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Abstract

Using the fixed point method, we prove the generalized Hyers-Ulam stability of the following additive-cubic-quartic
functional equation:

11f (x + 2y) + 11f (x − 2y) = 44f (x + y) + 44f (x − y) + 12f (3y)

− 48f (2y) + 60f (y) − 66f (x)

in fuzzy Banach spaces.
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Introduction
Katsaras [1] defined a fuzzy norm on a vector space
to construct a fuzzy vector topological structure on the
space. Some mathematicians have defined fuzzy norms
as a vector space from various points of view (see [2-4]).
In particular, Bag and Samanta [5], following Cheng and
Mordeson [6], gave an idea of fuzzy norm in such a man-
ner that the corresponding fuzzy metric is of Karmosil
and Michalek type [7]. They established a decomposition
theorem of a fuzzy norm into a family of crisp norms and
investigated some properties of fuzzy normed spaces [8].

Definition 1. Let X be a real vector space. A function
N : X × R →[ 0, 1] is called a fuzzy norm on X if for all
x, y ∈ X and all s, t ∈ R (Bag and Samanta [5]):
(N1) N(x, t) = 0 for t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;
(N3) N(cx, t) = N

(
x, t

|c|
)

if c �= 0;
(N4) N(x + y, c + t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, .) is a non-decreasing function of R and
limt→∞ N(x, t) = 1;
(N6) for x �= 0, N(x, .) is continuous on R.
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Department of Mathematics, College of Sciences, Yasouj University, Yasouj,
75914-353, Iran

Example 1. Let (X, ‖.‖) be a normed linear space and
α, β > 0. Then

N(x, t) =
{ αt

αt+β‖x‖ t > 0, x ∈ X
0 t ≤ 0, x ∈ X

is a fuzzy norm on X.

Definition 2. Let (X, N) be a fuzzy normed vector space.
A sequence {xn} in X is said to be convergent or converges if
there exists an x ∈ X such that limt→∞ N(xn −x, t) = 1 for
all t > 0. In this case, x is called the limit of the sequence
{xn} in X, and we denote it by N − limt→∞ xn = x (Bag
and Samanta [5]).

Definition 3. Let (X, N) be a fuzzy normed vector space.
A sequence {xn} in X is called Cauchy if for each ε > 0 and
each t > 0 there exists an n0 ∈ N such that for all n ≥ n0
and all p > 0, we have N(xn+p − xn, t) > 1 − ε (Bag and
Samanta [5]).

It is well known that every convergent sequence in a
fuzzy normed vector space is Cauchy. If each Cauchy
sequence is convergent, then the fuzzy norm is said to be
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complete, and the fuzzy normed vector space is called a
fuzzy Banach space.

We say that a mapping f : X → Y between fuzzy
normed vector spaces X and Y is continuous at a point
x ∈ X if for each sequence {xn} converging to x0 ∈ X, then
the sequence {f (xn)} converges to f (x0). If f : X → Y is
continuous at each x ∈ X, then f : X → Y is said to be
continuous on X (see [8]).

Definition 4. Let X be a set. A function d : X × X →
[ 0, ∞] is called a generalized metric on X if d satisfies the
following conditions:

(1) d(x, y) = 0 if and only if x = y for all x, y ∈ X;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 1. Let (X, d) be a complete generalized metric
space and J : X → X be a strictly contractive mapping with
Lipschitz constant L < 1 [9,10]. Then, for all x ∈ X, either

d(Jnx, Jn+1x) = ∞,

for all nonnegative integers n or there exists a positive
integer n0 such that

(1) d(Jnx, Jn+1x) < ∞ for all n0 ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X :

d(Jn0 x, y) < ∞};
(4) d(y, y∗) ≤ 1

1−L d(y, Jy) for all y ∈ Y .

The stability problem of functional equations originated
from a question of Ulam [11] concerning the stability of
group homomorphisms. Hyers [12] gave a first affirmative
partial answer to the question of Ulam for Banach spaces.
Hyers’ theorem was generalized by Themistocles M
Rassias [13] for linear mappings by considering an
unbounded Cauchy difference.

The functional equation f (x + y) + f (x − y) = 2f (x) +
2f (y) is called a quadratic functional equation. In partic-
ular, every solution of the quadratic functional equation
is said to be a quadratic mapping. The Hyers-Ulam sta-
bility of the quadratic functional equation was proved by
Skof [14] for mappings f : X → Y , where X is a normed
space and Y is a Banach space. Cholewa [15] noticed that
the theorem of Skof is still true if the relevant domain X
is replaced by an Abelian group. Czerwik [16] proved the
Hyers-Ulam stability of the quadratic functional equation.

