ORIGINAL RESEARCH Open Access

The edge-labeling and vertex-colors of *Kn*

Mohammad hadi Alaeiyan

Abstract

A labeling of the edges of a graph is called vertex-coloring if the labeled degrees of the vertices yield a proper coloring of the graph. In this paper, we show that such a labeling is possible from the label set 1,2,3 for the complete graph K_n , $n \geq 3$. ,

Keywords: Edge-labeling, Vertex-coloring, Complete graph

Subject classification: 05C15, 05C78

Background

All graphs in this note are simple and finite. For notation is not defined here, we refer the reader to [1].

Archive to the SID and Sinter and Sinter the *Archive of the the time term* of \mathcal{R}_2 . The *Archive of the time term* of \mathcal{R}_2 . This looking of \mathcal{R}_2 . This looking that such a **model of the** *Archive of the CA* For some $k \in \mathbb{N}$, let $f : E(G) \longrightarrow \{1, 2, ..., k\}$ be an integer labeling of the edges of a graph $G = (V(G), E(G))$ where $V(G) = \{v_1, \ldots, v_n\}$. This labeling is called vertexcoloring if the labeled degrees $S_i := \sum_{v_j \in N(v_i)} f(v_i v_j)$ for all integer $1 \leq i \leq n$ of the vertices yield a proper vertexcoloring of the graph; (i.e. the color of vertex v_i is S_i). It is easy to see that for every graph which does not have a component isomorphic to K_2 , there exists such a labeling for some positive integer *k* .

In 2002, Karonski et. al. [2] conjectured that such a labeling with. $k = 3$ is possible for all such graphs $(k = 2$ is not sufficient as seen for instance in complete graphs and cycles of length not divisible by 4). At first constant bound of *k* = 30 was proved by Addario-Berry et. al. [3], which was later improved to $k = 16$ in 2008 by Addario-Berry et. al. [4], to $k = 13$ by Wang and Yu [5], and to $k=6$ by Kalkowski, et. al. [6], Also, Kalkowski et. al. introduced the best bound for *k*= 5 in [7].

In this paper, we will show an algorithm for the complete graph K_n labeling that improves the bound to $k = 3$ that it is final value for *k* in the all graphs which are simple and finite.

The following theorem is the main result of this paper.

Theorem 1. *Let n be a positive integer. Then for the complete graph* K_n *, there is a labeling* $f : E(G) \longrightarrow \{1, 2, 3\}$ *,*

Correspondence: hadi alaeiyan@iust.ac.ir

Department of Computer Enginering, Iran University of Science and Technology, Narmak, 16844, Tehran, Iran

 $\textit{such that the induced vertex weights } S_i := \sum_{v_j \in N(v_i)} f(v_i v_j)$ *properly color* $V(G)$ *, where* $1 \leq i \leq n$ *.*

The algorithm

It is trivial that the run of the algorithms in a regular graph specially in the complete graphs is harder than any other graphs, because these graphs have one case. In the following lemma, we will give an algorithm for the complete graph *Kn* .

Lemma 1. *There exists an edge-labeling with numbers 1, 2 and 3 for the complete graph Kn such that the sum of the labels in all vertices is different.*

Proof. These following algorithms calculates the minimum sum that there exist for all vertices of the complete graph *Kn*. Indeed, this lower bound is for the regular graphs, which is the harder case and here we have only one case. We will prove that the lower bound of S_n in the complete graph K_n is $S_n \geq n-1$. \Box

Algorithm for K_n : For $n = 1, 2$, there is no such edgelabeling. For K_3 , we label the edge v_1v_2 , v_2v_3 and v_1v_3 with 3,2 and 1, respectively, see Figure 1. So, Suppose that $n \geq$ 4. Let $V(K_n) = \{1, \ldots, n\}$. Note that every vertex of K_n is adjacent with other *n* − 1 vertices. Now label every edge with 1. Then, for $1 \leq i \leq n$, $S_i = n-1$.

Now for each v_i , $2 \le i \le n-1$, set $k = i-1$. We add *k* times 1unit to some edges as following. Start with $v_i v_n$. If the label of edge $v_i v_n < 3$ then add one unit, otherwise, add one unit to next desired edge, i.e. that if the label of edge $v_i v_{n-1} < 3$ then add one unit, otherwise, add one unit to next edge. After *k* stages, if the label of edge

© 2012 Alaeiyan; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 $v_i v_{i+1}$ < 3, add one unit, otherwise, if $S_i \neq S_{i-1}$ then there is no problem in the process and continue. But if $S_i = S_{i-1}$, set the label of edge $v_i v_{i-2}$ with 3 and continue.

With this algorithm for computing of S_2 , we have $k = 1$. The process start from v_2v_n . One can see that $v_2v_n = 2$ and $v_2v_1 = v_2v_3 = \cdots = v_2v_{n-1} = 1$. Then, $S_2 = n - 2 +$ $2 = n$.

With this algorithm for computing of S_3 , we have $k = 2$. The process start from v_3v_n and before process the label $v_3v_n = 1$ less than 3 and can add one unit. Now $v_3v_n = 2$. By doing again this process $v_3v_n = 3$. Finally $v_3v_n = 3$ and $v_3v_1 = v_3v_2 = \cdots = v_3v_{n-1} = 1$, then $S_3 = n - 2 + 3 =$ $n+1$.

