ◦ di belong to an opera-
tor ideal I(Li, Li+2). Let L denote the class of all bounded
linear operators acting between arbitrary Banach spaces.
Loosely speaking, an operator ideal I is a subclass of L
such that I + I = I and L ◦ I ◦ L = I . With a few
examples, we recall the ideals of compact, trace class, and
absolutely summing operators (see [2]). Formally, the case
where I is the zero ideal is also included.

A cochain self-mapping of (L·, d) means any collection
e = (ei)i∈Z of operators ei ∈ L(Li) satisfying diei =
ei+1di modulo I(Li, Li+1) for all i ∈ Z. If I is the zero
ideal, then any cochain self-mapping e of (L·, d) induces a
linear action He on the cohomology of (L·, d). If the coho-
mology is finite dimensional, then the alternating sum of
traces of (He)i is called the Lefschetz number L(e) of e.
The problem of evaluation of L(e) in appropriate terms
generalizes the index problem and is usually referred to
as Lefschetz theory (see [5,6]). A proper definition of
the Lefschetz number for arbitrary sequences of small
curvature is expected to initiate an interesting Lefschetz
theory for the set of cochain self-mappings becomes more
substantial.

The present paper is aimed at specifying the Lef-
schetz number for sequences of trace class curvature, the
corresponding Lefschetz theory being under study. The
independence of the Lefschetz number from the choices
included presents a more delicate problem than the defi-
nition of Euler characteristic (see [3]). It should be noted
that the study of geometric operators within the more
general framework of elliptic complexes proves to be very
successful (see [6-8], etc).

We shall make a standing assumption on the ideals
under considerations, namely, that I is a subclass of com-
pact operators.

A very general idea to reduce a sequence of compact
curvature to a complex is traced back to an early paper of

Putinar (see [9,10]). When compared with [3], the method
falls short of specifying operator algebras in which the
reduction is carried out.

Sequences of class I curvature
As mentioned, from the point of view of analysis,
sequences of compact curvature seem to be much more
natural objects than complexes. In particular, on perturb-
ing the differential of a complex by operators of the ideal
I , we go beyond the framework of complexes. However,
the sequences of class I curvature survive under pertur-
bations of the differential by operators of I . We are thus
lead to a class of sequences (L·, d) bearing the property
that the compositions di ◦di−1 belong to the ideal I for all
i = 0, 1, . . ..

Definition 2.1. A (cochain) sequence (L·, d) of class I
curvature means any sequence of Hilbert spaces Li, i ∈ Z

and operators di ∈ L(Li, Li+1) satisfying di ◦ di−1 = 0
modulo operators of I(Li, Li+2).

For Hilbert spaces L and M, we write I(L, M) for the
subspace of L(L, M) consisting of all operators f ∈ I
which map L to M. This subspace fails to be closed in
L(L, M) in general; the smallest closed nonzero ‘ideal’
is K(L, M). For f1, f2 ∈ L(L, M), we write f1 ∼ f2 if
f1 − f2 ∈ I(L, M). Suppose that (L·, dL) and (M·, dM) are
two sequences of class I curvature. A cochain mapping
of (L·, dL) into (M·, dM) means any collection of opera-
tors f i ∈ L(Li, Mi), i ∈ Z such that di

Mf i ∼ f i+1di
L for

all i ∈ Z. In particular, 0 = (
0Li

)
i∈Z and 1 = (

1Li
)

i∈Z are
cochain mappings of (L, d) into itself, and so are all their
perturbations by operators of I .