In the study of Eshaghi Gordji et. al [17], they proved
that the following functional equation is an additive-
cubic-quartic functional equation:

11f (x + 2y) + 11f (x − 2y) = 44f (x + y) + 44f (x − y)
+12f (3y) − 48f (2y)
+60f (y) − 66f (x). (1)

In this paper, we prove the generalized Hyers-Ulam sta-
bility of the functional equation (Equation 1) in fuzzy
Banach spaces.

The stability problems of several functional equations
have been extensively investigated by a number of authors,
and there are many interesting results concerning this
problem (see [18]–[43]).

Methods
Fuzzy stability of the functional equation (Equation 1): an
odd case
In this section, using the fixed point alternative approach,
we prove the generalized Hyers-Ulam stability of the func-
tional equation (Equation 1) in fuzzy Banach spaces: an
odd case. Throughout this paper, assume that X is a vector
space and that (Y , N) is a fuzzy Banach space.

In the work of Lee et al. [32], they considered the
following quartic functional equation:

f (2x+y)+f (2x−y) = 4{f (x+y)+f (x−y)}+24f (x)−6f (y).
(2)

It is easy to show that the function f (x) = x4 satisfies the
functional equation (Equation 2), which is called a quar-
tic functional equation, and every solution of the quartic
functional equation is said to be a quartic mapping.

One can easily show that an even mapping f : X →
Y satisfies Equation 1 if and only if the even mapping f :
X → Y is a quartic mapping, that is,

f (2x+y)+f (2x−y) = 4{f (x+y)+f (x−y)}+24f (x)−6f (y),
(3)

and an odd mapping f : X → Y satisfies Equation 1 if and
only if the odd mapping f : X → Y is a additive-cubic
mapping, that is,

f (2x+y)+f (2x−y) = 4{f (x+y)+f (x−y)}−6f (x). (4)

It was shown in Lemma 2.2 in the study of Eshaghi
Gordji et. al [17] that g(x) = f (2x) − 2f (x) and h(x) =
f (2x)− 8f (x) are cubic and additive, respectively, and that
f (x) := 1

6 g(x) − 1
6 h(x).

For a given mapping f : X → Y , we define the following:

�f (x, y) = 11f (x + 2y) + 11f (x − 2y)
−44{f (x + y) + f (x − y)}
−12f (3y) + 48f (2y) − 60f (y) + 66f (x),

for all x, y ∈ X.

Theorem 2. Let ϕ : X2 →[ 0, ∞) be a function such that
there exists an α < 1 with

ϕ
(x

2
,

y
2

)
≤ α

8
ϕ(x, y), (5)
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for all x, y ∈ X. Let f : X → Y be an odd mapping,
satisfying

N
(
�f (x, y), t

) ≥ t
t + ϕ(x, y)

, (6)

for all x, y ∈ X and all t > 0, and then the limit

C(x) := N- lim
n→∞ 8n

(
f
( x

2n−1

)
− 2f

( x
2n

))

exists for each x ∈ X and defines a unique cubic mapping
C : X → Y such that

N(f (2x) − 2f (x) − C(x), t)

≥ (264 − 264α)t
(264 − 264α)t + 17αϕ(2x, x) + 17αϕ(0, x)

.

(7)

Proof. Putting x = 0 in Equation 6, we have the follow-
ing:

N
(
12f (3y) − 48f (2y) + 60f (y), t

) ≥ t
t + ϕ(0, y)

, (8)

for all y ∈ X and t > 0.
Replacing x by 2y in Equation 6, we obtain the following:

N
(
11f (4y) − 56f (3y) + 114f (2y) − 104f (y), t

)
≥ t

t + ϕ(2y, y)
, (9)

for all y ∈ X and t > 0.
By Equations 8 and 9, we have the following:

N
(

f (4y) − 10f (2y) + 16f (y),
17t
33

)

≥ min
(

N
(

11f (4y) − 56f (3y) + 114f (2y) − 104f (y)
11

,
t

11

)
,

N
(

14(12f (3y) − 48f (2y) + 60f (y))
33

,
14t
33

))

≥ t
t + ϕ(2y, y) + ϕ(0, y)

, (10)

for all y ∈ X and all t > 0. Letting y := x
2 and g(x) =

f (2x) − 2f (x) for all x ∈ X, we get the following:

N
(

g(x) − 8g
(x

2

)
,

17t
33

)
≥ t

t + ϕ
(
x, x

2
) + ϕ

(
0, x

2
)

≥
8t
α

8t
α

+ ϕ(2x, x) + ϕ(0, x)
.

