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I-convergent sequences of fuzzy real numbers
defined by Orlicz function
Bipul Sarma

Abstract

In this article we introduce some I-convergent sequence spaces of fuzzy real numbers defined by Orlicz function
and study their different properties such as solidity and symmetricity. The notion of I-convergence generalizes the
notion of some particular type of convergence of sequences.
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Introduction
The notion of I-convergence of real-valued sequence
was studied at the initial stage by Kostyrko et al. [1]
which generalizes and unifies different notions of con-
vergence of sequences. The notion was further studied
by Šalát et al. [2].
The notion of fuzzy sets was introduced by Zadeh [3].

After that, many authors have studied and generalized
this notion in many ways due to the potential of the
introduced notion. Also, it has a wide range of applica-
tions in almost all of the branches studied, particularly
in the field of science where mathematics is used. It
attracted many workers to introduce different types of
fuzzy sequence spaces.
Bounded and convergent sequences of fuzzy numbers

were studied by Matloka [4]. Later on, sequences of
fuzzy numbers have been studied by Kaleva and Seikkala
[5], Tripathy and Sarma [6,7], and many others.
An Orlicz function is a function M: [0, ∞) → [0, ∞),

which is continuous, non-decreasing, and convex with
M(0) = 0, M(x) > 0 for x > 0 and M(x) → ∞ as x → ∞. If
the convexity of M is replaced by the following:

M xþ yð Þ≤M xð Þ þM yð Þ

then this function is called the modulus function.
Remark 1. It is well known that if M is an Orlicz func-

tion, then M(λx) ≤ λM(x) for all λ with 0< λ <1.

Lindenstrauss and Tzafriri [8] used the idea of Orlicz
function to construct the following sequence space:

‘M ¼ x∈w :
X1
k¼1

M
xkj j
r

� �
< 1; for some r > 0

( )

The space ‘M becomes a Banach space, with the fol-
lowing norm:

xk k ¼ inf r > 0:
X1
k¼1

M
xkj j
r

� �
≤1

( )
:

Definitions and background
Let X be a nonempty set, then a non-void class I� 2X

(power set of X) which is called an ideal if I is an her-
editary (i.e., A ∈ I and B� A⇒ B ∈ I) and additive (i.e. A,
B ∈ I⇒ A [ B ∈ I). An ideal I� 2X is said to be nontrivial
if I ≠ 2X. A nontrivial ideal I is said to be admissible if I
contains every finite subset of N. A nontrivial ideal I is
said to be maximal if there does not exist any nontrivial
ideal J ≠ I containing I as a subset.
Let X be a nonempty set, then a non-void class F� 2X

is said to be a filter in X if φ ∉ F;A, B ∈ F⇒ A \ B ∈ F and
A ∈ F, A� B⇒ B ∈ F. For any ideal I, there is a filter Ψ(I)
corresponding to I, given by the following:

Ψ Ið Þ ¼ K � N : N K∈If g:
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Example.

(a) Let I = If, which is the class of all finite subsets of N,
then If is a nontrivial admissible ideal.

(b) Let A⊂N. If δ Að Þ ¼ lim
n→1

1
n

Xn
k¼1

χA kð Þ exists, then the

class Iδ of all A ⊂N with δ(A) = 0 forms a nontrivial
admissible ideal.

(c) Let A ⊂N and sn ¼
Xn
k¼1

1
k
, for all n ∈ N. If d Að Þ ¼

lim
n→1

1
sn

Xn
k¼1

χA kð Þ
k

exists, then the class Id of all A ⊂N

with d(A) = 0 forms a nontrivial admissible ideal.
(d) The uniform density of a set A ⊂N is defined as

follows. For integers t ≥ 0 and s ≥ 1, let A(t + 1,
t + s) = card {n ∈ A:t + 1 ≤ n ≤ t + s}. Put βs ¼
lim inf
t→1 A(t +1, t + s), βs ¼ lim sup

t→1
A( t +1, t + s).

If lim
s→1

βs
s
and lim

s→1
βs

s
both exist and lim

s→1
βs
s
¼ lim

s→1
βs

s
(= u(A), say), then u(A) is called the uniform
density of A. The class Iu of all A ⊂N with u(A) = 0
forms a nontrivial ideal.

