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Abstract

Brianciari (‘A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces,’ Publ. Math.
Debrecen 57 (2000) 31-37) initiated the notion of the generalized metric space as a generalization of a metric space in
such a way that the triangle inequality is replaced by the ‘quadrilateral inequality,’ d(x, y) ≤ d(x, a) + d(a, b) + d(b, y)
for all pairwise distinct points x, y, a, and b of X . In this paper, we establish a fixed point result for weak contractive
mappings T : X → X in complete Hausdorff generalized metric spaces. The obtained result is an extension and a
generalization of many existing results in the literature.
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Introduction
It is well known that the Banach contraction principle [1]
is a very useful and classical tool in nonlinear analysis.
Later, this principle has been generalized in many direc-
tions. For instance, a very interesting generalization of the
concept of a metric space was obtained by Branciari [2]
by replacing the triangle inequality of a metric space with
a more general inequality. Thereafter, many authors ini-
tiated and studied many existing fixed point theorems in
such spaces. For more details about the fixed point theory
in generalized metric spaces, we refer the reader to [3-15].

In the sequel, the letters R, R+, and N will denote the set
of real numbers, the set of nonnegative real numbers, and
the set of nonnegative integer numbers, respectively. The
following definitions will be needed in the sequel.

Definition 1.1. [2] Let X be a non-empty set and
d : X × X →[ 0, +∞) such that for all x, y ∈ X and for all
distinct points u, v ∈ X, each of them different from x and
y, one has the following:

(p1) x = y ⇔ d(x, y) = 0,
(p2) d(x, y) = d(y, x),
(p3) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y).

*Correspondence: hassen.aydi@isima.rnu.tn
1Université de Sousse, Institut Supérieur d’Informatique et des Technologies
de Communication de Hammam Sousse, Route GP1, H. Sousse, 4011, Tunisia
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Then, (X, d) is called a generalized metric space
(or shortly g.m.s.).

Any metric space is a generalized metric space, but the
converse is not true [2]. We confirm this by the following.

Example 1.2. Let X = A ∪ B, where A = { 1
2 , 1

3 , 1
4 , 1

5
}

and B =[ 3
4 , ∞). Define the generalized metric d on X as

follows:
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d(x, y) = d(y, x) for all x, y ∈ A,

and

d(x, y) = |x − y| if

⎧⎪⎨
⎪⎩

x ∈ B, y ∈ A, or,
x ∈ A, y ∈ B, or,
x, y ∈ B.

It is clear that d does not satisfy the triangle inequality
on A. Indeed,
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Notice that (p3) holds, so d is a generalized metric.

Definition 1.3. [2] Let (X, d) be a g.m.s., {xn} be a
sequence in X, and x ∈ X. We say that {xn} is g.m.s. con-
vergent to x if and only if d(xn, x) → 0 as n → +∞. We
denote this by xn → x.

Definition 1.4. [2] Let (X, d) be a g.m.s. and {xn} be
a sequence in X. We say that {xn} is a g.m.s. Cauchy
sequence if and only if for each ε > 0, there exists a natural
number N such that d(xn, xm) < N for all n > m > N .

Definition 1.5. [2] Let (X, d) be a g.m.s. Then, (X, d) is
called a complete g.m.s. if every g.m.s. Cauchy sequence is
g.m.s convergent in X.

Recently, Miheţ established the following theorem,
extending Kannan’s Theorem [16] to generalized metric
spaces.

Theorem 1.6. Let (X, d) be a T-orbitally g.m.s. and
T : X → X be a self-map. Assume that there exists
k ∈[ 0, 1

2 ) such that

d(Tx, Ty) ≤ k(d(x, Tx) + d(Ty, y)),

for all x, y ∈ X. Then, T has a unique fixed point in X.

In complete metric spaces, an important fixed point
theorem has been proved by Choudhury [17].

Theorem 1.7. Let (X, d) be a complete metric space and
T : X → X be a self-map such that for all x, y ∈ X

d(Tx, Ty) ≤ 1
2
(d(x, Ty)+d(y, Tx))−φ(d(x, Ty), d(y, Tx)),

where φ :[ 0, ∞)×[ 0, ∞) →[ 0, ∞) is continuous, and
φ(a, b) = 0 if and only if a = b = 0. Then, there exists a
unique point u ∈ X such that u = Tu.