With this algorithm for computing of S_4 , we have $k = 3$. The process start from v_4v_n and before process the label of $v_4v_n = 1$, with 2 time process $v_4v_n = 3$. Therefor, need to add one unit to it's edges to finish process. We can continue adding with next edge that is *v*4*vn*−1. By doing this work $v_4v_n = 3$, $v_4v_{n-1} = 2$ and $v_4v_1 = v_4v_2 = \cdots =$ $v_4v_{n-2} = 1$, then $S_4 = n - 3 + 3 + 2 = n + 2$.

This algorithm must be do until, $i = n - 1$ and the algorithm will be finished, and do not need to process for $i = n$, because this unit set in last units, with $v_1v_n = 1$, $v_2v_n = 2$ and $v_3v_n = v_4v_n = \cdots = v_{n-1}v_n = 3$ and $S_n = 3(n-3) + 1 + 2 = 3n - 6.$

Finally, we obtain S_1, S_2, \ldots, S_n . Therefore, all edges of the complete graph *Kn* labeled with 1,2 and 3 and having the desired property. In fact for the graph *Kn* we find *n* series with finite sequences of numbers 1,2 and 3. In other words, for every $i, 1 \leq i \leq n$ set $S_i := \sum_{j=1}^n f(v_i v_j)$ such that $f(v_i v_i) = 0$ and $f(v_i v_j) \in \{1, 2, 3\}$ for $i \neq j$.

Then $S_1 = n - 1$ and $S_n = 3n - 6$ are the minimum and maximum labeled degrees of *Kn*, respectively. Now the proof of Theorem 1 is complete.

Now one can ask that:

Question 1. Is there any such algorithm for arbitrary graph *G* ?

In the rest of this paper we put the code of the algorithm of *Kn*, such that with run of its we get the result of each complete graph *Kn* .

```
Archive of SIDP 1 and the single of SiDP 3 and K<sub>H</sub> by the algorithm on K_n.<br>
Archive of the single very single abeling for graph K_3 and K_4 by the algorit
                                                              The code is :
                                                           set
1 all labels of edge
                                                           calcudeAllSum\\computing all S
i
                                                           for (i = 1; i < Vertex.size() - 1; i++){
                                                           \cdots Vertex vi = Vertex.elementAt(i);
                                                           \cdots Vector < Edge > e = getAllEdgesOfThisVertex(vi);\cdots k = 0;\cdots for(j = e. Size() -1; j \geq i and k < i; j - -)
                                                           · · · \\startfromv
i
v
n
                                                           ···{
                                                           \cdots for(; k < i; k + +)
                                                           ······{
                                                           ········· if
(
!
e
.elementAt
(j
)
.plasPlasLabelIfSmallerThan
                                                           Three())
                                                           · · · · · · · · · \\if added one unit retuen true else return false
                                                           ·········{
                                                           ············ break
;
                                                           ·········}
                                                           ······}
                                                           ···}
                                                           \cdots if (k < i)···{
                                                           ······ calcudeAllSum
                                                           \cdots \cdots if (vi.sum = Vertex.elementAt(i – 1).sum)
                                                           ······{
                                                           ········· Edge e
= GetEdgeOFVertex
(vi
,Vertex
.elementAt
                                                           (i - 1)\cdots \cdots \setminus \text{Find edge of } v_i \text{ and } v_{i-1}.\cdots \cdots \cdots e.label = 3;
                                                           ······}
                                                           ···} }
```
Competing interests

The author did not provide this information.

Received: 19 May 2012 Accepted: 21 July 2012 Published: 4 October 2012

References

- 1. Kalkowski, M, Kalkowski: A note on the 1,2-conjecture. submitted for publication
- 2. Karonskiy, M, Luczak, T, Thomason, A: Edge weights and vertex colours. Comb. Theory (Ser. B) J. **91**, 151–157 (2004)
- 3. Addario-Berry, L, Dalal, K, McDiarmid, C, A Reed, B, Thomason, A: Vertex-colouring edge-wheitings. Combinatorical J. **27**, 1–12 (2007)
- 4. Addario-Berry, L, Dalal, K, Reed, BA: Degree constrained subgraphs. Discrete Appl. Mathematics J. **156**, 1168–1174 (2008)
- 5. Wang, T, Yu, Q: On vertex-coloring 13-edge-weighting. Front. Math. China. **3**, 1–7 (2008)
- 6. Kalkowski, M, Karonski, M, Pfender, F: Vertax-Coloring Edge-Weithings With Integer Weights At Most 6. Publisher online , 101–119 (2003)
- 7. Kalkowski, M, Karonski, M, Pfender, F: Vertex-coloring edge-weightings: Towardsthe1-2-3-conjecture. Comb. Theory Ser. B J. **100**, 347–349 (2010)

doi:10.1186/2251-7456-6-45

Cite this article as: Alaeiyan: The edge-labeling and vertex-colors of K_n . Mathematical Sciences 2012 **6**:45.

Archive of SID

Submit your manuscript to a

- **journal and benefit from:**
- \blacktriangleright Convenient online submission
- \blacktriangleright Rigorous peer review
- \blacktriangleright Immediate publication on acceptance
- \blacktriangleright Open access: articles freely available online
- \blacktriangleright High visibility within the field
- \blacktriangleright Retaining the copyright to your article

Submit your next manuscript at 7 **springeropen.com**