Let D denote the set of all closed and bounded inter-
vals X = [a1, b1] on the real line R. For X = [a1, b1] ∈ D
and Y = [a2, b2] ∈ D, define d(X, Y) by the following:

d X;Yð Þ ¼ max a1 � b1j j; a2 � b2j jð Þ:

It is known that (D, d) is a complete metric space.
A fuzzy real number X is a fuzzy set on R, i.e., a map-

ping X:R → L(= [0, 1]) associating each real number t
with its grade of membership X(t).
The α-level set [X]α set of a fuzzy real number X for 0

< α ≤ 1, and is defined as follows:

Xa ¼ t∈R : X tð Þ≥αf g:

A fuzzy real number X is called convex, if X(t) ≥
X(s)∧ X(r) = min(X(s), X(r)), where s < t < r.
If there exists t0 ∈ R such that X(t0) = 1, then the fuzzy

real number X is called normal.
A fuzzy real number X is said to be upper semi-con-

tinuous if for each ε > 0, X−1([0, a + ε]), for all a ∈ L is
open in the usual topology of R.
The set of all upper semi-continuous, normal, convex

fuzzy number is denoted by L (R).
The absolute value |X| of X ∈ L(R) is defined as fol-

lows (see for instance Kaleva and Seikkala [5]):

Xj j tð Þ ¼ max X tð Þ;X �tð Þf g; if t > 0
¼ 0 ; if t > 0:

Let d : L Rð Þ � L Rð Þ→R be defined by the following:

d X;Yð Þ ¼ sup
0≤α≤1

d Xα;Y αð Þ:

then d defines a metric on L(R).
A sequence (Xk) of fuzzy real numbers is said to be

convergent to the fuzzy real number X0 if for every ε > 0,
there exists n0 ∈ N such that d (Xk, X0)< ε for all k ≥ k0.
A fuzzy real-valued sequence space EF is said to be

solid if (Yk) ∈ EF whenever (Xk) ∈ EF and |Yk| ≤ |Xk|, for
all k ∈ N.
Let K = {k1 < k2 < k3 . . .}�N and EF be a sequence

space. A K-step space of EF is a sequence space λE
F

K ¼
Xknð Þ∈wF : Xkð Þ∈EFf g.
A canonical pre-image of a sequence Xknð Þ∈λEF

K is a se-
quence (Yk)∈ wF which is defined as follows:

Yk ¼ Xk ; if k ∈K;
0; otherwise:

�

A canonical pre-image of a step space λE
F

K is a set of

canonical pre-images of all elements in λE
F

K , i.e., Y is in

canonical pre-image λE
F

K if and only if Y is canonical pre-

image of some X ∈ λE
F

K .
A sequence space EF is said to be monotone if EF con-

tains the canonical pre-images of all its step spaces.
A sequence space EF is said to be symmetric if (Xπ(k)) ∈

EF, whenever (Xk) ∈ EF, π is a permutation on N.
A sequence X = (Xk) of fuzzy numbers is said to be I-

convergent if there exists a fuzzy number X0 such that
for all ε > 0, the set {n ∈ N: d (Xk, X0) ≥ ε} ∈ I. We write
I-lim Xk = X0.
A sequence (Xk) of fuzzy numbers is said to

be I*-convergent to X0 (I*-lim Xk = X0) if there
is a set { k1< k2 < − − - - -} ∈ Ψ (I) such that lim

i→1
Xki ¼ X0.

A sequence (Xk) of fuzzy numbers is said to be I-
bounded if there exists a real number μ such that the set
{k ∈ N: d (Xk, 0) > μ}∈ I.
If I = If, then If convergence coincides with the usual

convergence of fuzzy sequences. If I = Id(Iδ), then Id(Iδ)
convergence coincides with statistical convergence (loga-
rithmic convergence) of fuzzy sequences. If I = Iu, Iu
convergence is said to be a uniform convergence of
fuzzy sequences.

Throughout cI(F), c0
I(F) and ‘I Fð Þ

1 denote the spaces of
fuzzy real-valued I-convergent, I-null and I-bounded
sequences, respectively.

It is clear from the definitions that cI Fð Þ
0 ⊂cI Fð Þ⊂‘I Fð Þ

1 , and
the inclusions are proper.
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It can be easily shown that ‘I Fð Þ
1 is complete with re-

spect to the metric ρ defined by f (X, Y) = supn d (Xk,

Yk), where X = (Xk), Y = (Yk) ∈ ‘I Fð Þ
1 .