(11)

Consider the set S := {g : X → Y } and the generalized
metric d in S defined by the following:

d(f , g) = inf
μ∈R+

{
N(g(x) − h(x), μt)

≥ t
t + ϕ(2x, x) + ϕ(0, x)

, ∀x ∈ X, t > 0
}

,

where inf ∅ = +∞. It is easy to show that (S, d) is
complete (see Lemma 2.1 of [33]).

Now, we consider a linear mapping J : S → S such that

Jg(x) := 8g
(x

2

)
,

for all x ∈ X. Let g, h ∈ S satisfy d(g, h) = ε and then

N(g(x) − h(x), εt) ≥ t
t + ϕ(2x, x) + ϕ(0, x)

,

for all x ∈ X and t > 0. Hence,

N(Jg(x) − Jh(x), αεt) = N
(

8g
(x

2

)
− 8h

(x
2

)
, αεt

)

= N
(

g
(x

2

)
− h

(x
2

)
,
αεt

8

)

≥
αt
8

αt
8 + ϕ

(
x, x

2
) + ϕ

(
0, x

2
)

≥
αt
8

αt
8 + α

8 ϕ(2x, x) + α
8 ϕ(0, x)

= t
t + ϕ(2x, x) + ϕ(0, x)

,

for all x ∈ X and t > 0. Thus, d(g, h) = ε implies that
d(Jg, Jh) ≤ αε. This means that

d(Jg, Jh) ≤ αd(g, h),

for all g, h ∈ S. It follows from Equation 11 that

N
(

g(x) − 8g
(x

2

)
,

17αt
264

)
≥ t

t + ϕ(2x, x) + ϕ(0, x)
.

Thus,

d(g, Jg) ≤ 17α

264
.

By Theorem 1, there exists a mapping C : X → Y ,
satisfying the following:

(1) C is a fixed point of J , that is,

C
(x

2

)
= 1

8
C(x), (12)

for all x ∈ X. The mapping C is a unique fixed point of J in
the following set: � = {h ∈ S : d(g, h) < ∞}.

This implies that C is a unique mapping, satisfying
Equation 12, such that there exists μ ∈ (0, ∞), satisfying
the following:

N(g(x) − C(x), μt) = N(f (2x) − 2f (x) − C(x), μt)

≥ t
t + ϕ(2x, x) + ϕ(0, x)

,

for all x ∈ X and t > 0.
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(2) d(Jng, C) → 0 as n → ∞. This implies the following
equality:

N- lim
n→∞ 8ng

( x
2n

)
= N- lim

n→∞ 8n
(

f
( x

2n−1

)
− 2f

( x
2n

))

= C(x),

for all x ∈ X.
(3) d(g, C) ≤ d(g,Jg)

1−α
with f ∈ �, which implies the

following inequality:

d(g, C) ≤ 17α

264 − 264α
.

This implies that the inequality (Equation 7) holds.
Since �g(x, y) = �f (2x, 2y) − 2�f (x, y), using

Equation 6, we obtain the following:

N
(

8n�g
( x

2n ,
y

2n

)
, 8nt

)
= N

(
8n�f

( x
2n−1 ,

y
2n−1

)

−2 · 8n�f
( x

2n ,
y

2n

)
, 8nt

)

≥ t
t + ϕ

( x
2n , y

2n
) , (13)

for all x, y ∈ X, t > 0 and all n ∈ N. Thus, by Equation 5,
we have the following:

N
(

8n�g
( x

2n ,
y

2n

)
, t

)
≥

t
8n

t
8n + αn

8n ϕ
(
x, y

) ,

for all x, y ∈ X, t > 0 and all n ∈ N. Since limn→∞
t

8n
t

8n + αn
8n ϕ(x,y)

= 1 for all x, y ∈ X and all t > 0, we deduce

that N
(
�C(x, y), t

) = 1 for all x, y ∈ X and all t > 0. Thus,
the mapping C : X → Y , satisfying Equation 1, as desired.
This completes the proof.

Corollary 1. Let θ ≥ 0 and let r be a real number with
r > 1. Let X be a normed vector space with norm ‖ · ‖. Let
f : X → Y be an odd mapping, satisfying the following:

N
(
�f (x, y), t

) ≥ t
t + θ

(‖x‖r + ‖y‖r) , (14)

for all x, y ∈ X and all t > 0, and then,

C(x) := N- lim
n→∞ 8n

(
f
( x

2n−1

)
− 2f

( x
2n

))

exists for each x ∈ X and defines a unique cubic mapping
C : X → Y such that

N(f (2x) − 2f (x) − C(x), t) ≥ 33(8r − 8)t
33(8r − 8)t + 17(2r + 2)θ‖x‖r ,

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2 by taking
ϕ(x, y) := θ

(‖x‖r + ‖y‖r) for all x, y ∈ X, and then we can
choose α = 81−r and get the desired result.

