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Asymptotically λ-invariant statistical
equivalent sequences of fuzzy numbers
Ayhan Esi

Abstract

This paper presents the following definition which is a natural combination of the definitions for asymptotically
equivalent λ-statistical convergence and σ -convergence of fuzzy numbers. Two sequences X and Y of fuzzy numbers
are said to be asymptotically λ-invariant statistical equivalent of multiple L provided that for every ε > 0,

lim
n

1

λn

∣∣∣∣∣
{

k ∈ In :
−
d

(
Xσ k(m)

Yσ k(m)

, L

)
≥ ε

}∣∣∣∣∣ = 0, uniformly in m

(
denoted by X

SL
σ ,λ(F)∼ Y

)
and simply asymptotically λ-invariant statistical equivalent if L = 1.
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Introduction
Let σ be a one-to-one mapping of the set of positive inte-
gers into itself such that σ k (m) = σ

(
σ k−1 (m)

)
, k =

1, 2, 3, . . .. The generalized de la Vallee-Pousin mean is
defined by

tn (x) = 1
λn

∑
k∈In

xk ,

where (λn) is a non-decreasing sequence of positive num-
bers such that λn+1 ≤ λn +1, λ1 = 1, and λn → ∞ as n →
∞ and In = [n − λn + 1, n] . A sequence x = (xk) is said
to be (V , λ)-summable to a number L if tn (x) → L as n →
∞ [1]. (V , λ)-summability reduces to (C, 1)-summability
when λn = n for all n ∈ N .

Let D denote the set of all closed and bounded intervals
on R, the real line. For X, Y ∈ D, we define

d (X, Y ) = max (|a1 − b1| , |a2 − b2|) ,

where X = [a1, a2] and Y = [b1, b2]. It is known that
(D, d) is a complete metric space. A fuzzy real number X is
a fuzzy set on R, i.e., a mapping X : R → I (= [0, 1]) asso-
ciating each real number t with its grade of membership
X (t) .
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The set of all upper semicontinuous, normal, and con-
vex fuzzy real numbers is denoted by R (I). Throughout
the paper, by a fuzzy real number X, we mean that X ∈
R (I) .

The α-cut or α-level set [X]α of the fuzzy real number
X, for 0 < α ≤ 1, is defined by [X]α = {t ∈ R : X (t) ≥ α} ;
for α = 0, it is the closure of the strong 0-cut, i.e., closure
of the set {t ∈ R : X (t) > 0} . The linear structure of R (I)
induces the addition X + Y and the scalar multiplication
μX, μ ∈ R, in terms of α-level sets, defined by

[X + Y ]α = [X]α + [Y ]α , [μX]α = μ [X]α

for each α ∈ (0, 1].

Let
−
d : R (I) × R (I) → R be defined by

−
d (X, Y ) = sup

0≤α≤1
d

(
[X]α , [Y ]α

)
.

Then,
−
d defines a metric on R (I) . It is well known that

R (I) is complete with respect to
−
d .

A sequence (Xk) of fuzzy real numbers is said to be con-
vergent to the fuzzy real number X0 if, for every ε > 0,

there exists n0 ∈ N such that
−
d (Xk , X0) < ε, for all k ≥ n0.

Let c (F) denote the set of all convergent sequences of
fuzzy numbers.

© 2012 Esi; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.
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A sequence (Xk) of fuzzy real numbers is said to be
bounded if the set {Xk : k ∈ N} of fuzzy numbers is
bounded. We denote by �∞ (F) the set of all bounded
sequences of fuzzy numbers. In [2], it was shown that c (F)

and �∞ (F) are complete metric spaces.
A subset E of N is said to have density (asymptotic or

natural) δ (E) if

δ (E) = lim
n→∞

1
n

n∑
k=1

κE (k) exists,

where κE is the characteristic function of E. The defini-
tion of statistical convergence was introduced by Fast [2]
and studied by several authors [3-9]. The sequence x is
statistically convergent to s if for each ε > 0,

lim
n→∞

1
n

|{k ≤ n : |xk − s| ≥ ε}| = 0,

where |A| denotes the number of elements in A. Schoen-
berg [10] studied statistical convergence as a summability
method and listed some of the elementary properties of
statistical convergence.

Nuray and Savaş [11] defined the notion of statisti-
cal convergence for sequences of fuzzy real numbers and
studied some properties. A fuzzy real number (Xk) is said
to be statistically convergent to the fuzzy real number X0
if for every ε > 0,

δ

({
k ∈ N :

−
d (Xk , X0) ≥ ε

})
= 0.