Cochain mappings (f i
0)i∈Z and (f i

1)i∈Z of (L·, dL) into
(M·, dM) are said to be homotopic if there is a collection
hi ∈ L(Li, Mi−1), i ∈ Z, with the property that f i

1 − f i
0 ∼

di−1
M hi + hi+1di

L for all i ∈ Z.
The task is now to extend the concept of Fredholm

complexes to the more general context of sequences of
class I curvature. Recall that an operator d ∈ L(L, M) in
Hilbert spaces is Fredholm if and only if its image in the
Calkin algebra L(L, M)/K(L, M) is invertible. Thus, the
idea is to pass in a given sequence to quotients, modulo
spaces of operators of I and require exactness. To this end,
we modify correspondingly the functor φ� introduced by
Putinar [9]. For complexes of pseudodifferential operators,
it specifies to what is known as complex of symbols.

For Hilbert spaces K and L, set φK (L) = L(K , L)/

I(K , L). Moreover, given any d ∈ L(L, M), we define
φK (d) ∈ L(φK (L), φK (M)) by the formula

φK (d)
(
f + I(K , L)

) = d ◦ f + I(K , M)
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for f ∈ L(K , L). Clearly, this operator is well defined. It
is easily seen that φK (d2d1) = φK (d2)φK (d1) for all d1 ∈
L(L1, L2) and d2 ∈ L(L2, L3). If 1L is the identity operator
on L, then φK (1L) is the identity operator on φK (L). These
remarks show that φK is actually a covariant functor in the
category of Hilbert spaces.

The crucial fact is that φK vanishes on operators of ideal
I for every Hilbert space K . Conversely, if d ∈ L(L, M)

and φK (d) = 0 for any Hilbert space K , then d ∈ I(L, M).
Indeed, taking K = L, we deduce from

φL(d) (1L + I(L, L)) = d + I(L, M)

= I(L, M)

that d ∈ I(L, M).
If (L·, d)s is an arbitrary sequence of class I curva-

ture, then (φK (L·), φK (d)) is a complex for each Hilbert
space K . Thus, the functor φK transforms sequences of
class I curvature into ordinary complexes, i.e., φK ‘recti-
fies’ curved sequences. Furthermore, cochain mappings of
sequences of class I curvature transform under φK into
cochain mappings of complexes, and φK preserves the
homotopy classes of cochain mappings.

Definition 2.2. A sequence (L·, d) of class I curvature is
called Fredholm if the associated complex (φK (L·), φK (d))

is exact for each Hilbert space K .

Let (L·, d1) and (L·, d2) be two sequences of class I cur-
vature such that di

1 ∼ di
2 for all i ∈ Z. Then, the complexes

(φK (L·), φK (d1)) and (φK (L·), φK (d2)) obviously coincide
for every Hilbert space K . Therefore, (L·, d1) and (L·, d2)
are simultaneously Fredholm. In other words, any class I
perturbation of a Fredholm sequence of class I curvature
is a Fredholm sequence of class I curvature.

Theorem 2.3. A bounded above sequence (L·, d) of class
I curvature is Fredholm if and only if the identity mapping
of (L·, d) is homotopic to the zero one.

This theorem goes back at least as far as [9] where
the case I = K is treated. The designation ‘essential
complexes’ is used in [9] for what we call ‘sequences of
compact curvature’ here.

Proof. Necessity. Let (L·, d) be Fredholm and bounded
above, i.e., Li = 0 for all but i ≤ N . Our goal is to show
that there are operators π i ∈ L(Li, Li−1), i ∈ Z, such that

di−1π i + π i+1di = 1Li − ci (2.1)

for all i ∈ Z, where ci ∈ I(Li).
Set π i = 0 for all integers i > N . If i = N , then from the

exactness of the complex (φK (L·), φK (d)), K = LN , at step

N, it follows that there is an operator πN ∈ L(LN , LN−1)
such that dN−1πN ∼ 1LN . Denoting by cN the difference
1LN − dN−1πN , we thus get cN ∈ I(LN ).