Lemma 1. A sequence space EF is solid, implying that
EF is monotone.
For the crisp set case, one may refer to Kamthan and

Gupta [9].
Lemma 2. If I� 2N is a maximal ideal, then for each

A ⊂N, we have either A ∈ I or N \ A ∈ I. (see for instance
lemma 5.1 of the work of Kostyrko et al. [1])
The existing sequence space ‘F1 Mð Þ is defined as follows:

‘F1 Mð Þ ¼ Xkð Þ∈wF : sup
k
M

d Xk ;0ð Þ
r

� �
< 1; for some r > 0

� �
which is a complete metric space.
We define the following sequence spaces:

cI
� �F

Mð Þ ¼
(

Xkð Þ :
(
k : M

d Xk ; Lð Þ
r

� �

≥ K; for some r > 0 and L∈R Ið Þ
)
∈I

)

For L ¼ 0, the above space is denoted by (c0
I )F(M)

‘I1
� �F

Mð Þ ¼
(

Xkð Þ :
(
K : M

d Xk ; 0
� �
r

 !

≥ ε; for some r > 0

)
∈I

)

Also, we define (mI)F(M) = (cI)F(M) \ ‘F1 Mð Þ , (m0
I )F

(M) = (c0
I )F (M) \ ‘F1 Mð Þ.

Results and discussion
Theorem 1. The classes (cI)F(M), (c0

I )F(M), (mI)F(M), and
(m0

I )F (M) are complete metric spaces with respect to the
metric given by the following:

f X;Yð Þ ¼ inf r > 0 : sup
k

M
d Xk ;Ykð Þ

r

� �
≤1

� �

Proof. Let (Xn) be a Cauchy sequence in (mI)F(M)
such that Xn → X in ‘F1 Mð Þ, where (Xn) = (Xk

n) and
X = (Xk).
Let ε > 0 be given. For a fixed x0 > 0, choose r > 0

such that M rx0
3

� �
≥1 and m0 ∈ N such that

f Xn;Xmð Þ < ε

rx0
for all n;m≥m0:

By definition of f, we have the following:

M
d Xm

k ;X
n
k

� �
f Xm;Xnð Þ

 !
≤1≤M

rx0
3

� 	

⇒d Xm
k ;X

n
k

� �
<

ε

3
for alln;m≥m0:

Since Xm, Xn ∈ (mI)F(M), so there exist fuzzy numbers
Ym and Yn such that

A ¼ k∈N : M
d Xn

k ;Yn
� �

r

 !
< M

ε

3r

� 	( )
∈ψ Ið Þ

¼ k∈N : d Xn
k ;Ym

� �
<

ε

3

n o
∈ψ Ið Þ:

B ¼ k∈N : d Xm
k ;Ym

� �
<

ε

3

n o
∈ψ Ið Þ:

Now, A \ B ∈ ψ(I), and let k ∈ A \ B, and then

d Yn;Ymð Þ≤d Yn;X
n
k

� �þ d Xn
k ;X

m
k

� �þ d Xm
k ;Ym

� �
< e for all n;m≥m0:

Thus, (Yn) is a Cauchy sequence of fuzzy real numbers.
Thus, there exists a fuzzy real number Y such that lim
Yn =Y. To show that I-lim Xk = Y. Let η > 0. Since Xn →
X, so there exists s ∈ N such that

f Xs;Xð Þ < η

3
:

The number s can be chosen in such a way that

d Ys;Yð Þ < η

3

Since I − lim Xk
(s) = Yt, thus we have the following:

C ¼ k∈N : d X sð Þ
k ;Yt

� 	
<

η

3

n o
∈ψ Ið Þ:

Hence, for each k ∈ C,

d Xk ;Yð Þ≤d Xk ;X
s
k

� �þ d Xs
k ;Ys

� �þ d Ys;Yð Þ
< η:

Thus I-lim Xk = Y.
Property 1. The sequence spaces (cI)F(M), (c0

I )F(M),
(mI)F(M) and (m0

I )F (M) are not symmetric.
For this result consider the following example.
Example 1. Let I = Iδ. Let the sequence (Xk) be

defined as follows:

For k ¼ i2; i∈N ;Xk tð Þ ¼
1; for 0≤ t ≤1;
�tk�1 þ 1þ k�1; for 1≤t≤kþ1;

0; otherwise:

8><
>:
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and for k ≠ i2, i ∈ N, Xk ¼ 1.
Let (Yk) be a rearrangement of (Xk) defined by the

following:

Ykð Þ ¼ X1;X2;X4;X3;X9;X5;X16;X6; :::::::ð Þ

The sequence (Xk) is statistically convergent, but (Yk)
is not statistically convergent.
Theorem 2. The sequence spaces (c0