Fuzzy sequence are spaces studied by several authors
such as [12-19].

In 1993, Marouf [20] presented definitions for asymp-
totically equivalent sequences of real numbers and asymp-
totic regular matrices. In 2003, Patterson [21] extended
these concepts by presenting an asymptotically statistical
equivalent analog of these definitions and natural regu-
larity conditions for nonnegative summability matrices.
In 2006, Savaş and Başarir [22] introduced and studied
the concept of (σ , λ)-asymptotically statistical equivalent
sequences. In 2008, Esi and Esi [23] introduced and stud-
ied the concept of asymptotically equivalent difference
sequences of fuzzy numbers. In 2009, Esi [24] introduced
and studied asymptotically equivalent sequences for dou-
ble sequences. For sequences of fuzzy numbers, Savaş
[25,26] introduced and studied the concepts of strongly
λ-summable λ-statistical convergence and asymptotically
λ-statistical equivalent sequences, respectively . Recently,
Braha [27] defined asymptotically generalized difference
lacunary sequences. The goal of this paper is to extend
the idea on asymptotically equivalent and λσ F -statistical
convergence of fuzzy numbers.

Methods
Definitions and notations

Definition 1. Two sequences X = (Xk) and Y = (Yk) of
fuzzy numbers are said to be σ F -asymptotically equivalent
if

lim
k

−
d

(
Xσ k(m)

Yσ k(m)

, 1
)

= 0 , uniformly in m
(

denoted by X σ F
∼ Y

)
.

Definition 2. A sequence of fuzzy numbers, X =
(Xk), is said to be SL

σ ,λ (F)-statistically convergent or Sλ
σ F -

convergent to the fuzzy number L if for every ε > 0,

lim
n

1
λn

∣∣∣∣{k ∈ In :
−
d

(
Xσ k(m), L

)≥ε

}∣∣∣∣=0, uniformly in m.

In this case, we write Sλ
σ F − lim X = L or Xk → L

(
Sλ
σ F

)
.

Following this result, we introduce two new notions
asymptotically SL

σ ,λ (F)-statistical equivalent of multi-
ple L and strong V L

σ ,λ (F)-asymptotically equivalent of
multiple L.

The next definition is a natural combination of Defini-
tions 1 and 2.

Definition 3. Two sequences X = (Xk) and Y = (Yk)
of fuzzy numbers are said to be asymptotically λ-invariant
statistical equivalent of multiple L provided that for every
ε > 0,

lim
n

1
λn

∣∣∣∣∣
{

k ∈ In :
−
d

(
Xσ k(m)

Yσ k(m)

, L
)

≥ ε

}∣∣∣∣∣
= 0, uniformly in m

(
denoted by X

SL
σ ,λ(F)∼ Y

)

and simply asymptotically Sσ ,λ (F)-statistical equivalent if
L = 1.

Example 1. Let λn = n and σ (m) = m+1 for all n, m ∈
N. Consider the sequences of fuzzy numbers X = (Xk)

and Y = (Yk) defined by Xn = n−2 and Yn = n−1 for all
n ∈ N. Then,

lim
n

1
λn

∣∣∣∣∣
{

k ∈ In :
−
d

(
Xσ k(m)

Yσ k(m)

, L
)

≥ ε

}∣∣∣∣∣
= lim

n

1
n

∣∣∣∣{k ∈ [1, n] :
−
d

(
n−1, 0

)
≥ ε

}∣∣∣∣ = 0.

If we take λn = n for all n ∈ N, the above definition
reduces to following definition:
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Definition 4. Two sequences X = (Xk) and Y = (Yk)
of fuzzy numbers are said to be asymptotically invariant
statistical equivalent of multiple L provided that for every
ε > 0,

lim
n

1
n

∣∣∣∣∣
{

k ≤ n :
−
d

(
Xσ k(m)

Yσ k(m)

, L
)

≥ ε

}∣∣∣∣∣
= 0, uniformly in m

(
denoted by X

SL
σ (F)∼ Y

)
and simply asymptotically Sσ (F)-statistical equivalent if
L = 1.