Theorem 3. Let ϕ : X2 →[ 0, ∞) be a function such that
there exists an α < 1 with the following:

ϕ
(
2x, 2y

) ≤ 8αϕ(x, y), (15)

for all x, y ∈ X. Let f : X → Y be an odd mapping,
satisfying Equation 6, and then the limit

C(x) := N- lim
n→∞

f (2n+1x) − 2f (2nx)

8n

exists for each x ∈ X and defines a unique cubic mapping
C : X → Y such that

N(f (2x) − 2f (x) − C(x), t)

≥ (264 − 264α)t
(264 − 264α)t + 17ϕ(2x, x) + 17ϕ(0, x)

(16)

Proof. Let (S, d) be the generalized metric space defined
as in the proof of Theorem 2. Consider the linear mapping
J : S → S such that Jg(x) := 1

8 g(2x), for all x ∈ X. Let
g, h ∈ S be such that d(g, h) = ε, and

N(g(x) − h(x), εt) ≥ t
t + ϕ(2x, x) + ϕ(0, x)

,

for all x ∈ X and t > 0 . Hence,

N(Jg(x) − Jh(x), αεt) = N
(

g(2x)

8
− h(2x)

8
, αεt

)

= N
(
g(2x) − h(2x), 8αεt

)
≥ 8αt

8αt + 8αϕ(2x, x) + 8αϕ(0, x)

= t
t + ϕ(2x, x) + ϕ(0, x)

,

for all x ∈ X and t > 0. Thus, d(g, h) = ε implies that
d(Jg, Jh) ≤ αε. This means that d(Jg, Jh) ≤ αd(g, h), for all
g, h ∈ S. It follows from Equation 10 that

N
(

g(2x)

8
− g(x),

17t
264

)
≥ t

t + ϕ(2x, x) + ϕ(0, x)
,

for all x ∈ X and t > 0. Thus, d(g, Jg) ≤ 17
264 .

By Theorem 1, there exists a mapping C : X → Y ,
satisfying the following:

(1) C is a fixed point of J , that is,

8C(x) = C(2x), (17)

for all x ∈ X. The mapping C is a unique fixed point of J in
the set � = {h ∈ S : d(g, h) < ∞}.
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This implies that C is a unique mapping, satisfying
Equation 17, such that there exists μ ∈ (0, ∞), satisfying
the following:

N(g(x) − C(x), μt) = N(f (2x) − 2f (x) − C(x), μt)

≥ t
t + ϕ(2x, x) + ϕ(0, x)

,

for all x ∈ X and t > 0.
(2) d(Jng, C) → 0 as n → ∞. This implies the following

equality:

N- lim
n→∞

g(2nx)

8n = N- lim
n→∞

f (2n+1x) − 2f (2nx)

8n = C(x),

for all x ∈ X.
(3) d(g, C) ≤ d(g,Jg)

1−α
with f ∈ �, which implies the fol-

lowing inequality: d(g, C) ≤ 17
264−264α

. This implies that
the inequality (Equation 16) holds.

The rest of the proof is similar to that of the proof of
Theorem 2.

Corollary 2. Let θ ≥ 0 and let r be a real number with
0 < r < 1. Let X be a normed vector space with norm ‖ · ‖.
Let f : X → Y be an odd mapping, satisfying Equation 14,
and the limit

C(x) := N- lim
n→∞

f (2n+1x) − 2f (2nx)

8n

exists for each x ∈ X and defines a unique cubic mapping
C : X → Y such that

N(f (2x) − 2f (x) − C(x), t)

≥ 132(1 − 8−r)t
132(1 − 8−r)t + 17(2r−1 + 1)θ‖x‖r ,

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3 by taking
ϕ(x, y) := θ(‖x‖r + ‖y‖r) for all x, y ∈ X, and then we can
choose α = 8−r and get the desired result.

Theorem 4. Let ϕ : X2 →[ 0, ∞) be a function such that
there exists an α < 1 with the following:

ϕ
(x

2
,

y
2

)
≤ α

2
ϕ(x, y), (18)

for all x, y ∈ X. Let f : X → Y be an odd mapping,
satisfying Equation 6, and then the limit

A(x) := N- lim
n→∞ 2n

(
f
( x

2n−1

)
− 8f

( x
2n

))

exists for each x ∈ X and defines a unique additive
mapping A : X → Y such that

N(f (2x) − 8f (x) − A(x), t)

≥ (66 − 66α)t
(66 − 66α)t + 17αϕ(2x, x) + 17αϕ(0, x)

.

