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Introduction

Katsaras [1] defined a fuzzy norm on a vector ‘space
to construct a fuzzy vector topological structure on the
space. Some mathematicians have defined fuzzy norms
as a vector space from various points of view (see [2-4]).
In particular, Bag and Samanta [5]; following Cheng and
Mordeson [6], gave an idea of fuzzy norm in such a man-
ner that the corresponding fuzzy metric is of Karmosil
and Michalek type [7]. They established a decomposition
theorem of a fuzzy norm into a family of crisp norms and
investigated some properties of fuzzy normed spaces [8].

Definition 1. Let X be a real vector space. A function
N : X x R —[0,1] is called a fuzzy norm on X if for all
x,y € X and all s,t € R " (Bag and Samanta [5]):

(N1) N(x,t) =0fort <0;

(N2) x=0ifandonly if N(x,t) = 1forallt > 0;

(N3) N(cx,t) =N (x ﬁ) ifc #0;

(N4) N(x+y,c+t) > min{N(x,s), Ny, t)};

(N5) N(x,.) is a non-decreasing function of R and
limy 00 N(x,£) = 1;

(N6) forx # 0, N(x,.) is continuous on R.
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Example 1. Let (X, ||.||) be a normed linear space and
o, > 0. Then

o > 0,xeX
N ,t — at+Bllx|l ’
() {o t<0xeX

is a fuzzy norm on X.

Definition 2. Let (X, N) be a fuzzy normed vector space.
A sequence {x,} in X is said to be convergent or converges if
there exists an x € X such thatlim;_, oo N(x, —x,t) = 1 for
all t > 0. In this case, x is called the limit of the sequence
{4} in X, and we denote it by N — limy_, 00 %, = x (Bag
and Samanta [5]).

Definition 3. Let (X, N) be a fuzzy normed vector space.
A sequence {x,} in X is called Cauchy if for each ¢ > 0 and
each t > 0 there exists an ny € N such that for all n > ny
and all p > 0, we have N (%, — x,t) > 1 — € (Bagand
Samanta [5]).

It is well known that every convergent sequence in a
fuzzy normed vector space is Cauchy. If each Cauchy
sequence is convergent, then the fuzzy norm is said to be
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complete, and the fuzzy normed vector space is called a
fuzzy Banach space.

We say that a mapping f : X — Y between fuzzy
normed vector spaces X and Y is continuous at a point
x € X if for each sequence {x,} converging to xp € X, then
the sequence {f(x,)} converges to f(xg). If f : X — Y is
continuous at each x € X, then f : X — Y is said to be
continuous on X (see [8]).

Definition 4. Let X be a set. A functiond : X x X —
[0, 00] is called a generalized metric on X if d satisfies the
following conditions:

(1) d(x,y) =0 ifand only ifx =y forall x,y € X;

(2)d(x,y) = d(y,x) forallx,y € X;

(3)d(x,2) <dx,y) +d(y,z) forallx,y,z € X.

Theorem 1. Let (X, d) be a complete generalized metric
spaceand ] : X — X be a strictly contractive mapping with
Lipschitz constant L < 1 [9,10]. Then, for all x € X, either

d("x, " x) = oo,

for all nonnegative integers n or there exists a positive
integer ng such that

(1) d(J"x,]"1x) < oo for all ng > no;

(2) the sequence {]"x} converges to a fixed point y* of J;

(3) y* is the unique fixed point of ] in theset Y = {y.€ X :
d(J™x,y) < ook

4)d(y,y*) < 1iL(,i(y,]y)forally €Y.

The stability problem of functional equations originated
from a question of Ulam [11] concerning the stability of
group homomorphisms. Hyers [12] gave a first affirmative
partial answer to the question of Ulam for Banach spaces.
Hyers’ theorem was generalized by Themistocles M
Rassias [13] for linear mappings by considering an
unbounded Cauchy difference.