Definition 5. Two sequences X = (Xk) and Y =
(Yk) of fuzzy numbers are said to be strong V L

σ ,λ (F)-
asymptotically equivalent of multiple L provided that

lim
n

1
λn

∑
k∈In

−
d

(
Xσ k(m)

Yσ k(m)

, L
)

= 0, uniformly in m
(

denoted by X
V L

σ ,λ(F)∼ Y
)

and simply strong Vσ ,λ (F)-asymptotically statistical
equivalent if L = 1.

Example 2. Let λn = n and σ (m) = m+1 for all n, m ∈
N. Consider the sequences of fuzzy numbers X = (Xk)

and Y = (Yk) defined by Xn = n−2 and Yn = n−1 for all
n ∈ N. Then,

lim
n

1
λn

∑
k∈In

−
d

(
Xσ k(m)

Yσ k(m)

, 0
)

= lim
n

1
n

n∑
k=1

−
d

(
n−2k

n−k
, 0

)

= lim
n

1
n

n∑
k=1

1
nk < ∞.

If we take λn = n for all n ∈ N, the above definition
reduces to the following definition:

Definition 6. Two sequences X and Y of fuzzy num-
bers are said to be strong Cesaro CL

σ (F)-asymptotically
equivalent of multiple L provided that

lim
n

1
n

n∑
k=1

−
d

(
Xσ k(m)

Yσ k(m)

, L
)

= 0, uniformly in m
(

denoted by X
CL

σ ,λ(F)∼ Y
)

and simply strong Cesaro Cσ (F)-asymptotically equiv-
alent if L = 1.

If we take σ (m) = m + 1, the above definitions reduce
the following definitions:

Definition 7. Two sequences X = (Xk) and Y = (Yk)
of fuzzy numbers are said to be asymptotically almost
equivalent if

lim
k

−
d

(
Xk+m
Yk+m

, 1
)

= 0 , uniformly in m
(

denoted by X F̂∼ Y
)

.

Definition 8. A sequence of fuzzy numbers X = (Xk)
is said to be λF̂ -statistically almost convergent or Sλ

F̂ -
convergent to the fuzzy number L if for every ε > 0,

lim
n

1
λn

∣∣∣∣{k ∈ In :
−
d

(
Xk+m, L

) ≥ ε

}∣∣∣∣ = 0 uniformly in m.

In this case, we write Sλ
F̂ − lim X = L or Xk → L

(
Sλ

F̂

)
.

Definition 9. Two sequences X = (Xk) and Y = (Yk)
of fuzzy numbers are said to be asymptotically almost λ-
statistical equivalent of multiple L provided that for every
ε > 0,

lim
n

1
λn

∣∣∣∣{k ∈ In :
−
d

(
Xk+m
Yk+m

, L
)

≥ ε

}∣∣∣∣
= 0, uniformly in m

(
denoted by X

SL
λ

(̂
F
)

∼ Y
)

and simply asymptotically almost λ-statistical equivalent
if L = 1.

If we take λn = n for all n ∈ N, the above definition
reduces to the following definition:

Definition 10. Two sequences X = (Xk) and Y = (Yk)
of fuzzy numbers are said to be asymptotically almost sta-
tistical equivalent of multiple L provided that for every
ε > 0,

lim
n

1
n

∣∣∣∣{k ≤ n :
−
d

(
Xk+m
Yk+m

, L
)

≥ ε

}∣∣∣∣
= 0, uniformly in m

(
denoted by X

SL (̂
F
)

∼ Y
)

and simply asymptotically almost statistical equivalent if
L = 1.

Definition 11. Two sequences X = (Xk) and Y = (Yk)
of fuzzy numbers are said to be strong asymptotically
almost λ-equivalent of multiple L provided that

lim
n

1
λn

∑
k∈In

−
d

(
Xk+m
Yk+m

, L
)

= 0, uniformly in m
(

denoted by X
V L

λ

(̂
F
)

∼ Y
)
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and simply strong asymptotically almost λ-equivalent if
L = 1.

If we take λn = n for all n ∈ N, the above definition
reduces to following definition.

Definition 12. Two sequences X = (Xk) and Y = (Yk)
of fuzzy numbers are said to be strong asymptotically
almost equivalent of multiple L provided that

lim
n

1
n

n∑
k=1

−
d

(
Xk+m
Yk+m

, L
)

= 0, uniformly in m
(

denoted by X
CL (̂

F
)

∼ Y
)

and simply strong asymptotically almost equivalent if
L = 1.

Results and discussion
Theorem 1. Let X = (Xk) and Y = (Yk) be two fuzzy

real valued sequences. Then, the following conditions are
satisfied:

(i) If X
V L

σ ,λ(F)∼ Y , then X
SL
σ ,λ(F)∼ Y .