(19)

Proof. Let (S, d) be the generalized metric space defined
as in the proof of Theorem 2.

Letting y := x
2 and h(x) : f (2x) − 8f (x) for all x ∈ X in

Equation 10, we obtain the following:

N
(

h(x) − 2h
(x

2

)
,

17t
33

)
≥ t

t + ϕ
(
x, x

2
) + ϕ

(
0, x

2
) .(20)

Consider the linear mapping J : S → S such that

Jh(x) := 2h
(x

2

)
,

for all x ∈ X. Let g, h ∈ S be such that d(g, h) = ε, and
then

N(g(x) − h(x), εt) ≥ t
t + ϕ(2x, x) + ϕ(0, x)

,

for all x ∈ X and t > 0 . Hence,

N(Jg(x) − Jh(x), αεt) = N
(

2g
(x

2

)
− 2h

(x
2

)
, αεt

)

≥ t
t + ϕ(2x, x) + ϕ(0, x)

,

for all x ∈ X and t > 0. Thus, d(g, h) = ε implies that
d(Jg, Jh) ≤ αε. This means that d(Jg, Jh) ≤ αd(g, h), for all
g, h ∈ S. It follows from Equation 20 that

N
(

2h
(x

2

)
− h(x),

17αt
66

)
≥ t

t + ϕ(2x, x) + ϕ(0, x)
,

for all x ∈ X and t > 0. Thus, d(g, Jg) ≤ 17α
66 .

By Theorem 1, there exists a mapping A : X → Y ,
satisfying the following:

(1) A is a fixed point of J , that is,

1
2

A(x) = A
(x

2

)
, (21)

for all x ∈ X. The mapping A is a unique fixed point of J in
the set � = {h ∈ S : d(g, h) < ∞}.

This implies that A is a unique mapping, satisfying
Equation 21, such that there exists μ ∈ (0, ∞), satisfying
the following:

N(h(x) − A(x), μt) = N(f (2x) − 8f (x) − A(x), μt)

≥ t
t + ϕ(2x, x) + ϕ(0, x)

,

for all x ∈ X and t > 0.
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(2) d(Jnh, A) → 0 as n → ∞. This implies the following
equality:

N- lim
n→∞ 2nh

( x
2n

)
= N- lim

n→∞ 2n
(

f
( x

2n−1

)
− 8f

( x
2n

))

= A(x)

for all x ∈ X.
(3) d(h, A) ≤ d(h,Jh)

1−α
with f ∈ �, which implies the fol-

lowing inequality: d(h, A) ≤ 17α
66−66α

. This implies that the
inequality (Equation 19) holds. The rest of the proof is
similar to that of the proof of Theorem 2.

Corollary 3. Let θ ≥ 0 and let r be a real number with
r > 1. Let X be a normed vector space with norm ‖ · ‖. Let
f : X → Y be an odd mapping, satisfying Equation 14, and
then

A(x) := N- lim
n→∞ 2n

(
f
( x

2n−1

)
− 8f

( x
2n

))

exists for each x ∈ X and defines a unique additive
mapping A : X → Y such that

N(f (2x) − 8f (x) − A(x), t)

≥ 33(2r − 2)t
33(2r − 2)t + 17(2r + 2)θ‖x‖r ,

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 4 by taking
ϕ(x, y) := θ

(‖x‖r + ‖y‖r) for all x, y ∈ X, and then we can
choose α = 21−r and get the desired result.

Theorem 5. Let ϕ : X2 →[ 0, ∞) be a function such that
there exists an α < 1 with the following:

ϕ
(
2x, 2y

) ≤ 2αϕ(x, y), (22)

for all x, y ∈ X. Let f : X → Y be an odd mapping,
satisfying Equation 6, and then the limit

A(x) := N- lim
n→∞

f (2n+1x) − 8f (2nx)

2n

exists for each x ∈ X and defines a unique additive
mapping A : X → Y such that

N(f (2x) − 8f (x) − A(x), t)

≥ (66 − 66α)t
(66 − 66α)t + 17ϕ(2x, x) + 17ϕ(0, x)

.

(23)

Proof. Let (S, d) be the generalized metric space defined
as in the proof of Theorem 2. Consider the linear mapping
J : S → S such that Jh(x) := 1

2 h(2x), for all x ∈ X. Let
g, h ∈ S be such that d(g, h) = ε.

