RETRACTION Open Access

Survey of B-spline functions to approximate the solution of mathematical problems

Jalil Rashidinia^{1,2*} and Sh Sharifi²

*Correspondence:
Rashidinia@iust.ac.ir ¹ School of Mathematics, Iran University of Science and Technology, Tehran, Iran 2Department of Mathematics and Statistics, Islamic Azad University - Central Tehran Branch, Tehran, Iran

Abstract

Purpose: In the present paper, we describe a survey of B-spline techniques which have been used for numerical solutions of mathematical problems recently.

Methods: Here, we discussed the definition of B-splines of various degrees by two different approaches to generate the recurrence relation to drive the formulation of B-splines.

Results: Cubic B-spline applied on two test equations and absolute errors in interpolation are compared with cubic and quintic splines. Some remarks have been included.

Conclusions: Numerical results are tabulated in tables; these tables show that the results obtained by cubic B-spline are considerable and accurate with respect to the cubic spline and more or less similar to the quintic spline.

Keywords: Spline functions, Derivation of formula, Alternative approach, Numerical illustration

Introduction

ADSTEAT ANTIFICATION
 ANDROGE: In the present paper, we describe a survey of B-spline technal

Tan

In the brew been used for numerical solutions of mathematical problems recentions

(University-

10 University-
 λ The theory of spline functions is a very attractive field of approximation theory. Usually, a spline is a piecewise polynomial function defined in region *D*, such that there exists a decomposition of *D* into subregions in each of which the function is a polynomial of some degree *k*. Also, the function, as a rule, is continuous in *D*, together with its derivatives of order up to $(k-1)$ [1-7]. Generally, the piecewise polynomial is considered, and [a, b] \subset R is a finite interval. We introduce a set of partition $\Delta_n = \{x_0, x_1, \cdots, x_n\}$ of [*a*, *b*], where x_i $(i = 0(1)n)$ are called nodes of the partition. The set of piecewise polynomial of degree *k* defined on a partition Δ_n is denoted by $S_k(\Delta_n)$ in each subinterval; $I_i = [x_{i-1}, x_i]$ is a *k*th degree polynomial. Specifically, the type of bases B-spline for our purpose is considered, for which we only use the equidistance partition. Moreover, we extend the set of nodes by taking $h = \frac{b-a}{n}$, $x_0 = a$, and $x_i = x_0 + ih$ where $i = \pm 1, \pm 2, \pm 3, \cdots$.

> Let $\{\Delta_n\}$ be a partition of $[a, b] \subset R$. A B-spline of degree *k* is a spline from $S_k(\Delta_n)$ with minimal support and the partition of unity holding.

> The B-spline of degree k is denoted by $B_i^k(x)$, where $i \in \mathbb{Z}$, and then we have the following properties:

- 1. Supp $(B_i^k) = [x_i, x_{i+k+1}]$
- 2. $B_i^k(x) \geq 0$, $\forall x \in R$ (non-negativity)

© 2012 Rashidinia and Sharifi; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

3.
$$
\sum_{i=-\infty}^{\infty} B_i^k(x) = 1
$$
, $\forall x \in R$ (partition of unity)

The next section explains the explicit definition of B-splines.

Methods

Derivation of B-spline functions

In this section we give an introduction of B-splines. The B-splines were so named because they formed a basis for the set of all splines [4]. Through out this section, we suppose that an infinite set of knots $\{x_i\}$ has been prescribed in such a way that

 $\cdots < x_{-2} < x_{-1} < x_0 < x_1 < x_2 < \cdots$ $\lim_{i\to\infty} x_i = \infty = -\lim_{i\to\infty} x_{-i}$

The B-spline to be defined now depends on this set of knots.

Definition 1. Support of function f is defined as the set of points x when $f(x) \neq 0$.

B-spline of degree 0

The B-spline of degree 0 is defined by $B_i^0(x) =$ $\int 1 x_i \leq x < x_{i+1}$ 0 otherwise.

B-spline of degree 0 is characterized by the following:

1. The support of B_i^0 is a half-open interval $[x_i, x_{i+1}]$.

.

- 2. $B_i^0(x) \ge 0$ for all x and for all i.
- 3. B_i^0 is continuous.