Several papers attempting to generalize fixed point the-
orems in metric spaces to g.m.s. are plagued by the use
of some false properties given in [2] (see, for example,
[3,4,6-8]). This was observed first by Samet [13,18] and
then by Sarma et al. [14] by assuming that the general-
ized metric space is Hausdorff. In this paper, we prove
a fixed point result involving weak contractive mappings
T : X → X in complete generalized metric spaces by
assuming, in particular, that (X,d) is Hausdorff. As a corol-
lary, we derive a Kannan-type [16,19] fixed point result in
such spaces. Also, we state some examples to illustrate our
results.

Main results
Our main result is the following.

Theorem 2.1. Let (X, d) be a Hausdorff and complete
generalized metric space. Suppose that T : X → X such
that for all x, y ∈ X,

d(Tx, Ty) ≤ 1
2
(d(x, Tx)+d(y, Ty))−φ(d(x, Tx), d(y, Ty)),

(2.1)

where φ :[ 0, ∞)×[ 0, ∞) →[ 0, ∞) is continuous, and
φ(a, b) = 0 if and only if a = b = 0. Then, there exists a
unique point u ∈ X such that u = Tu.

Proof. Let x0 ∈ X be an arbitrary point. By induction,
we easily construct a sequence {xn} such that

xn+1 = Txn = Tn+1x0 for all n ≥ 0. (2.2)

If for some n ∈ N, xn = xn+1, the proof is completed. For
the rest, assume that xn 	= xn+1 for all n ∈ N.

Step 1. We claim that

lim
n→∞ d(xn, xn+1) = 0. (2.3)

Substituting x = xn and y = xn−1 in (2.1) and using the
properties of φ, we obtain

d(xn+1, xn) = d(Txn, Txn−1)

≤ 1
2
(d(xn, Txn) + d(xn−1, Txn−1))

− φ(d(xn, Txn), d(xn−1, Txn−1))

= 1
2
(d(xn, xn+1) + d(xn−1, xn))

− φ(d(xn, xn+1), d(xn−1, xn))

≤ 1
2
(d(xn, xn+1) + d(xn−1, xn)),

(2.4)

which implies that

d(xn+1, xn) ≤ d(xn, xn−1) for all n ≥ 1.

Therefore, the sequence {d(xn, xn+1)} is monotone non-
increasing and bounded below. So, there exists r ≥ 0 such
that

lim
n→∞ d(xn, xn+1) = r.

Letting n → ∞ in (2.4) and using the continuity of φ, we
get r ≤ 1

2 (r + r) − φ(r, r), which implies that φ(r, r) = 0,
so r = 0 by a property of φ. Thus, (2.3) is proved.

Step 2. We shall prove that

lim
n→∞ d(xn, xn+2) = 0. (2.5)
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By (2.1), we have

d(xn+2, xn) = d(Txn+1, Txn−1)

≤ 1
2
(d(xn+1, Txn+1) + d(xn−1, Txn−1))

− φ(d(xn+1, Txn+1), d(xn−1, Txn−1))

= 1
2
(d(xn+1, xn+2) + d(xn−1, xn))

− φ(d(xn+1, xn+2), d(xn−1, xn))

≤ 1
2
(d(xn+1, xn+2) + d(xn−1, xn)).

(2.6)

By (2.3), we get that

lim sup
n→∞

d(xn+2, xn) ≤ 0

so (2.5) is proved.

Step 3. We claim that T has a periodic point.

We argue by contradiction. Assume that T has no peri-
odic point; then, {xn} is a sequence of distinct points, that
is, xn 	= xm for all m 	= n. We will show that in this case,
{xn} is a g.m.s. Cauchy. Suppose to the contrary. Then,
there is a ε > 0 such that for an integer k, there exist
integers m(k) > n(k) > k such that

d(xn(k), xm(k)) > ε. (2.7)

For every integer k, let m(k) be the least positive integer
exceeding n(k) satisfying (2.7) and such that

d(xn(k), xm(k)−1) ≤ ε. (2.8)

Now, using (2.7) and (2.8) and the rectangular inequality
(because {xn} is a sequence of distinct points), we find that

ε < d(xm(k), xn(k)) ≤d(xm(k), xm(k)−2)

+ d(xm(k)−2, xm(k)−1)

+ d(xm(k)−1, xn(k))

≤d(xm(k), xm(k)−2)

+ d(xm(k)−2, xm(k)−1) + ε.