We now proceed by induction. Suppose we have already
found mappings

π i, π i+1, . . . ;
ci, ci+1, . . . ,

such that the equality (2.1) is satisfied at steps i, i + 1, . . .,
for some i ≤ N . Note that

di−1 (
1Li−1 − π idi−1) = di−1 − (

1Li − ci − π i+1di) di−1

= cidi−1 + π i+1didi−1

∼ 0

by equality (2.1). From the exactness of (φK (L·), φK (d)),
with K = Li−1, at step i − 1, it follows that there is π i−1 ∈
L(Li−1, Li−2) such that di−2π i−1 ∼ 1Li−1 −π idi−1. Setting
ci−1 = 1Li−1−π idi−1−di−2π i−1, we obtain ci−1 ∈ I(Li−1),
and equality (2.1) is fulfilled at step i − 1. This establishes
the existence of solutions π i, ci to equality (2.1) for each
i ∈ Z, i.e., the homotopy between the identity and zero
cochain mappings of (L, d).

Sufficiency. If the identity mapping 1 = (
1Li

)
i∈Z

is homotopic to the zero mapping 0 = (
0Li

)
i∈Z on

(L·, d), then the identity mapping on the cohomology
Hi(φK (L·), φK (d)) vanishes for all i ∈ Z. Hence, the com-
plex (φK (L·), φK (d)) is exact for each Hilbert space K , as
required.

Any solution π i ∈ L(Li, Li−1), i ∈ Z, to equality (2.1)
is called a parametrix of sequence (L·, d) modulo class
I operators. Thus, Theorem 2.3 just amounts to saying
that a bounded above sequence of class I curvature is
Fredholm if and only if it possesses a parametrix mod-
ulo class I operators. Given any Fredholm sequence (L·, d)

of class I curvature, if f ∈ Li satisfies dif = 0, then
f = cif + di−1π if , where (L·, π) is a parametrix for (L·, d)

as in equality (2.1). In other words, the operator di−1 has a
right inverse π i modulo class I operators on solutions to
diu = 0. However, since the compositions didi−1 need not
vanish for a curved sequence (L·, d), the range of di−1 no
longer lies in solutions of the equation diu = 0. It follows
that the usual cohomology does not make sense for (L·, d).
The question on a proper substitute of the cohomology
for curved sequences seems to be considerably subtle
(see [3,4]).

Reduction to a complex
Let (L·, d) be a Fredholm sequence consisting of Hilbert
spaces Li which are zero for all i but i = 0, 1, . . . , N and
operators di ∈ L(Li, Li+1) with di+1 ◦ di of class I .
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These spaces and operators are fit together to form a
sequence of Hilbert spaces of class I curvature, namely,

0 → L0 d0→ L1 d1→ . . .
dN−1→ LN → 0. (3.1)

Theorem 3.1. For every sequence (3.1) of class I cur-
vature, there exist bounded operators Di ∈ L(Li, Li+1)
satisfying Di = di modulo operators of I(Li, Li+1) and
Di+1Di = 0 for all i.

Proof. Set DN−1 = dN−1. The Laplacian


N = DN−1DN−1∗

is a self-adjoint operator on LN , and its kernel just
amounts to the kernel of DN−1∗. By Theorem 2.3, the lat-
ter operator DN−1∗ has a left parametrix modulo compact
operators. In fact, the equality

πN ∗DN−1∗ = 1LN − cN ∗

holds on LN . Hence, the identity operator on ker DN−1∗
is compact. It follows that the kernel of DN−1∗ is finite
dimensional, so 
N is Fredholm.

By the abstract Hodge theory, there is a self-adjoint
operator GN ∈ L(LN ) mapping into the orthogonal com-
plement of ker 
N such that 1LN = HN + 
N GN on LN ,
where HN is the orthogonal projection onto the finite-
dimensional space ker 
N = ker DN−1∗.

The space ker DN−1∗ is, thus, an obstruction to the exis-
tence of a right inverse operator for DN−1. The operator
�N = DN−1∗GN is a special right parametrix for DN−1 in
L(LN , LN−1).