4.
$$
\sum_{i=-\infty}^{\infty} B_i^0(x) = 1
$$
 for all x

5. Any spline of degree 0 can be expressed as a linear combination of the *B*-splines B_i^0 .

We generate all the higher degree B-splines by a simple recursive definition [3,4]:

$$
B_i^k(x) = \left(\frac{x - x_i}{x_{i+k} - x_i}\right) B_i^{k-1}(x) + \left(\frac{x_{i+k+1} - x}{x_{i+k+1} - x_{i+1}}\right) B_{i+1}^{k-1}(x); \qquad k \ge 1,
$$
 (1)

Archive $x = 2 \times x - 1 \times x_0 \times x_1 \times x_2 \times \cdots$
 $\lim x_i = \infty = -\lim x_{-i}$
 $\lim_{n \to \infty} x_i = \infty$ $\lim_{n \to \infty} x_i = \lim_{n \to \infty} x_i$
 $\lim_{n \to \infty} x_i = \lim_{n \to \infty} x_i = \lim_{n \to \infty} x_i$
 \lim The B_i^k functions as defined by Equation 1 are called B-splines of degree k . Since each B_i^k is obtained by applying a linear factor to B_i^{k-1} and B_{i+1}^{k-1} , we see that degrees actually increased by 1 at each step. Therefore, B^1_i is piecewise linear, B^2_i is piecewise quadratic, and so on.

With the function B_i^0 as a starting point and Equation 1, we obtain the higher degree B-splines.

B-spline of degree 1

To illustrate Equation 1, let us determine B_i^1 in an alternative form:

$$
B_i^1(x) = \left(\frac{x - x_i}{x_{i+1} - x_i}\right) B_i^0(x) + \left(\frac{x_{i+2} - x}{x_{i+2} - x_{i+1}}\right) B_{i+1}^0(x),
$$

$$
= \begin{cases} \frac{x - x_i}{x_{i+1} - x_i} & x_i \leq x < x_{i+1} \\ \frac{x_{i+2} - x}{x_{i+2} - x_{i+1}} & x_{i+1} \leq x < x_{i+2} \\ 0 & \text{otherwise.} \end{cases}
$$

B-spline of degree 1 is characterized by the following:

- 1. The support of B_i^1 is a half-open interval $[x_i, x_{i+2}]$.
- 2. $B_i^1(x) \ge 0$ for all x and for all i.
- 3. $B_i^1(x)$ is continuous at all points.

4.
$$
\sum_{i=-\infty}^{\infty} B_i^1(x) = 1
$$
, for all x.

Quadratic B-spline

We determine B_i^2 in an alternative form:

$$
B_i^2(x) = \left(\frac{x - x_i}{x_{i+2} - x_i}\right) B_i^1(x) + \left(\frac{x_{i+3} - x}{x_{i+3} - x_{i+1}}\right) B_{i+1}^1(x),
$$

At first, we determine $B_{i+1}^1(x)$ in an alternative form:

$$
B_i^2(x) = \left(\frac{x - x_i}{x_{i+2} - x_i}\right) B_i^1(x) + \left(\frac{x_{i+3} - x}{x_{i+3} - x_{i+1}}\right) B_{i+1}^1(x),
$$

\nAt first, we determine $B_{i+1}^1(x)$ in an alternative form:
\n
$$
B_{i+1}^1(x) = \left(\frac{x - x_{i+1}}{x_{i+2} - x_{i+1}}\right) B_{i+1}^0(x) + \left(\frac{x_{i+3} - x}{x_{i+3} - x_{i+2}}\right) B_{i+2}^0(x),
$$
\n
$$
= \begin{cases}\n\frac{x - x_{i+1}}{x_{i+2} - x_{i+1}} & x \in [x_{i+1}, x_{i+2}) \\
\frac{x_{i+3} - x}{x_{i+3} - x_{i+2}} & x \in [x_{i+2}, x_{i+3}) \\
\frac{x_{i+3} - x}{x_{i+3} - x_{i+2}} & x \in [x_{i+2}, x_{i+3})\n\end{cases}
$$
\n
$$
B_i^2(x) = \begin{cases}\n\frac{(x - x_i)(x_{i+2} - x)}{(x_{i+2} - x_i)(x_{i+1} - x_i)} & x \in [x_{i+1}, x_{i+2}) \\
\frac{(x_{i+3} - x_{i+1})(x_{i+2} - x_{i+1})}{(x_{i+3} - x_{i+1})(x_{i+2} - x_{i+1})} & x \in [x_{i+1}, x_{i+2}) \\
\frac{(x_{i+3} - x_i)(x_{i+2} - x_{i+1})}{(x_{i+3} - x_{i+1})(x_{i+3} - x_{i+2})} & x \in [x_{i+2}, x_{i+3}) \\
0 & \text{otherwise.} \n\end{cases}
$$