Then, by (2.3) and (2.5), it follows that

lim
k→+∞

d(xn(k), xm(k)) = ε. (2.9)

Applying (2.1) with x = xm(k)−1 and y = xn(k)−1, we
have

d(xm(k), xn(k)) = d(Txm(k)−1, Txn(k)−1)

≤ 1
2
(d(xm(k)−1, xm(k)) + d(xn(k)−1, xn(k)))

− φ(d(xm(k)−1, xm(k)), d(xn(k)−1, xn(k))).

Letting k → ∞ in the above inequality and using (2.3)
and (2.9), we obtain

ε ≤ 0 − φ(0, 0) = 0.

It is a contradiction.
Hence, {xn} is a g.m.s. Cauchy. Since (X, d) is a complete

g.m.s., there exists u ∈ X such that xn → u. Applying
again (2.1) with x = xn and y = u, we obtain

d(xn+1, Tu) = d(Txn, Tu) ≤ 1
2

d(xn, xn+1) + d(u, Tu))

− φ(d(xn, xn+1), d(u, Tu)), (2.10)

which implies that

d(xn+1, Tu) ≤ 1
2
(d(xn, xn+1) + d(u, Tu))).

By (2.3), it follows that

lim sup
n→∞

d(xn+1, Tu) ≤ 1
2

d(u, Tu). (2.11)

Next, we shall find a contradiction of the fact that T has
no periodic point in each of two following cases:

• If for all n ≥ 2, xn 	= u and xn 	= Tu. Then, by
rectangular inequality

d(u, Tu) ≤ d(u, xn) + d(xn, xn+1) + d(xn+1, Tu),

and using (2.3), we get that

d(u, Tu) ≤ lim sup
n→∞

d(xn+1, Tu). (2.12)

From (2.11) and (2.12),

d(u, Tu) ≤ lim sup
n→∞

d(xn+1, Tu) ≤ 1
2

d(u, Tu), (2.13)

which holds unless d(u, Tu) = 0, so Tu = u, that is, u is a
fixed point of T, so u is a periodic point of T. It contradicts
the fact that T has no periodic point.

• If for some q ≥ 2, xq = u or xq = Tu. Since T has no
periodic point, so obviously u 	= x0. Indeed, if
xq = u = x0, so Tqx0 = x0, i.e, x0 is a periodic point
of T . On the other hand, if xq = Tu and x0 = u, so
Tx0 = Tu = xq = Tqx0 = Tq−1(Tx0), i.e, Tx0 is a
periodic point of T.

For all n ≥ 1, we have

d(Tnu, u) = d(Tnxq, u) = d(xn+q, u) or
d(Tnu, u) = d(Tn−1Tu, u) = d(Tn−1xq, u)

= d(xn+q−1, u).

In the two precedent identities, the integer q ≥ 2 is fixed,
so {xn+q} and {xn+q−1} are subsequences from {xn}, and
since {xn} g.m.s. converges to u in (X,d) which is assumed
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to be Hausdorff, so the two subsequence g.m.s. converge
to the same unique limit u, i.e,

lim
n→∞ d(xn+q, u) = lim

n→∞ d(xn+q−1, u) = 0.

Thus,

lim
n→∞ d(Tnu, u) = 0. (2.14)

Again, since (X,d) is Hausdorff, then by (2.14),

lim
n→∞ d(Tn+2u, u) = 0. (2.15)

On the other hand, since T has no periodic point, then
it is easy that

Tsu 	= Tru for any s, r ∈ N, s 	= r. (2.16)

Using (2.16) and a rectangular inequality, we may write

|d(Tn+1u, Tu) − d(u, Tu)| ≤ d(Tn+1u, Tn+2u)

+ d(Tn+2u, u).