We now show that PN−1 = 1LN−1 − �N DN−1 is an
orthogonal projection onto the kernel of DN−1. To this
end, we note that PN−1 is the identity operator on the
kernel of DN−1, and

DN−1PN−1 = DN−1 − 
N GN DN−1

= DN−1 − (1LN − HN )DN−1

= 0

for HN DN−1 = (DN−1∗HN )∗ = 0. From this, the desired
conclusion follows.

In order to construct DN−2, we consider the last frag-
ment of sequence (3.1), namely,

LN−2 dN−2→ LN−1 DN−1→ LN .

Set

DN−2 = PN−1dN−2,

then DN−2 ∈ L(LN−2, LN−1) satisfies

DN−1DN−2 = DN−1PN−1dN−2

= 0

and

DN−2 =
(

1LN−1 − �N dN−1
)

dN−2

= dN−2,

modulo operators in I(LN−2, LN−1), as desired.
We now restrict ourselves to the suitably modified pre-

ceding fragment of sequence (3.1), i.e.,

LN−3 dN−3→ LN−2 DN−2→ LN−1.

The Laplacian 
N−1 = DN−1∗DN−1 + DN−2DN−2∗ is
a self-adjoint operator in L(LN−1), whose kernel is obvi-
ously ker DN−1 ∩ker DN−2∗. Our next goal is to prove that
this kernel is of finite dimension. To this end, we observe
that the equality

DN−2πN−1 + πN DN−1 = 1LN−1 − CN−1

holds for some compact operator CN−1 ∈ I(LN−1) since
both DN−1 −dN−1 and DN−2 −dN−2 are of class I . Hence,
the identity operator on the cohomology HN−1(L·, D) is
compact, and so the dimension of HN−1(L·, D) is finite.
Since the natural embedding ker 
N−1 ↪→ HN−1(L·, D) is
injective, we immediately deduce that the kernel of 
N−1

is finite dimensional, too. This shows that the Laplacian

N−1 is Fredholm.

By the abstract Hodge theory, there is a self-adjoint
operator GN−1 ∈ L(LN−1) which maps into the orthogo-
nal complement of ker 
N−1 and fulfills

1LN−1 = HN−1 + 
N−1GN−1

on LN−1, where HN−1 is the orthogonal projection onto
the finite-dimensional space ker 
N−1.

We claim that DN−1GN−1 = GN DN−1. To prove this,
pick an arbitrary element u ∈ LN−1. Then,

DN−1u = DN−1DN−1∗DN−1GN−1u

on one hand, and

DN−1u = DN−1DN−1∗GN DN−1u

on the other hand. Hence, it follows that

N (

DN−1GN−1u − GN DN−1u
) = 0, and since

DN−1GN−1u − GN DN−1u is orthogonal to ker 
N , we
conclude that DN−1GN−1u − GN DN−1u = 0, as desired.
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The composition �N−1 = DN−2∗GN−1 is, thus,
an operator in L(LN−1, LN−2) satisfying the homotopy
equation

�N DN−1 + DN−2�N−1 = 1LN−1 − HN−1.

In other words, the pair {�N−1, �N } is a special
parametrix at steps N − 1 and N for sequence (3.1).

To construct DN−3, we can now argue in the same way
as in the construction of DN−2. Namely, let us show that
PN−2 = 1LN−2 − �N−1DN−2 is an orthogonal projection
onto the kernel of DN−2. To this end, we note that PN−2 is
the identity operator on the kernel of DN−2, and

DN−2PN−2 = DN−2 − DN−2�N−1DN−2

= DN−2 − (1LN−1 − HN−1 − �N DN−1)DN−2

= 0

for HN−1DN−2 = (DN−2∗HN−1)∗ = 0. From this, the
desired conclusion readily follows.

Set

DN−3 = PN−2dN−3,

then DN−3 ∈ L(LN−3, LN−2) satisfies

DN−2DN−3 = DN−2PN−2dN−3

= 0

and

DN−3 =
(

1LN−2 − �N−1DN−2
)

dN−3

=
(

1LN−2 − �N−1dN−2
)

dN−3

= dN−3

modulo operators in I(LN−3, LN−2), as desired.
We now proceed by induction, thus completing the

proof, for sequence (3.1) terminates.