Alternative approach to drive the B-spline relations

In this section, we give another approach for driving the B-splines which are more applicable with respect to the recurrence relation for the formulations of B-splines of higher degrees [2]. At first, we recall that the *k*th forward difference $f(x_0)$ of a given function $f(x)$ at x_0 , which is defined recursively by the following:

$$
\Delta f(x_0) = f(x_1) - f(x_0), \n\Delta^{k+1} f(x_0) = \Delta^k f(x_1) - \Delta^k f(x_0).
$$

In particular,

$$
\Delta^2 f(x_0) = \Delta f(x_1) - \Delta f(x_0) = f(x_2) - 2f(x_1) + f(x_0),
$$

\n
$$
\Delta^3 f(x_0) = \Delta^2 f(x_1) - \Delta^2 f(x_0) = f(x_3) - 3f(x_2) + 3f(x_1) - f(x_0),
$$

\n
$$
\Delta^4 f(x_0) = \Delta^3 f(x_1) - \Delta^3 f(x_0) = f(x_4) - 4f(x_3) + 6f(x_2) - 4f(x_1) + f(x_0),
$$

\n
$$
\Delta^5 f(x_0) = \Delta^4 f(x_1) - \Delta^4 f(x_0) = f(x_5) - 5f(x_4) + 10f(x_3) - 10f(x_2) + 5f(x_1) - f(x_0),
$$

\n
$$
\Delta^6 f(x_0) = \Delta^5 f(x_1) - \Delta^5 f(x_0) = f(x_6) - 6f(x_5) + 15f(x_4) - 20f(x_3) + 15f(x_2)
$$

\n
$$
-6f(x_1) + f(x_0),
$$

\n
$$
\Delta^7 f(x_0) = \Delta^6 f(x_1) - \Delta^6 f(x_0) = f(x_7) - 7f(x_6) + 21f(x_5) - 35f(x_4) + 35f(x_3)
$$

\n
$$
-21f(x_2) + 7f(x_1) - f(x_0).
$$

\n(2)

Archive of $\frac{2f(x_0)-2f(x_1)-f(x_0)}{2f(x_2)+f'(x_1)-f(x_0)}$ **.

Remark 1.** The coefficient of $f(x_k)$ in $\Delta^n f(x_0)$ is simply the binomial coefficient $-1)^{n-k} {n \choose 2}$. It is well known that with evenly spaced knots $x_i \equiv x_0 + ih$ an **Remark 1.** The coefficient of $f(x_k)$ in $\Delta^n f(x_0)$ is simply the binomial coefficient $(-1)^{n-k} {n \choose k}$. It is well known that with evenly spaced knots $x_i = x_0 + ih$ and $x_{i+j} = x_{i+j}h$, Δ^n annihilates all polynomials of degree $(n - 1)$.

Theorem 1. The nth forward difference $\Delta^n f(x)$ with evenly spaced knots of any polyno*mial of degree n* − 1 *is identically equal to zero.*

Theorem 2. *The function* $(x - t)$ ^{*m*} *is defined as follows:*

$$
(x-t)_+^m = \begin{cases} (x-t)^m & x \ge t \\ 0 & x < t \end{cases}
$$

It is clear that $(x - t)_+^m$ is $(m - 1)$ times continuously differentiable both with respect to t *and x.*

The B-spline of order *m* is defined as follows:

$$
B_i^m(t) = \frac{1}{h^m} \sum_{j=0}^{m+1} {m+1 \choose j} (-1)^{m+1-j} (x_{i-2+j} - t)_+^m = \frac{1}{h^m} \Delta^{m+1} (x_{i-2} - t)_+^m.
$$

Hence, we apply this approach to obtain the B-spline of order one. Let $m = 1$; thus,

$$
B_i^1(t) = \frac{1}{h} \Delta^2 (x_{i-2} - t)_+ = \frac{1}{h} [(x_{i-2} - t)_+ - 2(x_{i-1} - t)_+ + (x_i - t)_+],
$$