Letting n → ∞ in the above limit and proceeding as
(2.3) (since the point x0 is arbitrary and so the same for the
point u) and using (2.15), we obtain

lim
n→∞ d(Tn+1u, Tu) = d(u, Tu). (2.17)

Similarly,

lim
n→∞ d(Tnu, Tu) = d(u, Tu). (2.18)

Now, by (2.1),

d(Tn+1u, Tu) ≤ 1
2
(d(Tnu, Tu) + d(u, Tu))

− φ(d(Tnu, Tu), d(u, Tu)). (2.19)

Letting n → ∞ in (2.19) and using (2.17) and (2.18), we
get that

d(u, Tu) ≤ d(u, Tu) − φ(d(Tu, u), d(u, Tu)),

which holds unless d(u, Tu) = 0, so Tu = u; hence, u is a
periodic point of T. It is a contradiction with the fact that
T has no periodic point.
Consequently, T admits a periodic point, that is, there
exists u ∈ X such that u = Tpu for some p ≥ 1.

Step 4. Existence of a fixed point of T.

If p = 1, then u = Tu, that is, u is a fixed point
of T. Suppose now that p > 1. We will prove that
a = Tp−1u is a fixed point of T. Suppose that Tp−1u 	=
Tpu; then, d(Tp−1u, Tpu) > 0, and so φ(d(Tp−1u,

Tpu), d(Tp−1u, Tpu)) > 0. Now, using the inequality
(2.1), we obtain

d(u, Tu) = d(Tpu, Tp+1u)

= d(T(Tp−1u), T(Tpu))

≤1
2
(d(Tp−1u, Tpu) + d(Tpu), T(Tpu))

− φ(d(Tp−1u, Tpu), d(Tpu), T(Tpu))

<
1
2
(d(Tp−1u, Tpu) + d(u, Tu))

which implies that

d(u, Tu) < d(Tp−1u, Tpu). (2.20)

Again, by (2.1), we have

d(Tp−1u, Tpu)) =d(T(Tp−2u), T(Tp−1u))

≤1
2
(d(Tp−2u, Tp−1u) + d(Tp−1u, Tpu))

− φ(d(Tp−2u, Tp−1u), d(Tp−1u, Tpu))

≤1
2
(d(Tp−2u, Tp−1u) + d(Tp−1u, Tpu)).

Again, this implies that

d(Tp−1u, Tpu) ≤ d(Tp−2u, Tp−1u). (2.21)

Continuing this process as in (2.20) and (2.21), we find
that

d(u, Tu) < d(Tp−1u, Tpu) ≤ d(Tp−2u, Tp−1u)

≤ ... ≤ d(u, Tu),

which is a contradiction. We deduce that a = Tp−1u is a
fixed point of T.

Step 5. Uniqueness of the fixed point of T.

Suppose that there are two points b, c ∈ X such that
Tb = b and Tc = c. By (2.1), we obtain

d(b, c) = d(Tb, Tc) ≤ 1
2
(d(b, b)+d(c, c))−φ(0, 0) = 0

so b = c. Thus, T has a unique fixed point. This completes
the proof of Theorem 2.1.

Now, we state a corollary of Theorem 2.1 (a Kannan-
type contraction [16,19]) given in the following.

Corollary 2.2. Let (X, d) be a Hausdorff and complete
generalized metric space. Suppose that T : X → X such
that for all x, y ∈ X, there exists k ∈[ 0, 1) and

d(Tx, Ty) ≤ k
2
(d(x, Tx) + d(y, Ty)). (2.22)

Then, T has a unique fixed point.
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Proof. It suffices to take φ(t, s) = 1−k
2 (t + s) in Theorem

2.1.

Also, we have the following consequence from
Theorem 2.1.

Corollary 2.3. Let (X, d) be a Hausdorff and complete
generalized metric space. Suppose that T : X → X such
that for all x, y ∈ X

d(Tx, Ty) ≤ 1
2
(d(x, Tx) + d(y, Ty))

− ψ

(
1
2
(d(x, Tx) + d(y, Ty))

)
, (2.23)

where ψ :[ 0, ∞) →[ 0, ∞) is continuous, and ψ−1({0}) =
{0}. Then, T has a unique fixed point.