Lefschetz number
Consider a Fredholm sequence (3.1) of trace class curva-
ture, with Li being Hilbert spaces. By Theorem 3.1, there
are operators Di ∈ L(Li, Li+1) such that Di = di mod-
ulo trace class operators and Di+1Di = 0 for all i. We thus
arrive at a Fredholm complex

0 → L0 D0→ L1 D1→ . . .
DN−1→ LN → 0, (4.1)

the latter being a consequence of the fact that Fred-
holm sequences of trace class curvature are stable under
perturbations of trace class.

Suppose e = (ei)i∈Z is a cochain mapping of complex
(L·, D) into itself, i.e., ei ∈ L(Li) satisfies Diei = ei+1Di for
all i. Such a mapping preserves the spaces of cocycles and
coboundaries of complex (L·, D). On passing to quotient

spaces, it induces the homomorphisms (He)i of cohomol-
ogy Hi(L·, D) for each i. Since the cohomology is finite
dimensional at each step, the traces tr (He)i of the linear
mappings are well defined.

Definition 4.1. The Lefschetz number of a cochain
mapping e of (L·, D) is defined to be the (possibly, com-
plex) number

L(e) =
N∑

i=0
(−1)i tr (He)i.

In particular, if e is the identity mapping of (L·, D), then
L(e) is the Euler characteristic of this complex. In [3], the
Euler characteristic of (L·, D) is proved to depend on the
sequence (L·, d) solely. In this way, the Euler character-
istic is defined not only for sequences of zero curvature
but also for those of compact curvature. The question
arises whether the Lefschetz number is actually indepen-
dent of the complex (L·, D) and is determined by (L·, d).
The following theorem gives a partial evidence of this fact.

Theorem 4.2. As defined above, the Lefschetz number of
the endomorphism e is given by the formula

L(e) =
N∑

i=0
(−1)i tr

(
ei − (

eiπ i+1) di − di−1 (
ei−1π i)) ,

(4.2)

where {π i} is a parametrix of (L·, d) modulo trace class
operators.

Proof. Since Di − di is of trace class for each i =
0, 1, . . . , N , it follows that {π i} is a parametrix of complex
(L·, D) modulo trace class operators. By the homotopy
formula,

π i+1Di − Di−1π i = 1Li − ri

for all i, where ri is a trace class operator on Li. On apply-
ing the cochain mapping ei to both sides of this equality,
we obtain

(eiπ i+1)Di − Di−1(ei−1π i) = ei − ei ◦ ri,

i.e., the cochain self-mappings (ei)i∈Z and (ei ◦ ri)i∈Z of
complex (L·, D) are homotopic. Hence, they induce the
same action on the cohomology of (L·, D), which gives

L(e) = L(e ◦ r)

=
N∑

i=0
(−1)i tr ei ◦ ri,

the latter equality being a consequence of the Euler
identity (see for instance Theorem 19.1.15 in [11]). To
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complete the proof, it remains to use an argument of [12]
(p. 203), namely,

N∑
i=0

(−1)i tr ei ◦ ri =
N∑

i=0
(−1)i tr

(
ei − (eiπ i+1)Di

−Di−1 (
ei−1π i))

=
N∑

i=0
(−1)i tr

(
ei − (

eiπ i+1) di

−di−1 (
ei−1π i)) ,

which is due to a familiar theorem of Lidskii, for Di and di

differ by trace class operators.