\n
$$
B_i^1(t) = \frac{1}{h} \begin{cases} (x_i - t) - 2(x_{i-1} - t) & x_{i-2} < t \le x_{i-1} \\ (x_i - t) & x_{i-1} < t \le x_i \\ 0 & \text{otherwise,} \end{cases}
$$

\n
$$
B_i^1(t) = \frac{1}{h} \begin{cases} t - x_{i-2} & x_{i-2} < t \le x_{i-1} \\ x_i - t & x_{i-1} < t \le x_i \\ 0 & \text{otherwise.} \end{cases}
$$

In order to obtain the quadratic B-spline, let $m = 2$. Thus,

$$
B_i^2(t) = \frac{1}{h^2} \Delta^3 (x_{i-2} - t)_+^2
$$

\n
$$
= \frac{1}{h_2} [(x_{i+1} - t)_+^2 - 3(x_i - t)_+^2 + 3(x_{i-1} - t)_+^2 - (x_{i-2} - t)_+^2],
$$

\n
$$
B_i^2(t) = \frac{1}{h^2} \begin{cases} (x_{i+1} - t)^2 - 3(x_i - t)^2 + 3(x_{i-1} - t)^2 & x_{i-2} < t \le x_{i-1} \\ (x_{i+1} - t)^2 - 3(x_i - t)^2 & x_{i-1} < t \le x_i \\ (x_{i+1} - t)^2 & x_i < t \le x_{i+1} \\ 0 & \text{otherwise.} \end{cases}
$$

In order to obtain the cubic B-spline, let *m* = 3. Thus,

In order to obtain the cubic B-spline, let
$$
m = 3
$$
. Thus,
\n
$$
B_i^3(t) = \frac{1}{h^3} \Delta^4 (x_{i-2} - t)_+^3
$$
\n
$$
= \frac{1}{h^3} [(x_{i+2} - t)_+^3 - 4(x_{i+1} - t)_+^3 + 6(x_i - t)_+^3 + 4(x_{i-1} - t)_+^3 + (x_{i-2} - t)_+^3],
$$
\n
$$
= 4(x_{i-1} - t)_3^3
$$
\n
$$
B_i^3(t) = \frac{1}{h^3} \begin{cases} (x_{i+2} - t)^3 - 4(x_{i+1} - t)^3 + 6(x_i - t)^3 \\ -4(x_{i-1} - t)^3 \end{cases} \begin{cases} x_{i+2} - t_3 - 4(x_{i+1} - t_1)^3 + 6(x_i - t_1)^3 & x_{i-2} < t \leq x_{i-1} \\ (x_{i+2} - t_3)^3 - 4(x_{i+1} - t_3)^3 & x_i < t \leq x_{i+1} \\ (x_{i+2} - t_3)^3 & x_{i+1} < t \leq x_{i+2} \\ 0 & \text{otherwise.} \end{cases}
$$
\nIn order to obtain the quartic B-spline which is used by [8], let $m = 4$:
\n
$$
B_i^4(t) = \frac{1}{h^4} \Delta^5 (x_{i-2} - t)_+^4
$$
\n
$$
= \frac{1}{h^4} [(x_{i+3} - t)_+^4 - 5(x_{i+2} - t)_+^4 + 10(x_{i+1} - t)_+^4 - 10(x_i - t)_+^4 + 5(x_{i-1} - t)_+^4 - (x_{i-2} - t)_+^4],
$$

In order to obtain the quartic B-spline which is used by $[8]$, let $m = 4$:

$$
B_i^4(t) = \frac{1}{h^4} \Delta^5(x_{i-2} - t)_+^4
$$

\n
$$
= \frac{1}{h^4} [(x_{i+3} - t)_+^4 - 5(x_{i+2} - t)_+^4 + 10(x_{i+1} - t)_+^4 - 10(x_i - t)_+^4
$$