Then

N(g(x) − h(x), εt) ≥ t
t + ϕ(2x, x) + ϕ(0, x)

,

for all x ∈ X and t > 0. Hence,

N(Jg(x) − Jh(x), αεt) = N
(

g(2x)

2
− h(2x)

2
, αεt

)

= N
(
g(2x) − h(2x), 2αεt

)
≥ 2αt

2αt + ϕ(4x, 2x) + ϕ(0, 2x)

= t
t + ϕ(2x, x) + ϕ(0, x)

,

for all x ∈ X and t > 0. Thus, d(g, h) = ε implies that
d(Jg, Jh) ≤ αε. This means that d(Jg, Jh) ≤ αd(g, h), for all
g, h ∈ S. It follows from Equation 10 that

N
(

h(2x)

2
− h(x),

17t
66

)
≥ t

t + ϕ(2x, x) + ϕ(0, x)
,

for all x ∈ X and t > 0. Thus,

d(g, Jg) ≤ 17
66

.

By Theorem 1, there exists a mapping A : X → Y ,
satisfying the following:

(1) A is a fixed point of J , that is,

2A(x) = A(2x), (24)

for all x ∈ X. The mapping A is a unique fixed point of J in
the set � = {h ∈ S : d(g, h) < ∞}.

This implies that A is a unique mapping, satisfying
Equation 24, such that there exists μ ∈ (0, ∞), satisfying
the following:

N(h(x) − A(x), μt) = N(f (2x) − 8f (x) − A(x), μt)

≥ t
t + ϕ(2x, x) + ϕ(0, x)

,

for all x ∈ X and t > 0.
(2) d(Jnh, A) → 0 as n → ∞. This implies the following

equality:

N- lim
n→∞

h(2nx)

2n = N- lim
n→∞

f (2n+1x) − 8f (2nx)

2n = A(x),

for all x ∈ X.
(3) d(h, A) ≤ d(h,Jh)

1−α
with f ∈ �, which implies the

following inequality: d(h, A) ≤ 17
66−66α

.
This implies that the inequality (Equation 23) holds.

The rest of the proof is similar to that of the proof of
Theorem 2.
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Corollary 4. Let θ ≥ 0 and let r be a real number with
0 < r < 1. Let X be a normed vector space with norm ‖ · ‖.
Let f : X → Y be an odd mapping, satisfying Equation 14,
and then the limit

A(x) := N- lim
n→∞

f (2n+1x) − 8f (2nx)

2n

exists for each x ∈ X and defines a unique additive
mapping A : X → Y such that

N(f (2x) − 8f (x) − A(x), t)

≥ 33(2r − 1)t
33(2r − 1)t + 17 · 2r(2r−1 + 1)θ‖x‖r ,

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 5 by taking
ϕ(x, y) := θ(‖x‖r + ‖y‖r), for all x, y ∈ X, and then we can
choose α = 2−r and get the desired result.

Fuzzy stability of the functional equation (Equation 1): an
even case
Throughout this section, using the fixed point alternative
approach, we prove the generalized Hyers-Ulam stability
of the functional equation (Equation 1) in fuzzy Banach
spaces: an even case.

Theorem 6. Let ϕ : X2 →[ 0, ∞) be a function such that
there exists an α < 1 with the following:

ϕ
(x

2
,

y
2

)
≤ α

16
ϕ(x, y), (25)

for all x, y ∈ X. Let f : X → Y be an even mapping,
satisfying the following:

N
(
�f (x, y), t

) ≥ t
t + ϕ(x, y)

, (26)

for all x, y ∈ X and all t > 0, and then the limit

Q(x) := N- lim
n→∞ 16nf

( x
2n

)

exists for each x ∈ X and defines a unique quartic mapping
Q : X → Y such that

N(f (x)−Q(x), t) ≥ (352 − 352α)t
(352 − 352α)t + 13αϕ(x, x) + 13αϕ(0, x)

.

(27)

Proof. Putting x = 0 in Equation 26, we have the
following:

N
(
12f (3y) − 70f (2y) + 148f (y), t

) ≥ t
t + ϕ(0, y)

,

(28)

for all y ∈ X and t > 0.