Obviously, (ei)i∈Z is a cochain mapping of sequence
(L·, d) for diei = ei+1di modulo trace class operators.
However, we are able to introduce the Lefschetz num-
ber only for those cochain mappings of (L·, d) which
are cochain mappings of some Fredholm complex (L·, D)

which is a perturbation of (L·, d) by trace class opera-
tors. It would be desirable to show that, given any cochain
mapping e of (L·, d), there is a Fredholm complex (L·, D),
whose differential D differs from d by trace class opera-
tors and commutes with e, but we have not been able to do
this. In any case, we can define the Lefschetz number of
arbitrary cochain mapping e of (L·, d) by formula (4.2). As
already mentioned, this definition will depend on the par-
ticular choice of neither parametrix π nor the differential
d up to trace class operators.

Relative de Rham cohomology
In this section, we indicate how formula (4.2) may be used
to derive an explicit formula for the Lefschetz number in
relative de Rham cohomology.

Let X be a smooth compact closed manifold of dimen-
sion n, and Y be a submanifold of X of dimension q. For
simplicity, we assume that X is orientable.

For i ∈ Z, we denote by �iT∗X the bundle of exte-
rior forms of degree i overX . These bundles are nonzero
only for i = 0, 1, . . . , n. They fit together to form a com-
plex �·(X ) on X whose differential is given by the exterior
derivative on differential forms. This complex is referred
to as the de Rham complex on X and is known to be
elliptic.

Similarly, we have the de Rham complex �·(Y) on
Y . The length of this latter is actually equal to q <

n. However, we may complete it by the zero bundles
�q+1T∗Y , . . . , �nT∗Y , thus arriving at a complex of
length n.

Let ι stand for the embedding Y ↪→ X . Thus, ι is a
differentiable mapping, and we denote by ι∗ the corre-
sponding ‘pull-back’ operator on differential forms. Then,

ι∗ is well known to be a cochain mapping of the complexes
�·(X ) → �·(Y). The cone of this mapping is

C· : 0 −→
C∞(X )

⊕
0

A0−→
�1(X )

⊕
C∞(Y)

A1−→ . . .

An−1−→
�n(X )

⊕
�n−1(Y)

−→ 0, (5.1)

where

Ai =
( −di 0

ι∗ di−1

)
,

di meaning the exterior derivative restricted to differential
forms of degree i.

The key result on complex (5.1) is that it actually bears
an information on the relative singular cohomology of
the pair (X ,Y). The following result can be certainly
attributed to the mathematical folk lore (cf. for instance
Lemma 6.1 in [13]).

Lemma 5.1. For each i = 0, 1, . . . , n, there is natural
isomorphism

Hi(C·) ∼= Hi((X ,Y),R),

where Hi((X ,Y),R) is the relative cohomology of the pair
(X ,Y) with real coefficients.

Proof. By the de Rham theorem, we have natural iso-
morphisms

Hi(�·(X )) ∼= Hi(X ,R),
Hi(�·(Y)) ∼= Hi(Y ,R)

(5.2)

for each i. We are going to make use of these to derive the
desired isomorphisms in the relative cohomology.

To this end, we invoke a standard exact long sequence of
singular homology with coefficients in R,

0 ←− H0((X ,Y),R)
i←− H0(X ,R)

i←− H0(Y ,R)
∂←−

←− H1((X ,Y),R)
i←− H1(X ,R)

i←− H1(Y ,R)
∂←− . . .

←− Hi((X ,Y),R)
i←− Hi(X ,R)

i←− Hi(Y ,R)
∂←− . . . ,

(5.3)

i being induced by the inclusion of cycles and ∂ being
induced by the boundary operator. Dual to this, we have a
standard exact long cohomological sequence

0 −→ H0((X ,Y),R)
i′−→ H0(X ,R)

i′−→ H0(Y ,R)
δ−→

−→ H1((X ,Y),R)
i′−→ H1(X ,R)

i′−→ H1(Y ,R)
δ−→ . . .