\n
$$
+ 5(x_{i-1} - t)_+^4 - (x_{i-2} - t)_+^4],
$$

\n
$$
\begin{cases}\n(x_{i+3} - t)^4 - 5(x_{i+2} - t)^4 + 10(x_{i+1} - t)^4 \\
- 10(x_i - t)^4 + 5(x_{i-1} - t)^4 & x_{i-2} < t \le x_{i-1}\n\end{cases}
$$
\n
$$
B_i^4(t) = \frac{1}{h^4} \begin{cases}\n(x_{i+3} - t)^4 - 5(x_{i+2} - t)^4 + 10(x_{i+1} - t)^4 \\
(x_{i+3} - t)^4 - 5(x_{i+2} - t)^4 + 10(x_{i+1} - t)^4 & x_i < t \le x_i \\
(x_{i+3} - t)^4 - 5(x_{i+2} - t)^4 & x_{i+1} < t \le x_{i+2} \\
(x_{i+3} - t)^4 - 5(x_{i+2} - t)^4 & x_{i+1} < t \le x_{i+2} \\
(x_{i+3} - t)^4 & x_{i+2} < t \le x_{i+3} \\
0 & \text{otherwise.}\n\end{cases}
$$

In order to obtain the quintic B-spline which is used by $[9]$, let $m = 5$:

$$
B_i^5(t) = \frac{1}{h^5} \Delta^6(x_{i-2} - t)_+^5
$$

\n
$$
= \frac{1}{h^5} [(x_{i+4} - t)_+^5 - 6(x_{i+3} - t)_+^5 + 15(x_{i+2} - t)_+^5 - 20(x_{i+1} - t)_+^5
$$

\n
$$
+ 15(x_i - t)_+^5 - 6(x_{i-1} - t)_+^5 + (x_{i-2} - t)_+^5],
$$

\n
$$
\begin{cases}\n(x_{i+4} - t)_-^5 - 6(x_{i+3} - t)_-^5 + 15(x_{i+2} - t)_-^5 \\
- 20(x_{i+1} - t)_-^5 + 15(x_i - t)_-^5 \\
- 6(x_{i-1} - t)_-^5 & x_{i-2} < t \le x_{i-1}\n\end{cases}
$$
\n
$$
(x_{i+4} - t)_-^5 - 6(x_{i+3} - t)_-^5 + 15(x_{i+2} - t)_-^5
$$
\n
$$
- 20(x_{i+1} - t)_-^5 + 15(x_{i+2} - t)_-^5
$$
\n
$$
- 20(x_{i+1} - t)_-^5
$$
\n
$$
- 20(x_{i+1} - t)_-^5
$$
\n
$$
(x_{i+4} - t)_-^5 - 6(x_{i+3} - t)_-^5 + 15(x_{i+2} - t)_-^5
$$
\n
$$
x_i < t \le x_{i+1}
$$
\n
$$
(x_{i+4} - t)_-^5 - 6(x_{i+3} - t)_-^5 + 15(x_{i+2} - t)_-^5
$$
\n
$$
x_{i+1} < t \le x_{i+2}
$$
\n
$$
(x_{i+4} - t)_-^5 - 6(x_{i+3} - t)_-^5
$$
\n
$$
x_{i+2} < t \le x_{i+3}
$$
\n
$$
(x_{i+4} - t)_-^5
$$
\n
$$
x_{i+3} < t \le x_{i+4}
$$
\n
$$
x_{i+5} < t \le x_{i+5}
$$
\n
$$
x_{i+6} < t \le x_{i+7}
$$
\n