The functional equation f(x +y) + f(x — y) = 2f (x) +
2f (y) is called a quadratic functional equation. In partic-
ular, every solution of the quadratic functional equation
is said to be a quadratic mapping. The Hyers-Ulam sta-
bility of the quadratic functional equation was proved by
Skof [14] for mappings f : X — Y, where X is a normed
space and Y is a Banach space. Cholewa [15] noticed that
the theorem of Skof is still true if the relevant domain X
is replaced by an Abelian group. Czerwik [16] proved the
Hyers-Ulam stability of the quadratic functional equation.

In the study of Eshaghi Gordji et. al [17], they proved
that the following functional equation is an additive-
cubic-quartic functional equation:

11f(x 4+ 2y) + 11f (x — 2y) = 44f (x +y) + 44f (x — y)
+12f(3y) — 48f (2y)
+607 () — 66f®). (1)
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In this paper, we prove the generalized Hyers-Ulam sta-
bility of the functional equation (Equation 1) in fuzzy
Banach spaces.

The stability problems of several functional equations
have been extensively investigated by a number of authors,
and there are many interesting results concerning this
problem (see [18]-[43]).

Methods
Fuzzy stability of the functional equation (Equation 1): an
odd case
In this section, using the fixed point alternative approach,
we prove the generalized Hyers-Ulam stability of the func-
tional equation (Equation 1) in fuzzy Banach spaces: an
odd case. Throughout this paper, assume that X is a vector
space and that (Y, N) is a fuzzy Banach space.

In the work of Lee et al. [32], they considered the
following quartic functional equation:

S Qx4y)+f 2x—y) =4 (x+y)+f (x—y)}+24f (x) —6f ().

(2)

It is easy to show that the function f (x) = x% satisfies the

functional equation (Equation 2), which is called a quar-

tic functional equation, and every solution of the quartic
functional equation is said to be a quartic mapping.

One can easily show that an even mapping f : X —

Y satisfies Equation 1 if and only if the even mapping f :
X — Y is a quartic mapping, that is,

S Q@rAy)+f (2x—y) = 4{f (x+9)+f (k=) 1241 () —6f (9),
(3)
and an odd mapping f : X — Y satisfies Equation 1 if and

only if the odd mapping f : X — Y is a additive-cubic
mapping, that is,

fQx+y)+f2x—y) = 4{f (x+y) +f (x—p)} —6f (x). (4)

It was shown in Lemma 2.2 in the study of Eshaghi
Gordji et. al [17] that g(x) = f(2x) — 2f(x) and h(x) =
f(2x) — 8f (x) are cubic and additive, respectively, and that
f@) =g — §h®).

For a given mapping f : X — Y, we define the following:

Dr(x,y) = 11f (x + 2y) + 11f (x — 2y)
—44{f (x +y) +f(x — )}
—12f(3y) + 48/ (2y) — 60f (y) + 66/ (x),

forallx,y € X.

Theorem 2. Let ¢ : X*> —[0, 00) be a function such that
there exists an a < 1 with

@ (g %) < %fp(x,y), (5)
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for all x,y € X. Let f : X — Y be an odd mapping,
satisfying
t
N (®r(x,9),t) > ———, (6)
(@) t+ o)
forallx,y € X and all t > 0, and then the limit

— N- lim 8" Y\ o (X
cio= i (1 55) - (2)
exists for each x € X and defines a unique cubic mapping
C: X — Y such that
N(f(2%) = 2f (%) — C(x), )
(264 — 264a)t

> .
= (264 — 264a)t + 17a¢(2x, x) + 170¢(0, x)
(7)

Proof. Putting x = 0 in Equation 6, we have the follow-
ing:
t
N (12 (3y) — 48f(2y) + 60f (), t) > ————, (8)
(12/3y) ~ 48/ %) +60/0).0) 2 o
forally e X and t > 0.
Replacing x by 2y in Equation 6, we obtain the following:
N (11f (4y) — 56f (3y) + 114 (2y) — 1041 (y), )
= ;,
t+¢(2,9)

forally e X and ¢ > 0.
By Equations 8 and 9, we have the following:

)

1
N (f(4y> ~10f2y) + 16£(), g)
§ min<N (11f(4y) — 56f(3y) + 114£(2y) — 108£(y) ¢ ) ,

11 11

N 14(12f (3y) — 48f (2y) + 60f () ﬂ)
33 "33

t
> )
T t+e2y,y) +¢0,%)

(10)

forally € X and all £ > 0. Letting y := § and g(x) =

f(2x) — 2f (x) for all x € X, we get the following:

N( @ 8¢ (%) m) > d
V7RG ) T e ) 19 (0)

8t
o

8 1 0(2%,2) + ¢(0,%)
(11)

v

Consider the set S := {g : X — Y} and the generalized
metric d in S defined by the following:

d(f,g) = inf {N(g(x) — h(x), ut)
neRt

t
> ’
Tt 2% %) + 9(0,%)

VxeX,t>0},
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where inf § = 4o0. It is easy to show that (S,d) is
complete (see Lemma 2.1 of [33]).
Now, we consider a linear mappingJ : S — S such that

Jg(x) := 8¢ (g) ,

forallx € X. Let g, i € S satisfy d(g, 1) = € and then

t

Nt = h@) et = e T o)

forallx € X and ¢ > 0. Hence,

NUg®) — Jh(x), aet) =N (8g (g) 8k (g) ,aet)

S fe(3)-4G).%)

=

>
T Y 20(2x,x) + $0(0,%)
t
t+ @(2%,%) + ¢(0,x)

for allw € X and ¢t > 0. Thus, d(g,/h) = € implies that
d(Jg,Jh) < ae. This means that

dJg,Jh) < ad(g, h),

forall g, 1 € S. It follows from Equation 11 that

N (e -s5e(3) oy ) 2 f
EW =% 3) 264 ) = 1+ 020 %) + 0(0,5)°

Thus,

17«

d(g,Jg) < 264"

By Theorem 1, there exists a mapping C : X — Y,
satisfying the following:

(1) C is a fixed point of /, that is,

X 1
c (5) = SC@, (12)

for all x € X. The mapping C is a unique fixed point of / in
the following set: Q@ = {h € S : d(g, h) < o0}.

This implies that C is a unique mapping, satisfying
Equation 12, such that there exists u € (0, 00), satisfying
the following:

N(g(x) — C(x), ut) = N(f(2x) — 2f (x) — C(x), ut)
t
= t+ o(2x,x) + ¢(0,x) ’

forallx € Xand ¢ > 0.
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(2) d(J"g, C) — 0as n — oc. This implies the following
equality:

N- Jim 8% () = N- Jim 8" (7 (55) = % (35))
= C),

forallx € X.
(3) d(g, C) < %8 yith f e @, which implies the
following inequality:

17
dg,C) < ————.
€0 = 264 — 264a

This implies that the inequality (Equation 7) holds.
Since @4(x,y) = Dr(2x,2y) — 2Ps(x,y), using
Equation 6, we obtain the following:

N0 (3 2) ) = (0 (2

forallx,y € X, t > 0 and all # € N. Thus, by Equation 5,
we have the following:

t

x y &
N(s"cpg (—,—),t) > &
22 o+ Godxy)

for all x,y € X, ¢t > 0 and all » € N. Since lim,_,
t

—8 = 1forallx,y € X and allt > 0, we deduce
gt gmo(xy)

that N (®c(x,),t) = 1forallx,y € X andall £ > 0. Thus,
the mapping C : X — Y, satisfying Equation 1, as desired.