(ii) If X ∈ �∞ (F) and X
SL
σ ,λ(F)∼ Y , then X

V L
σ ,λ(F)∼ Y ;

hence, X
CL

σ ,λ(F)∼ Y .

(iii) X
SL
σ ,λ(F)∼ Y ∩ �∞ (F) = X

V L
σ ,λ(F)∼ Y ∩ �∞ (F) .

Proof. (i) If ε > 0 and X
V L

σ ,λ(F)∼ Y , then∑
k∈In

−
d

(
Xσ k(m)

Yσ k(m)

, L
)

≥
∑
k∈In

−
d

( X
σk (m)

Y
σk (m)

,L
)

≥ε

−
d

(
Xσ k(m)

Yσ k(m)

, L
)

≥ ε

∣∣∣∣∣
{

k ∈ In :
−
d

(
Xσ k(m)

Yσ k(m)

, L
)

≥ ε

}∣∣∣∣∣ .

Therefore, X
SL
σ ,λ(F)∼ Y .

(ii) Suppose that X = (Xk) and Y = (Yk) are in �∞ (F)

and X
SL
σ ,λ(F)∼ Y . Then, we can assume that

−
d

(
Xσ k(m)

Yσ k(m)

, L
)

≤ T , for all k and m.

Given ε > 0,

1
λn

∑
k∈In

−
d

(
Xσ k(m)

Yσ k(m)

, L
)

= 1
λn

∑
k∈In

−
d

( X
σk (m)

Y
σk (m)

,L
)

≥ε

−
d

(
Xσ k(m)

Yσ k(m)

, L
)

+ 1
λn

∑
k∈In

−
d

( X
σk (m)

Y
σk (m)

,L
)

<ε

−
d

(
Xσ k(m)

Yσ k(m)

, L
)

≤ T
λn

∣∣∣∣∣
{

k ∈ In :
−
d

(
Xσ k(m)

Yσ k(m)

, L
)

≥ ε

}∣∣∣∣∣ + ε.

Therefore, X
V L

σ ,λ(F)∼ Y . Further, we have

1
n

n∑
k=1

−
d

(
Xσ k(m)

Yσ k(m)

, L
)

= 1
n

n−λn∑
k=1

−
d

(
Xσ k(m)

Yσ k(m)

, L
)

+ 1
n

∑
k∈In

−
d

(
Xσ k(m)

Yσ k(m)

, L
)

≤ 1
λn

n−λn∑
k=1

−
d

(
Xσ k(m)

Yσ k(m)

, L
)

+ 1
λn

∑
k∈In

−
d

(
Xσ k(m)

Yσ k(m)

, L
)

≤ 2
λn

∑
k∈In

−
d

(
Xσ k(m)

Yσ k(m)

, L
)

.

Hence, X
CL

σ ,λ(F)∼ Y since X
V L

σ ,λ(F)∼ Y .
(iii) Follows from (i) and (ii).

In the next theorem, we prove the following relation:

Theorem 2. X
SL
σ (F)∼ Y implies X

SL
σ ,λ(F)∼ Y if

lim inf
(

λn
n

)
> 0. (1)

Proof. For a given ε > 0, we have

{
k ≤ n :

−
d

(
Xσ k(m)

Yσ k(m)

, L
)

≥ ε

}

⊃
{

k ∈ In :
−
d

(
Xσ k(m)

Yσ k(m)

, L
)

≥ ε

}
.

Therefore,

1
n

∣∣∣∣∣
{

k ≤ n :
−
d

(
Xσ k(m)

Yσ k(m)

, L
)

≥ ε

}∣∣∣∣∣
≥ 1

n

∣∣∣∣∣
{

k ∈ In :
−
d

(
Xσ k(m)

Yσ k(m)

, L
)

≥ ε

}∣∣∣∣∣
≥ λn

n
.

1
λn

∣∣∣∣∣
{

k ∈ In :
−
d

(
Xσ k(m)

Yσ k(m)

, L
)

≥ ε

}∣∣∣∣∣ .
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Taking the limit as n → ∞ and using Equation 1, we get
the desired result. This completes the proof.

Conclusions
The concept of asymptotic equivalence was first sug-
gested by Marouf [20] in 1993. After that, several authors
introduced and studied some asymptotically equivalent
sequences. The results obtained in this study are much
more general than those obtained earlier.
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