At last in order to obtain Sextic B-spline which is used by $[10]$, let $m = 6$

$$
\begin{pmatrix}\n(x_{i+4}-t)^5 - 6(x_{i+3}-t)^5 + 15(x_{i+2}-t)^5 \\
-20(x_{i+1}-t)^5 + 15(x_i-t)^5 & x_{i-1} < t \leq x_i \\
(x_{i+4}-t)^5 - 6(x_{i+3}-t)^5 + 15(x_{i+2}-t)^5 & x_i < t \leq x_{i+1} \\
(x_{i+4}-t)^5 - 6(x_{i+3}-t)^5 + 15(x_{i+2}-t)^5 & x_{i+1} < t \leq x_{i+2} \\
(x_{i+4}-t)^5 - 6(x_{i+3}-t)^5 & x_{i+2} < t \leq x_{i+3} \\
(x_{i+4}-t)^5 & x_{i+3} < t \leq x_{i+3} \\
(x_{i+4}-t)^5 & x_{i+3} < t \leq x_{i+4} \\
0 & \text{otherwise.}\n\end{pmatrix}
$$
\nAt last in order to obtain Sextic B-spline which is used by [10], let $m = 6$
\n
$$
B_i^6(t) = \frac{1}{h^6} \Delta^7(x_{i-2}-t)^6 + 35(x_{i+1} - t)^6 + 21(x_i + 3 - t)^6 + 21(x_i + 3 - t)^6 - 21(x_i - t)^6 + 7(x_{i-1} - t)^6 - 35(x_{i+2} - t)^6 + 35(x_{i+1} - t)^6 + 21(x_{i+3} - t)^6 - 35(x_{i+2} - t)^6 + 35(x_{i+1} - t)^6 - 21(x_i - t)^6 + 7(x_{i-1} - t)^6 & x_{i-2} < t \leq x_{i-1} \\
(x_{i+5}-t)^6 - 7(x_{i+4}-t)^6 + 21(x_{i+3}-t)^6 - 35(x_{i+2}-t)^6 + 35(x_{i+1}-t)^6 & x_{i-1} < t \leq x_i \\
B_i^6(t) = \frac{1}{h^6} \begin{cases} x_{i+5}-t)^6 - 7(x_{i+4}-t)^6 + 21(x_{i+3}-t)^6 \\ -35(x_{i+2}-t)^6 + 35(x_{i+1}-t)^6 \\ -35(x_{i+2}-t)^6 + 35(x_{i+1}-t)^6 \\ -35(x_{i+2}-t)^6 - 7(x_{
$$

Table 1 The absolute errors at different points

\boldsymbol{x}	Cubic B-spline	Cubic spline [19]	Quintic spline [19]
$\frac{1}{12}$	-1.84×10^{-5}	-2.51×10^{-4}	-1.05×10^{-5}
$\frac{3}{12}$	-2.97×10^{-4}	-6.87×10^{-4}	-2.86×10^{-5}
$rac{5}{12}$	-3.98×10^{-4}	-9.39×10^{-4}	-3.91×10^{-5}
$\frac{7}{12}$	-3.98×10^{-4}	-9.39×10^{-4}	-3.91×10^{-5}
$\frac{9}{12}$	-2.97×10^{-4}	-6.87×10^{-4}	-2.86×10^{-5}
$\frac{11}{12}$	-1.84×10^{-5}	-2.51×10^{-4}	-1.04×10^{-5}

Remark 2. The above B-splines have been used to approximate the solution of recent differential equations [11-13] and integral equations [14], as well as for interpolation [15-18].

Results and discussion

Numerical illustration

Remark 2. The above B-splines have been used to approximate the solution of redifferential equations [11-13] and integral equations [14], as well as for interpolat
15-18].
Archive of SID
Archive of SID
Archive of S We applied the cubic B-spline to interpolate the following test problems. The maximum errors in the interpolation are tabulated in Tables 1 and 2. Results obtained by cubic B-spline are compared with the absolute error in the interpolation by cubic and quintic splines given in [19].

1. **Example 1**

$$
f(x) = \sin(\pi x), \qquad x \in [0,1],
$$

We interpolate this problem with the step size, $h = \frac{1}{6}$.

2. **Example 2**

$$
f(x) = \frac{e^{kx} - 1}{e^k - 1}, \qquad x \in [0, 0.8], k = 12,
$$

We interpolate this problem with the step size, $h = \frac{2}{15}$.

Conclusions

These tables show that the results obtained by cubic B-spline are considerable and accurate with respect to the cubic spline and are more or less similar to the quintic spline.

X	Cubic B-spline	Cubic spline [19]	Quintic spline [19]
$\frac{1}{15}$	5.55×10^{-7}	-1.23×10^{-6}	1.54×10^{-6}
$\frac{3}{15}$	-8.71×10^{-6}	-6.13×10^{-6}	2.99×10^{-6}
$rac{5}{15}$	9.14×10^{-6}	-3.03×10^{-5}	1.48×10^{-5}
$\frac{7}{15}$	-8.81×10^{-5}	-1.50×10^{-4}	7.34 \times 10 ⁻⁵
$\frac{9}{15}$	9.81×10^{-5}	-7.45×10^{-4}	3.64×10^{-4}
$\frac{11}{15}$	9.55×10^{-4}	-3.69×10^{-3}	1.56×10^{-2}

Table 2 The absolute errors at different points

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

JR and SS contributed equally to this work. Both authors read and approved the final manuscript.