This completes the proof. O

Corollary 1. Let 0 > 0 and. let v be a real number with
r > 1. Let X be a normedvector space with norm || - ||. Let
f: X — Y be an odd mapping, satisfying the following:
t
t+6 (I + lIyl")’

N (@f(x,9),t) = (14)

forallx,y € X and all t > 0, and then,

C(x) := N-WILIIC}OSn (f (2:ch) - (%))

exists for each x € X and defines a unique cubic mapping
C:X — Y such that

33(8" — 8)¢
—8)t+ 172" +2)0|x|"’

N0 = @) = C0 2

forallx € X and all t > 0.
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Proof. The proof follows from Theorem 2 by taking
ox,y) =0 (||x||’ + ||y||’) for all x, ¥ € X, and then we can
choose @ = 8!77 and get the desired result. O

Theorem 3. Let ¢ : X? —[0, 00) be a function such that
there exists an o < 1 with the following:

10 (2x, 2y) < 8uay(x,y), (15)

forall x,y € X. Let f : X — Y be an odd mapping,
satisfying Equation 6, and then the limit

) = N- lim DY)

0 8"

exists for each x € X and defines a unique cubic mapping
C: X — Y such that

N(f(2%) =2 (x) — C@), 1)
(264 — 264a)t

>
T (264 —2640)t + 179 (2x,x) + 17¢(0, x)
(16)

Proof. Let (S, d) be the generalized metric space defined
as in the proof of Theorem 2. Consider the linear mapping
J + §:—'S such that Jg(x) := 1g(2x), for all x € X. Let
g, h € Sbesuch that d(g, 1) = ¢, and

t

NG —h@).eh = e T o)

forallx € X and ¢t > 0. Hence,

2 h(2
NUg®) — Jh(x), aet) = N (g(sx) - (Sx),aet)
N (g(2x) — h(2x), 8aet)
- 8ut

— 8at 4+ 8ap(2x,x) + 8ap (0, x)
t
£+ o (2%, %) + ¢(0,%)

forallx € X and ¢t > 0. Thus, d(g,#) = € implies that

d(Jg,Jh) < ae. This means that d(Jg, Jh) < ad(g, h), for all
g h € S. It follows from Equation 10 that

(g(2x) 17t> t
N — g(x), — > )
8 264 t+ o(2x,x) + ¢(0,x)

forallx € X and ¢ > 0. Thus, d(g,Jg) < %.
By Theorem 1, there exists a mapping C : X — Y,
satisfying the following:

(1) C is a fixed point of /, that is,
8C(x) = C(2x), (17)

for all x € X. The mapping C is a unique fixed point of / in
theset Q = {h € S:d(g, h) < oo}.
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This implies that C is a unique mapping, satisfying
Equation 17, such that there exists u € (0, 00), satisfying
the following:

N(g(x) — C(x), ut) = N(f(2x) — 2f (x) — C(x), ut)
t
=t p@nn) + 90

forallx € X and ¢ > 0.
(2)d(J"g, C) — 0as n — oo. This implies the following
equality:

n
N- lim g%

n—oo 8"

_ N g TETR - Y2

n—00 8"

= C(x),

forall x € X.

(3)d(g C) < % with f € Q, which implies the fol-
lowing inequality: d(g,C) < m. This implies that
the inequality (Equation 16) holds.

The rest of the proof is similar to that of the proof of
Theorem 2. O

Corollary 2. Let 6 > 0 and let r be a real number with
0 < r < 1. Let X be a normed vector space with norm || - ||.
Letf : X — Y be an odd mapping, satisfying Equation 14,
and the limit

f(2"x) — 2f(2"x)
8}1

C(x) := N- lim
n—o0

exists for each x € X and defines a unique cubic mapping
C: X — Y such that

N(f(2x) — 2f (x) — C(x), 1)
- 132(1 — 87"t
T 132(1 =8 Nt + 1721+ DO |x||””

forallx € X and all t > 0.
Proof. The proof follows from Theorem 3 by taking
o, y) == 0(x||" + |lyII") for all x, ¥ € X, and then we can

choose o = 87" and get the desired result. O

Theorem 4. Let ¢ : X> —[0, 00) be a function such that
there exists an o < 1 with the following:

0(53) = Se@, (18)

forall x,y € X. Let f : X — Y be an odd mapping,
satisfying Equation 6, and then the limit

A@ = N- lim 2" (1 (2nx—1> ~¥ (2"7))
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exists for each x € X and defines a unique additive
mapping A : X — Y such that

N(f(2x) — 8f (x) — A(x),t)
. (66 — 660)t
= (66 — 66a)t + 17a¢(2%,x) + 17a¢(0,x)’
(19)

Proof. Let (S, d) be the generalized metric space defined
as in the proof of Theorem 2.

Letting y := 5 and &(x) : f(2x) — 8f (x) for allx € X in
Equation 10, we obtain the following:

.(20)

x\ 17t ¢
N(h(x)—2h(>,§§) 2 Y ED T

2
Consider the linear mapping/: S — S such that
x
Jh(x) = 2h (§> :

forall x € X. Let g,/ € S be such that d(g, h) = ¢, and
then

t
t+ o(2x,x) + ¢(0, x)

forallx € X and ¢ > 0. Hence,

N(gx) —h(x),et) >

x x
NUg®) — Jh(x),aet) = N (2g (5) —2h (5) ,aet)
t
b )
t+¢2x,%) + ¢(0,%)
forallx € X and ¢t > 0. Thus, d(g,#) = € implies that

d(Jg,Jh) < ae. This means that d(Jg, Jh) < ad(g, h), for all
g, h € S. It follows from Equation 20 that

N <2h (f) — W), 17‘”) > t ,
2 66 t+ @(2x,x) + ¢(0,x)

forallx € X and t > 0. Thus, d(g,Jg) < 167—6“.

By Theorem 1, there exists a mapping A : X — Y,
satisfying the following:

(1) A is a fixed point of ], that is,

baw=a(3).

5 (21)

for all x € X. The mapping A is a unique fixed point of / in
theset Q ={h e S:d(g h) < oo}

This implies that A is a unique mapping, satisfying
Equation 21, such that there exists u € (0, 00), satisfying
the following:

N(h(x) — A(x), ut) = N(f (2x) — 8f (x) — A(x), ut)
t
= + (2%, %) + (0,%)

forallx € Xand ¢ > 0.
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(2) d(J"h, A) — 0as n — oo. This implies the following
equality:

N- fim 2% (57) =N- tim 2* ( (55) = ¥ (55))
=A(x)

forallx € X.

(3) d(h,A) < 4D with f € ©, which implies the fol-
lowing inequality: d(h,A) < 661_7%. This implies that the
inequality (Equation 19) holds. The rest of the proof is

similar to that of the proof of Theorem 2. O

Corollary 3. Let 0 > 0 and let r be a real number with
r > 1. Let X be a normed vector space with norm || - ||. Let
f X — Y be an odd mapping, satisfying Equation 14, and
then

A(x) := N- nlggo 2" <f<2:C—1) —8f (2%))

exists for each x € X and defines a unique additive
mapping A : X — Y such that

N(f(2x) — 8f (x) — A(x), 1)
. 33(2" — 2)t
T 332" — Dt + 172" +2)0 x|

forallx € X and all t > 0.

Proof. The proof follows from Theorem 4 by taking
@(x,y) := 6 (llxI” + llyll") for all ,y € X, and then we can
choose o = 2!~" and get the desired result. O

Theorem 5. Let ¢ : X> —[ 0, 00) be a function such that
there exists an o < 1 with the following:

@ (2%,2y) < 200, ), (22)

forall x,y € X. Let f : X = Y be an odd mapping,
satisfying Equation 6, and then the limit

f"™ 1 x) — 8 (2"x)
2}’1

A(x) :== N- lim
n— o0

exists for each x € X and defines a unique additive
mapping A : X — Y such that

N(f(2x) = 8f (x) — A(x), 2)
(66 — 660)¢

> .
— (66 — 660)t + 17¢(2x,x) + 17¢(0, x)
(23)