−→ Hi((X ,Y),R)
i′−→ Hi(X ,R)

i′−→ Hi(Y ,R)
δ−→ . . . ,

(5.4)
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δ being known as the coboundary operator. Recall that
this latter sequence is obtained from sequence (5.3) by
applying the functor HomR(·,R)

The task is now to construct a sequence of the de Rham
cohomology analogous to (5.4), i.e.,

0 −→ H0(C·) π−→ H0(�·(X ))
ι∗−→ H0(�·(Y))

δ−→
−→ H1(C·) π−→ H1(�·(X ))

ι∗−→ H1(�·(Y))
δ−→ . . .

−→ Hi(C·) π−→ Hi(�·(X ))
ι∗−→ Hi(�·(Y))

δ−→ . . . .
(5.5)

Namely, we define π , ι∗, and δ by

π :
(

u1
u2

)
mod Bi(C·) �→ u1 mod Bi(�·(X ))

ι∗ : u mod Bi(�·(X )) �→ ι∗u mod Bi(�·(Y))

δ : f mod Bi(�·(Y)) �→
(

0
f

)
mod Bi+1(C·)

for
(u1u2

) ∈ Zi(C·), u ∈ Zi(�·(X )), and f ∈ Zi(�·(Y)). By
a familiar result of homological algebra, sequence (5.5) is
exact.

From isomorphisms (5.2), sequence (5.4), and sequence
(5.5), it follows that the spaces Hi(C·) and Hi((X ,Y),R)

are of the same dimension for each i. However, the lemma
states more, namely, there is a natural isomorphism of
these spaces. The existence of such an isomorphism is a
consequence of the fact that there is a duality between
sequences (5.5) and (5.3). This duality is given on

Hi(�·(X )) × Hi(X ,R),
Hi(�·(Y)) × Hi(Y ,R)

by integrating differential forms over singular cycles, just
as in the classical de Rham theorem (cf. [14]). On Hi(C·)×
Hi((X ,Y),R), the duality is defined by((

u1
u2

)
mod Bi(C·),

N∑
ν=1

cν
ν mod Bi((X ,Y),R)

)
�→

×
N∑

ν=1
cν

⎛
⎜⎝∫


ν

u1 +
∫

∂
ν

u2

⎞
⎟⎠

(5.6)

for
(u1u2

) ∈ Zi(C·) and
N∑

ν=1
cν
ν ∈ Zi((X ,Y),R), where 
ν

are singular simplexes and cν ∈ R. It is immediate that
(5.6) is well-defined.

Thus, both sequences (5.4) and (5.5) are dual to
sequence (5.3). This gives natural homomorphisms of
the spaces in sequence (5.5) to the corresponding spaces

in sequence (5.4) Hence, we arrive at the commutative
diagram

Hi−1(�·(Y))
δ−→ Hi(C·) π−→Hi(�·(X ))

ι∗−→Hi(�·(Y))⏐⏐�∼=
⏐⏐� ⏐⏐�∼=

⏐⏐�∼=
Hi−1(Y ,R)

δ−→Hi((X ,Y),R)
i′−→ Hi(X ,R)

i′−→ Hi(Y ,R)

with exact rows for each i = 0, 1, . . . , n. The homo-
morphisms marked by the vertical arrows in the dia-
gram are actually isomorphisms, with the exception of
Hi(C·) → Hi((X ,Y),R). Applying the ‘lemma on five
isomorphisms,’ we can therefore assert that this latter
homomorphism is also an isomorphism. This is our asser-
tion.

Having disposed of this preliminary step, we can now
return to the Lefschetz fixed point formula.

Let f be a differentiable mapping of the manifold X with
the property that f (Y) ⊂ Y . Then, f induces a mapping
f = (fX , fY) of the pair (X ,Y) via fX = f |X , fY = f |Y .
The ‘pull-back’ operator f ∗ under f commutes with the
exterior derivative on both X and Y . Moreover, we have

f ∗
Y ι∗ = (ι ◦ fY)∗

= (fX ◦ ι)∗

= ι∗f ∗
X

the second equality being due to the fact that f (Y) ⊂ Y .
Hence, it follows that f has a lift to the complex C·, the
lift being given by f ∗. We write L(f ∗) for the correspond-
ing Lefschetz number. Lemma 5.1 allows one to conclude
that L(f ∗) is just the classical Lefschetz number of f with
respect to the relative cohomology of the pair (X ,Y).