Proof. We have only to show that φ(t, s) = ψ
( 1

2 (t + s)
)

satisfies the hypotheses of Theorem 2.1.

Remark 2.4. (1) Corollary 2.2 corresponds to the
main result of Miheţ [11], except that we assumed, in
addition, that the generalized metric space is
Hausdorff.

(2) Theorem 2.1 extends the results of Branciari [2],
Azam and Arshad [4], and Sarma et al. [14].

We give some examples illustrating Theorem 2.1.

Example 2.5. Following [4,12], let X = {1, 2, 3, 4} and
define d : X × X → R as follows:

d(1, 2) = d(2, 1) = 3
d(2, 3) = d(3, 2) = d(1, 3) = d(3, 1) = 1
d(1, 4) = d(4, 1) = d(2, 4) = d(4, 2) = d(3, 4)

= d(4, 3) = 4.

Then, (X, d) is a complete generalized metric space, but
(X, d) is not a metric space because it lacks the triangular
property:

3 = d(1, 2) > d(1, 3) + d(3, 2) = 1 + 1 = 2.

Now, define a mapping T : X → X as follows:

Tx = 3 if x 	= 4 and T4 = 1.

Take φ(a, b) = 1
4 a + 1

8 b for all a, b ≥ 0. It is easy that all
hypotheses of Theorem 2.1 are satisfied, and u = 3 is the
unique fixed of T.

On the other hand, Banach’s theorem [1] is not appli-
cable (for the metric d0|x, y) = |x − y| for all x, y ∈ X).

Indeed, taking x = 2 and y = 4, we have

d0(T2, T4) = 2 > 2k = kd0(2, 4) for all k ∈[ 0, 1).

Also, Theorem 1.7 is not applicable by taking, for exam-
ple, x = 3 and y = 4,

d0(T3, T4)=2 >
3
2

−φ(2, 1) = 1
2
(d0(3, T4) + d0(4, T3))

− φ(d0(3, T4), d0(4, T3)),

for all φ (given as our Theorem 2.1), and so in particular,
it is the same for Chatterjea’s theorem [20].

Example 2.6. Let X = A ∪ B, where A = { 1
2 , 1

3 , 1
4 , 1

5
}

and B =[ 3
4 , 1]. Define the generalized metric d on X as

follows:

d
(

1
2

,
1
3

)
= 1

2
,

d
(

1
2

,
1
4

)
= d

(
1
3

,
1
4

)
= 1

5
,

d
(

1
4

,
1
5

)
= d

(
1
2

,
1
5

)
= d

(
1
5

,
1
3

)
= 1

6
,

d
(

1
2

,
1
2

)
= d

(
1
3

,
1
3

)
= d

(
1
4

,
1
4

)
= d

(
1
5

,
1
5

)
= 0,

d(x, y) = d(y, x) for all x, y ∈ A,

and

d(x, y) = |x − y| if

⎧⎪⎨
⎪⎩

x ∈ B, y ∈ A, or,
x ∈ A, y ∈ B, or,
x, y ∈ B.

It is clear that d does not satisfy triangle inequality on A.
Indeed,

1
2

= d
(

1
2

,
1
3

)
> d

(
1
2

,
1
4

)
+ d

(
1
4

,
1
3

)
= 2

5
, or

1
2

= d
(

1
2

,
1
3

)
> d

(
1
2

,
1
5

)
+ d

(
1
5

,
1
3

)
= 1

3
.

Notice that (p3) holds, so d is a generalized metric.
Let T : X → X be defined as

Tx =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2

if x ∈
[

3
4

, 1
]

1
5

if x ∈
{

1
3

,
1
4

,
1
5

}

1
3

if x = 1
2

.

Choose φ(a, b) = 1
15 (a + b). Then, it easy to check that

T satisfies the conditions of Theorem 2.1 and has a unique
fixed point on X, i.e., u = 1

5 .
Note that, Banach’s theorem [1] is not applicable (it suf-

fices to take x = 1
2 and y = 1

3 ). Also, we couldn’t apply
Theorem 1.7 by taking, for example, x = 1

2 and y = 1
3 .
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