Proof. Let (S, d) be the generalized metric space defined
as in the proof of Theorem 2. Consider the linear mapping
J : S — S such that Jh(x) = %h(Zx), for allx € X. Let
g, h € Sbesuchthatd(g, h) =e.
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Then
N(g(x) — h(x),€et) > t
T T 4 92x %) +90,x)
for allx € X and ¢ > 0. Hence,
NUg(x) — Jhx), aet) = N (g(jx) - ’“(22"),016,:)
=N (g(2x) — h(2x), 2aet)
- 2ot
= 2ot + ¢(4x, 2x) + ¢(0, 2x)
t

t+ 2% %) + ¢0,x)

for all x € X and ¢£. > 0. Thus, d(g,/) = € implies that
d(Jg,Jh) < ae. This means that d(Jg, Jh) < ad(g, h), for all
g h € S. It follows from Equation 10 that

NG e ) = : ,
2 66 t+ o(2x,x) + ¢(0,x)

for allx € X and ¢ > 0. Thus,

17
d(g,Jg) < —.
(gJ2) = 6
By Theorem 1, there exists a mapping A : X — Y,
satisfying the following:
(1) A is a fixed point of ], that is,

2A(x) = A(2x), (24)

for all x € X. The mapping A is a unique fixed point of / in
theset Q = {h e S:d(g, h) < oo}.

This implies that A is a unique mapping, satisfying
Equation 24, such that there exists € (0, 00), satisfying
the following:

N(h(x) — A(x), ut) = N(f(2x) — 8f (x) — A(x), jut)
> ¢ ,
T t4 9(2x,%) + ¢(0,%x)

forallx € X and ¢ > 0.
(2) d(J"h, A) — 0as n — oo. This implies the following
equality:

on n+1 _ on
N-tim "2 N gy JETO Y@
n—oo 2N n—00 on
forallx € X.

3) d(h,A) < % with f € €, which implies the
following inequality: d(h,A) < %Eﬁ,

This implies that the inequality (Equation 23) holds.
The rest of the proof is similar to that of the proof of

Theorem 2. O
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Corollary 4. Let 0 > 0 and let r be a real number with
0 < r < 1. Let X be a normed vector space with norm || - ||.
Letf : X — Y be an odd mapping, satisfying Equation 14,
and then the limit

n+l,y n
AGx) = N- lim &%) — 8"

n—00 on

exists for each x € X and defines a unique additive
mapping A : X — Y such that

N(f(2x) — 8f (x) — A(x),t)
. 33(2" — 1)t
=332 — Dt +17-27Q2 1+ Do«

forallx € X and all t > 0.

Proof. The proof follows from Theorem 5 by taking
o, y) == 0(lxI" + llyll"), for all x, y € X, and then we can
choose o = 27" and get the desired result.

Fuzzy stability of the functional equation (Equation 1): an
even case

Throughout this section, using the fixed point alternative
approach, we prove the generalized Hyers-Ulam stability
of the functional equation (Equation 1) in fuzzy Banach
spaces: an even case.

Theorem 6. Let ¢ : X> —[0, 00) be a function such that
there exists an o < 1 with the following:

xy o
— )< —
¢ (2, 2) = 1gP® ),
forall x,y € X. Let f : X — Y be an even mapping,
satisfying the following:

(25)

t
N CI) > ) D
(@rt) = L+ o y)

forallx,y € X and all t > 0, and then the limit

oo 9 (2)

(26)

exists for each x € X and defines a unique quartic mapping
Q : X — Y such that

(352 — 352a)t
(352 — 352a)t + 13a@(x, x) + 130:¢(0,%)
(27)

N({f®)—Q®),t) =

Proof. Putting x =
following:

0 in Equation 26, we have the

t
N (12/(39) =70/ 29) + 148/ 0ut) = S o,

(28)
forally e X and ¢ > 0.
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Substituting x =
following:

y in Equation 26, we obtain the

N (f(3y) — 4f () — 17f (), ) = (29)

t
t+ 0@,y

forally e Xand ¢ > 0.
By Equations 28 and 29, we have the following:

N <f(2y) — 16/, 1;’;)

> min (N (12f (3y) — 701;;2” +1450) ;2) |

N (6(f(3y) —4f () =17 () 6t>)

) 30
22 11 (30)

¢
> )
T t+ o)) 0,y

forally € X and all £ > 0. By replacing y := 5 forallx € X,
we get the following:

xN\ 11t t
Vw0 %) 2 en reay

1ot
o

- 168 1 (%) + (0, %)
(31)

Consider the set S := {g : X — Y7}, and the generalized
metric d in S defined by

d*(f,g) = inf {N(g(x) — h(x), ut)
HERT

t
> ’
Tt o) +9(0,x)

where inf § = +o0. It is easy to show that (S,d*) is
complete (see Lemma 2.1 in [33]).

Now, we consider a linear mapping J : S — S such
that Jg(x) := 16g(3), for all x € X. Let g, € S satisfy
d*(g, h) = €, and then

VxeX,t>0},

t
t+ o(x,%) + ¢(0,%)
forallx € X and ¢t > 0. Hence,

NUg(x) — Jh(x),aet) = N (16g (f) — 16k (g) ,otet)

NAORIGE

6 T¢(53) +¢(03)
at
16

& Lo, x) + $9(0,x)
t
t+ (% %) + ¢(0,%)

N(gx) — h(x),et) >

v
N

v
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forallx € X and ¢t > 0. Thus, d*(g,/) = € implies that
d*(Jg,Jh) < ae. This means that d*(Jg, Jh) < ad*(g, h), for
all g, 1 € S. It follows from Equation 31 that

N(()—16<x> 13at>> t
S 277352 ) T t4+@@x,%) 4+ ¢0,%)

Thus, d*(f,Jf) < é‘;"; By Theorem 1, there exists a
mapping Q : X — Y, satisfying the following:
(1) Qis a fixed point of /, that is,

x 1
Q (5) = 1¢ Q@) (32)
for all x € X. The mapping Q is a unique fixed point of J
in the following set: Q@ = {h € S : d*(g,h) < oo}. This
implies that Q is a unique mapping, satisfying Equation 32,
such that there exists i € (0, 00), satisfying the following:

t

N(f(x) — t+ (%) + ¢(0,%)

Q), ut) =

forallx € X and £ > 0.

(2) a*(J"f,Q) — 0asn — oo. This implies the fol-
lowing equality: N-lim,, .o, 16"f (37) = Q(x), for allx €
X.

(3)d*(f,Q) < @ (f]f) with f € Q which implies the fol-
lowing inequality: d* f,Q < m This implies that
the inequality (Equation 27) holds.

On the other hand, by Equation 26, we obtain the
following:

N (16707 (57, 2:),16") = m

forallw,y € X,t > 0 and all #» € N. Thus,

t
x Yy 167
N (160 (5, 2)0) 2 bt
o 1ot e (%)
for all x,y € X, ¢t > 0 and all » € N. Since lim,_,
3

—1 = 1forallx,y €Xandallt > 0, we deduce
1o Hign ¢ (%)

that N (dDQ(x,y), t) = 1forallx,y € Xand all £ > 0. Thus,
the mapping Q : X — Y/, satisfying Equation 1, as desired.