Suppose p ∈ Y is a fixed point of f . Then, the tangent
mappings to fX and fY induce linear transformations

f ′
X (p) : TpX → TpX ,
f ′
Y(p) : TpY → TpY

of the tangent spaces to X and Y at the point p, respec-
tively. We thus arrive at a linear transformation of the
quotient space TpX /TpY , namely,

f ′
X/Y(p) :

TpX
TpY

→ TpX
TpY

.

Moreover,

det
(
I − f ′

X (p)
) = det

(
I − f ′

Y(p)
)

det
(
I − fX/Y(p)

)
,

as is easy to see by using local coordinates at p.
In particular, we deduce that if p ∈ Y is a simple

fixed point of fX , then the determinant of I − f ′
X/Y(p)

is different from zero. Denote by Fix(±)(f ,Y) the set of

www.SID.ir



Arc
hive

 of
 S

ID

Tarkhanov and Wallenta Mathematical Sciences 2012, 6:44 Page 8 of 8
http://www.iaumath.com/content/6/1/44

all simple fixed points of f on Y with the property that
± det(I − f ′

X/Y(p)) > 0 is valid.

Theorem 5.2. Let f be a differentiable mapping of the
pair (X ,Y) with simple fixed points. Then,

L(f ∗) =
∑

p∈Fix(f ,X\Y)

sgn det(I − f ′(p)) + 2

×
∑

p∈Fix(−)(f ,Y)

sgn det(I − f ′(p)).

Proof. Indeed, if p ∈ Y is a simple fixed point of f , then

sgn det
(
I − f ′

X (p)
) = ± sgn det

(
I − f ′

Y(p)
)

where ‘+’ is taken for p ∈ Fix(+)(f ,Y) and ‘−’ for p ∈
Fix(−)(f ,Y). Thus, the contributions of the points p ∈
Fix(+)(f ,Y) in the Lefschetz number cancel, while the
contributions of the points p ∈ Fix(−)(f ,Y) duplicate.
This establishes the formula.

In contrast to [15], the specification of simple fixed
points of f on Y by those in Fix(+)(f ,Y) and Fix(−)(f ,Y)

is much more complicated than the specification by
being attracting or repulsing ones. We emphasize that
Fix(+)(f ,Y) contains all attracting fixed points of f on Y
along with a part of repulsing fixed points.

Note that Theorem 5.2 can be also obtained from the
algebraic alternating sum formula applied to sequence
(5.4). Indeed, this sequence is exact, and f induces an
endomorphism f ∗ of the sequence, which results immedi-
ately in the equality L(f ∗) = L(f ∗

M) − L(f ∗
S ).

When combined with Theorem 4.2, Theorem 5.2 gives
much more. Namely, perturbations of the differentials of
�·(X ) and �·(Y) by trace class terms do not affect the
alternating sum of the traces. Moreover, the ‘pull-back’
operator f ∗ need not satisfy the commutativity relations
with perturbed differentials of �·(X ) and �·(Y) precisely,
but only up to trace class operators. The fixed point for-
mula of Theorem 5.2 remains still valid under reasonably
regularized definition of the Lefschetz number.

Conclusion
We introduced the Lefschetz number of cochain map-
pings for arbitrary Fredholm sequences of trace class cur-
vature. Our definition applies in particular to geometric
cochain self-mappings of elliptic sequences of pseudodif-
ferential operators on a compact closed manifold. This ini-
tiates a substantial fixed point theory for elliptic sequences
which extends the Lefschetz theory for elliptic complexes
by Atiayh and Bott. As but one example, we evaluated the
Lefschetz number for the relative de Rham cohomology.
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