I )F(M), (mI)F(M),
and (m0

I )F (M) are solid.
Proof. We prove the result for (c0

I )F(M). For the
other spaces, the result can be proven similarly.
Let (Xk) ∈ (c0

I )F(M) and (Yk) be such that |Yk| ≤
|Xk|, for all k ∈ N, and for the given ε > 0,

A ¼ k∈N : M
d Xk ;0ð Þ

r

� �
≥ε; for some r > 0

� �
∈I:

Since M is increasing;B ¼
(
k∈N : M

d Yk ; 0
� �
r

 !
≥ε for

some r > 0

)
� A:

Thus, B ∈ I and so <Yk> ∈ (c0
I )F(M). Hence, (c0

I )F(M) is
solid.
Property 2. The sequence space (cI)F(M) is not

monotone.
For this result, consider the following example.
Example 2. Let I = Iu. Let the sequence (Xk) be

defined as follows:

For all k∈N ; Xk tð Þ ¼
1; for 0≤ t ≤ 1;
�t þ 2; for 1≤ t ≤ 2;
0; otherwise:

8<
:

Then (Xk) ∈ (cI)F(M). Let J = {k ∈ N and k even}.
Let the sequence (Yk) be defined by the following:

Yk ¼ Xk ; if k∈J :
¼ 0; otherwise:

Also, (Yk) belongs to the canonical pre-image of the J-
step space of (cI)F(M), but (Yk) ∉ (cI)F(M). Thus, (cI)F(M)
is not monotone and hence not solid.
Property 3. The sequence spaces (cI)F(M), (c0

I )F

(M), (mI)F(M), and (m0
I )F (M) are not convergence

free.
For this result, consider the following example.
Example 3. Consider the sequence space (cI)F(M), and

let I = Iδ.
Let the sequence (Xk) be defined as follows:

Xk ¼ 0; fork ¼ i2; i∈N;

and for other values;Xk tð Þ ¼
t þ 1; for 0≤ t ≤1;
�t þ 1; for 1≤ t ≤2;
0; otherwise:

8<
:

Let the sequence (Yk) be defined by the following:

Yk ¼ 0; for k ¼ i2; i∈N;

and for other values;Yk tð Þ

¼
1; for 0≤t≤1;

k � tð Þ k � 1ð Þ�1; for 1≤t≤k;

0; otherwise:

8><
>:

Also, (Xk) is statistically convergent, but (Yk) is not sta-
tistically convergent. Hence, (cI)F(M) is not convergence
free. Similarly, the other spaces are also not convergence
free.
Theorem 3. (i) Z(M1) � Z(M2οM1) for Z = (cI)F,

cI0
� �F

; ‘I1
� �F

.
(ii) Z(M1, q) \ Z(M2, q) � Z(M1 +M2, q) for Z = (cI)F

cI0
� �F

; ‘I1
� �F

.
Proof. (i) Let Z = (cI)F and (Xk) ∈ (cI)F(M); then,

k : M
d Xk ; Lð Þ

r

� �
≥ε; for some r > 0

� �
∈I:

Since M2 is continuous, so for ε > 0, there exists η > 0
such that M2(ε) = η. The result follows from

M2 M1
d Xk ; Lð Þ

r

� �� �
≥M2 εð Þ ¼ η:

(ii) The proof is easy, so it is omitted.

Theorem 4. (i) Z(M) � ‘I1
� �F

Mð Þ for Z = (cI)F, (c0
I )F.

The inclusion is proper.
Proof. The first part of the result is obvious. For the

inclusion to be proper, consider the following example.
Example 4. Let the sequence (Xk) be defined by the

following:

For k odd;Xk tð Þ ¼
t; for 0≤t≤1;
�t þ 2; for 1≤t≤2;
0; otherwise:

8<
:

and for k even; Xk tð Þ ¼
t; for 0≤t≤1;
�t þ 3ð Þ2�1; for 1≤t≤3;
0; otherwise:

8<
:

The sequence (Xk) is bounded on a set of logarithmic
density 1, but it is not logarithmically convergent.

Conclusions
Generalizing the notion of convergence of sequences, we
have studied the notion of I-convergence of sequences
through this paper. A few works have been done in the
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direction of I-convergence of sequences. We have stud-
ied some important properties of I-convergent sequence
spaces introduced with Orlicz function. The notion of
I-convergence generalizes the notion of some particular
type of convergence of sequences.
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