This completes the proof. O

Corollary 5. Let 0 > 0 and let r be a real number with
r > 1. Let X be a normed vector space with norm || - ||. Let
f X — Y be an even mapping, satisfying Equation 14,
and then the limit

— N- i ne (> )
Q@) := N- lim 16"f (2n
exists for each x € X and defines a unique quartic mapping
Q: X — Y such that

352(16" — 1)t
NG = QLD = o e T 390 [l

forallx € X and all t > 0.
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Proof. The proof follows from Theorem 6 by taking
ox,y) =0 (||x||r + ||y||’) , for all x,y € X, and then we
can choose o = 167" and get the desired result. O

Theorem 7. Let ¢ : X> —[0, 00) be a function such that
there exists an o < 1 with the following:

¢ (2%, 2y) < 160¢(x,y), (33)

forall x,y € X. Let f : X — Y be an even mapping,
satisfying Equation 26, and then the limit

Q) = N- lim f(2"%)

n—oo 16"

exists for each x € X and defines a unique quartic mapping
Q: X — Y such that

(352—352a)t
Qx),t) =
(352—352a)t+13¢p(x, %) +13¢(0,%)
(34)

N(f(x) —

Proof. Let (S,d*) be the generalized metric space
defined as in the proof of Theorem 6. Consider the linear
mappingJ : S — S such that

1
Jg(x) :== Eg(Ex),

forallx € X. Let g, € S be such that d*(g,h) = ¢, and
then

t

Nk t+ ¢x,x) + @(0,x)

— h(x),et) >

forallx € X and ¢t > 0. Hence,

(g% h2w)
N(Jg(x) — Jh(x),xet) = N (16 16 , et

= N (g(2x) — h(2x), 16aet)

- l6at

— l6at + 160 (x,x) + 16a¢(0,x)

t

Tt ex) +¢0,x)
forallx € X and t > 0. Thus, d*(g,h) = € implies that
d*(Jg,Jh) < ae. This means that d*(Jg, Jh) < ad*(g, h) for
all g, 1 € S. It follows from Equation 30 that

<f(2x) P 13t> t
Y " 352 t+ o, x) + ¢0,x)

forallx € X and t > 0. Thus, d*(g,Jg) < 352
By Theorem 1, there exists a mapping Q : X — Y
satisfying the following:
(1) Qis a fixed point of J, that is,

16Q(x) = Q(2x), (35)
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for all x € X. The mapping Q is a unique fixed point of J
intheset Q ={h e S:d*(g,h) < oo}.

This implies that Q is a unique mapping, satisfying
Equation 35, such that there exists u € (0, 00), satisfying
the following:

t

N({f(x) — Qx), ut) > £+ @(x,x) + ¢(0,x)

forallx € X and ¢t > 0.

(2) a*(J"f,Q) — 0asn — oo. This implies the fol-
lowing equality: N-limy_, o0~ (lzg,f ) = Q), for all x €
X.

(3) d*(f,Q) < % with f € €, which implies the
following inequality: d(f, Q) < % This implies that
the inequality (Equation 34) holds. The rest of the proof is
similar to that of the proof of Theorem 2. O

Corollary 6. Let 6 > 0 and let r be a real number with
0 < r < 1. Let X be a normed vector space with norm || - ||.
Letf : X — Y be an even mapping, satisfying Equation 14,
and then the limit

Q(x) := N- lim J2'%)

n—oo 167

exists for each x € X and defines a unique quartic mapping
Q : X — Y such that

(.0 > 352(16 — 16%)¢
x b b
= 352(16 — 16")¢ + 6240]|x|"

N(fx) —Q

forallx € X and allt > 0.

Proof. The proof follows from Theorem 7 by taking the
following: ¢(x,y) := 0 (||x||’ + ||y|l’) ,forallx,y € X, and
then we can choose & = 16" Y and get the desired result.

O

Results and discussion

We linked here three different disciplines, namely fuzzy
Banach spaces, functional equations, and fixed point the-
ory. We established the Hyers-Ulam-Rassias stability of
functional Equation 1 in fuzzy Banach spaces by fixed
point method.

Conclusions

Throughout this paper, using the fixed point method, we
proved the Hyers-Ulam-Rassias stability of a mixed type
ACQ functional equation in fuzzy Banach spaces.
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