Substituting x = y in Equation 26, we obtain the
following:

N
(
f (3y) − 4f (2y) − 17f (y), t

) ≥ t
t + ϕ(y, y)

, (29)

for all y ∈ X and t > 0.
By Equations 28 and 29, we have the following:

N
(

f (2y) − 16f (y),
13t
22

)

≥ min
(

N
(

12f (3y) − 70f (2y) + 148f (y)
22

,
t

22

)
,

N
(

6(f (3y) − 4f (2y) − 17f (y))
22

,
6t
11

))
(30)

≥ t
t + ϕ(y, y) + ϕ(0, y)

,

for all y ∈ X and all t > 0. By replacing y := x
2 for all x ∈ X,

we get the following:

N
(

f (x) − 16
(x

2

)
,

11t
22

)
≥ t

t + ϕ
(
0, x

2
) + ϕ

( x
2 , x

2
)

≥
16t
α

16t
α

+ ϕ(x, x) + ϕ(0, x)
.

(31)

Consider the set S := {g : X → Y }, and the generalized
metric d in S defined by

d∗(f , g) = inf
μ∈R+

{
N(g(x) − h(x), μt)

≥ t
t + ϕ(x, x) + ϕ(0, x)

, ∀x ∈ X, t > 0
}

,

where inf ∅ = +∞. It is easy to show that (S, d∗) is
complete (see Lemma 2.1 in [33]).

Now, we consider a linear mapping J : S → S such
that Jg(x) := 16g

( x
2
)

, for all x ∈ X. Let g, h ∈ S satisfy
d∗(g, h) = ε, and then

N(g(x) − h(x), εt) ≥ t
t + ϕ(x, x) + ϕ(0, x)

,

for all x ∈ X and t > 0. Hence,

N(Jg(x) − Jh(x), αεt) = N
(

16g
(x

2

)
− 16h

(x
2

)
, αεt

)

= N
(

g
(x

2

)
− h

(x
2

)
,
αεt
16

)

≥
αt
16

αt
16 + ϕ

( x
2 , x

2
) + ϕ

(
0, x

2
)

≥
αt
16

αt
16 + α

16ϕ(x, x) + α
8 ϕ(0, x)

= t
t + ϕ(x, x) + ϕ(0, x)

,

www.SID.ir



Arc
hive

 of
 S

ID

Kenary Mathematical Sciences 2012, 6:54 Page 8 of 10
http://www.iaumath.com/content/6/1/54

for all x ∈ X and t > 0. Thus, d∗(g, h) = ε implies that
d∗(Jg, Jh) ≤ αε. This means that d∗(Jg, Jh) ≤ αd∗(g, h), for
all g, h ∈ S. It follows from Equation 31 that

N
(

f (x) − 16
(x

2

)
,

13αt
352

)
≥ t

t + ϕ(x, x) + ϕ(0, x)
.

Thus, d∗(f , Jf ) ≤ 13α
352 . By Theorem 1, there exists a

mapping Q : X → Y , satisfying the following:
(1) Q is a fixed point of J , that is,

Q
(x

2

)
= 1

16
Q(x), (32)

for all x ∈ X. The mapping Q is a unique fixed point of J
in the following set: � = {h ∈ S : d∗(g, h) < ∞}. This
implies that Q is a unique mapping, satisfying Equation 32,
such that there exists μ ∈ (0, ∞), satisfying the following:

N(f (x) − Q(x), μt) ≥ t
t + ϕ(x, x) + ϕ(0, x)

,

for all x ∈ X and t > 0.
(2) d∗(Jnf , Q) → 0 as n → ∞. This implies the fol-

lowing equality: N- limn→∞ 16nf
( x

2n
) = Q(x), for all x ∈

X.
(3) d∗(f , Q) ≤ d∗(f ,Jf )

1−α
with f ∈ �, which implies the fol-

lowing inequality: d∗(f , Q) ≤ 13α
352−352α

. This implies that
the inequality (Equation 27) holds.

On the other hand, by Equation 26, we obtain the
following:

N
(

16n�f
( x

2n ,
y

2n

)
, 16nt

)
≥ t

t + ϕ
( x

2n , y
2n

) ,

for all x, y ∈ X, t > 0 and all n ∈ N. Thus,

N
(

16n�f
( x

2n ,
y

2n

)
, t

)
≥

t
16n

t
16n + αn

16n ϕ
(
x, y

) ,

for all x, y ∈ X, t > 0 and all n ∈ N. Since limn→∞
t

16n
t

16n + αn
16n ϕ(x,y)

= 1 for all x, y ∈ X and all t > 0, we deduce

that N
(
�Q(x, y), t

) = 1 for all x, y ∈ X and all t > 0. Thus,
the mapping Q : X → Y , satisfying Equation 1, as desired.
This completes the proof.