Received: 24 June 2012 Accepted: 1 July 2012 Published: 9 October 2012

References

- 1. De Boor, C: A Practical Guide to Splines. Springer-Velay, Berlin (1978)
- 2. Prenter, PM: Spline and Variational Methods. Wiley, New York (1975)
- 3. Stoer, J, Bulirsch, R: An Introduction of Numerical Analysis, 3rd edition. Springer, New York (2002)
- 4. Cheney, W, Kincaid, D: Numerical Mathematics and Computing, 2nd edition. Brooks/Cole Publishing Company, Stamford (1985)
- 5. Ahlberg, JH, Nilson, EN, Walsh, JL: The Theory of Splines and Their Applications. Academic Press, San Diego (1967)
- 6. Micula, G, Micula, S: Handbook of Splines. Kluwer Academic Publishers, Boston (1999)
- 7. Caglar, H, Caglar, N, Elfaituri, K: B-spline interpolation compared with finite difference, finite element and finite volume methods which applied to two-point boundary value problems. Appl. Math. Comput. **175**, 72–29 (2006)
- Micula, 6, Micula, Schandbook of Splines. Kluwer Academic Publishes, Becton (1999)
 *Archive Schandbook of Spline interpolation compared with finite difference, finite eigneris and

volume methods which applied to two-poin* 8. Saka, B, Dag, I: Quartic B-spline collocation method to the numerical solutions of the Burgers' equation. Chaos Solitons Fractals. **32**, 1125–1137 (2007)
- 9. Saka, B, Dag, I, Boz, A: Quintic B-spline, Galerkin method for numerical solution of the Burgers' equation. In Dynamical Systems and Applications, Proceedings, Antalya, Turkey 04-10 July 2004
- 10. Hassan, SM, Alamery, DG: B-spline collocation algorithms for solving numerically the MRLW equation. Int. J. Nonlinear Sci. **8**, 131–140 (2009)
- 11. Caglar, H, Caglar, N: Fifth degree B-spline solution for a fourth-order parabolic partial differential equations. Appl. Math. Comput. **201**, 597–603 (2008)
- 12. Saka, B, Dag, I, Boz, A: B-spline Galerkin methods for numerical solutions of the Burgers' equation. Appl. Math. Comput. **166**, 506–522 (2005)
- 13. Saka, B, Dag, I, Irk, D: Application of cubic B-spline for numerical solution of the RLW equation. Appl. Math. Comput. **159**, 373-389 (2004)
- 14. Huizing, AJ, Bakker, GBL: The solution of faddeev integral equations for three-body scattering by means of B-splines. J. Comput. Phys. **90**, 200–218 (1990)
- 15. Chaniotis, AK, Poulikakos, D: High order interpolation and differentiation using B-splines. J. Comput. Phys. **197**, 253-274 (2004)
- 16. Kvasov, BI: Parabolic B-splines in interpolation problems. USSR Comput. Math. Math. Phys. **23**, 13–19 (1993)
- 17. Zhu, C-G, Wang, R-H: Numerical solution of Burgers' equation by cubic B-spline quasi-interpolation. Appl. Math. Comput. **208**, 260–272 (2009)
- 18. Zhu, C-G, Kang, W-S: Numerical solution of Burgers-Fisher equation by cubic B-spline quasi-interpolation. Appl. Math. Comput. **216**, 2679–2686 (2010)
- 19. Rashidinia, J: Applications of splines to the numerical solution of differential equations. PhD Thesis, Aligarh Muslim University (1994)

doi:10.1186/2251-7456-6-48

Cite this article as: Rashidinia and Sharifi: Survey of B-spline functions to approximate the solution of mathematical problems. Mathematical Sciences 2012 **6**:48.

Submit your manuscript to a SpringerOpen^o **journal and benefit from:**

- \blacktriangleright Convenient online submission
- \blacktriangleright Rigorous peer review
- \blacktriangleright Immediate publication on acceptance
- ▶ Open access: articles freely available online
- \blacktriangleright High visibility within the field
- \blacktriangleright Retaining the copyright to your article

Submit your next manuscript at 7 **springeropen.com**