Corollary 5. Let θ ≥ 0 and let r be a real number with
r > 1. Let X be a normed vector space with norm ‖ · ‖. Let
f : X → Y be an even mapping, satisfying Equation 14,
and then the limit

Q(x) := N- lim
n→∞ 16nf

( x
2n

)

exists for each x ∈ X and defines a unique quartic mapping
Q : X → Y such that

N(f (x) − Q(x), t) ≥ 352(16r − 1)t
352(16r − 1)t + 39θ‖x‖r ,

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 6 by taking
ϕ(x, y) := θ

(‖x‖r + ‖y‖r) , for all x, y ∈ X, and then we
can choose α = 16−r and get the desired result.

Theorem 7. Let ϕ : X2 →[ 0, ∞) be a function such that
there exists an α < 1 with the following:

ϕ
(
2x, 2y

) ≤ 16αϕ(x, y), (33)

for all x, y ∈ X. Let f : X → Y be an even mapping,
satisfying Equation 26, and then the limit

Q(x) := N- lim
n→∞

f (2nx)

16n

exists for each x ∈ X and defines a unique quartic mapping
Q : X → Y such that

N(f (x) − Q(x), t) ≥ (352−352α)t
(352−352α)t+13ϕ(x, x)+13ϕ(0, x)

.

(34)

Proof. Let (S, d∗) be the generalized metric space
defined as in the proof of Theorem 6. Consider the linear
mapping J : S → S such that

Jg(x) := 1
16

g(2x),

for all x ∈ X. Let g, h ∈ S be such that d∗(g, h) = ε, and
then

N(g(x) − h(x), εt) ≥ t
t + ϕ(x, x) + ϕ(0, x)

,

for all x ∈ X and t > 0. Hence,

N(Jg(x) − Jh(x), αεt) = N
(

g(2x)

16
− h(2x)

16
, αεt

)

= N
(
g(2x) − h(2x), 16αεt

)
≥ 16αt

16αt + 16αϕ(x, x) + 16αϕ(0, x)

= t
t + ϕ(x, x) + ϕ(0, x)

,

for all x ∈ X and t > 0. Thus, d∗(g, h) = ε implies that
d∗(Jg, Jh) ≤ αε. This means that d∗(Jg, Jh) ≤ αd∗(g, h) for
all g, h ∈ S. It follows from Equation 30 that

N
(

f (2x)

16
− f (x),

13t
352

)
≥ t

t + ϕ(x, x) + ϕ(0, x)
,

for all x ∈ X and t > 0. Thus, d∗(g, Jg) ≤ 13
352 .

By Theorem 1, there exists a mapping Q : X → Y
satisfying the following:

(1) Q is a fixed point of J , that is,

16Q(x) = Q(2x), (35)
www.SID.ir
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for all x ∈ X. The mapping Q is a unique fixed point of J
in the set � = {h ∈ S : d∗(g, h) < ∞}.

This implies that Q is a unique mapping, satisfying
Equation 35, such that there exists μ ∈ (0, ∞), satisfying
the following:

N(f (x) − Q(x), μt) ≥ t
t + ϕ(x, x) + ϕ(0, x)

,

for all x ∈ X and t > 0.
(2) d∗(Jnf , Q) → 0 as n → ∞. This implies the fol-

lowing equality: N- limn→∞ f (2nx)

16n = Q(x), for all x ∈
X.

(3) d∗(f , Q) ≤ d∗(f ,Jf )
1−α

with f ∈ �, which implies the
following inequality: d(f , Q) ≤ 13

352−352α
. This implies that

the inequality (Equation 34) holds. The rest of the proof is
similar to that of the proof of Theorem 2.

Corollary 6. Let θ ≥ 0 and let r be a real number with
0 < r < 1. Let X be a normed vector space with norm ‖ · ‖.
Let f : X → Y be an even mapping, satisfying Equation 14,
and then the limit

Q(x) := N- lim
n→∞

f (2nx)

16n

exists for each x ∈ X and defines a unique quartic mapping
Q : X → Y such that

N(f (x) − Q(x), t) ≥ 352(16 − 16r)t
352(16 − 16r)t + 624θ‖x‖r ,

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 7 by taking the
following: ϕ(x, y) := θ

(‖x‖r + ‖y‖r) , for all x, y ∈ X, and
then we can choose α = 16r−1 and get the desired result.

Results and discussion
We linked here three different disciplines, namely fuzzy
Banach spaces, functional equations, and fixed point the-
ory. We established the Hyers-Ulam-Rassias stability of
functional Equation 1 in fuzzy Banach spaces by fixed
point method.

Conclusions
Throughout this paper, using the fixed point method, we
proved the Hyers-Ulam-Rassias stability of a mixed type
ACQ functional equation in fuzzy Banach spaces.
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