ORIGINAL RESEARCH Open Access

Nonlinear fuzzy approximation of a mixed type ACQ functional equation via fixed point alternative

Hassan Azadi Kenary

Abstract

Using the fixed point method, we prove the generalized Hyers-Ulam stability of the following additive-cubic-quartic functional equation:

> $11f(x + 2y) + 11f(x - 2y) = 44f(x + y) + 44f(x - y) + 12f(3y)$ − 48 $f(2y) + 60f(y) - 66f(x)$

in fuzzy Banach spaces.

Keywords: Hyers-Ulam stability, Fuzzy Banach space, Fixed point method

2010 Mathematics subject classification: 39B52; 46S40; 34K36; 47S40; 26E50; 47H10; 39B82.

Introduction

Archive prove the generalized Hyers-Ulam stability of the following additivation:
 $11f(x + 2y) + 11f(x - 2y) = 44f(x + y) + 44f(x - y) + 12f(3y)$
 $- 48f(2y) + 60f(y) - 66f(x)$

Argaces.

Argaces.

Argaces.

Argaces.

Archive of SIDP an Katsaras [1] defined a fuzzy norm on a vector space to construct a fuzzy vector topological structure on the space. Some mathematicians have defined fuzzy norms as a vector space from various points of view (see [2-4]). In particular, Bag and Samanta [5], following Cheng and Mordeson [6], gave an idea of fuzzy norm in such a manner that the corresponding fuzzy metric is of Karmosil and Michalek type [7]. They established a decomposition theorem of a fuzzy norm into a family of crisp norms and investigated some properties of fuzzy normed spaces [8].

Definition 1. *Let X be a real vector space. A function* $N: X \times \mathbb{R} \rightarrow [0, 1]$ *is called a fuzzy norm on X if for all* $x, y \in X$ and all $s, t \in \mathbb{R}$ *(Bag and Samanta [5])*: $(N1)$ $N(x,t) = 0$ *for* $t \le 0$; *(N2)* $x = 0$ *if and only if* $N(x, t) = 1$ *for all t* > 0*;* (*N*3) $N(cx, t) = N\left(x, \frac{t}{|c|}\right)$ if $c \neq 0$; $(N4)$ $N(x + y, c + t) \geq min\{N(x, s), N(y, t)\};$ (N 5) $N(x, .)$ *is a non-decreasing function of* $\mathbb R$ *and* $\lim_{t\to\infty} N(x,t) = 1;$ *(N6) for* $x \neq 0$ *, N*(x *, .) is continuous on* \mathbb{R} *.*

Correspondence: azadi@yu.ac.ir

Department of Mathematics, College of Sciences, Yasouj University, Yasouj, 75914-353, Iran

Example 1. *Let (X* , . *) be a normed linear space and α* , *β >* 0*. Then*

$$
N(x,t) = \begin{cases} \frac{\alpha t}{\alpha t + \beta ||x||} & t > 0, x \in X \\ 0 & t \le 0, x \in X \end{cases}
$$

is a fuzzy norm on X.

Definition 2. *Let (X* , *N) be a fuzzy normed vector space. A sequence* { *x n* } *in X is said to be convergent or converges if there exists an* $x \in X$ *such that* $\lim_{t \to \infty} N(x_n - x, t) = 1$ *for all t >* 0*. In this case, x is called the limit of the sequence* $\{x_n\}$ *in X, and we denote it by* $N - \lim_{t \to \infty} x_n = x$ (*Bag and Samanta [5]).*

Definition 3. *Let (X* , *N) be a fuzzy normed vector space.* A sequence $\{x_n\}$ in X is called Cauchy if for each $\epsilon > 0$ and $\mathit{each}\ t > 0$ *there exists an* $n_0 \in \mathbb{N}$ *such that for all n* $\geq n_0$ *and all p* > 0*, we have* $N(x_{n+p} - x_n, t) > 1 - \epsilon$ (Bag and Samanta [5]) *.*

It is well known that every convergent sequence in a fuzzy normed vector space is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be

© 2012 Kenary; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

complete, and the fuzzy normed vector space is called a fuzzy Banach space.

We say that a mapping $f : X \rightarrow Y$ between fuzzy normed vector spaces *X* and *Y* is continuous at a point $x \in X$ if for each sequence $\{x_n\}$ converging to $x_0 \in X$, then the sequence $\{f(x_n)\}$ converges to $f(x_0)$. If $f: X \to Y$ is continuous at each $x \in X$, then $f : X \to Y$ is said to be continuous on *X* (see [8]).

Definition 4. Let *X* be a set. A function $d: X \times X \rightarrow$ [0, ∞] *is called a generalized metric on X if d satisfies the following conditions:*

(1) $d(x, y) = 0$ *if and only if* $x = y$ *for all* $x, y \in X$; $d(x, y) = d(y, x)$ *for all* $x, y \in X$; $(d(x, z) \leq d(x, y) + d(y, z)$ for all $x, y, z \in X$.

Theorem 1. *Let (X* , *d) be a complete generalized metric* $space$ and $J: X \rightarrow X$ be a strictly contractive mapping with *Lipschitz constant* $L < 1$ [9,10]. Then, for all $x \in X$, either

 $d(J^{n}x, J^{n+1}x) = \infty,$

for all nonnegative integers n or there exists a positive integer n ⁰ *such that*

 $(1) d(Jⁿx, Jⁿ⁺¹x) < \infty$ for all $n_0 \ge n_0$;

(2) the sequence $\{J^n x\}$ converges to a fixed point y^* of J; (3) y^* *is the unique fixed point of J in the set* $Y = \{y \in X :$ $d(J^{n_0}x, y) < \infty$;

 $(4) d(y, y^*) \le \frac{1}{1-L} d(y, Jy)$ for all $y \in Y$.

Archive of $\int f(x,y) = f(x,y) + f(x,y) = f(x,y)$ *in this section, that section, the paralized Hyers-Ulam state point and equation (Equation 1) in fuzzy (x, y) +* $d(y, z)$ *for all x, y, z* \in *X. total equation (Equation 1) in fuzzy f(x,* The stability problem of functional equations originated from a question of Ulam [11] concerning the stability of group homomorphisms. Hyers [12] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' theorem was generalized by Themistocles M Rassias [13] for linear mappings by considering an unbounded Cauchy difference.

The functional equation $f(x + y) + f(x - y) = 2f(x) + y$ 2*f (y)* is called a *quadratic functional equation*. In particular, every solution of the quadratic functional equation is said to be a *quadratic mapping*. The Hyers-Ulam stability of the quadratic functional equation was proved by Skof [14] for mappings $f : X \to Y$, where *X* is a normed space and *Y* is a Banach space. Cholewa [15] noticed that the theorem of Skof is still true if the relevant domain *X* is replaced by an Abelian group. Czerwik [16] proved the Hyers-Ulam stability of the quadratic functional equation.

In the study of Eshaghi Gordji et. al [17], they proved that the following functional equation is an *additivecubic-quartic* functional equation:

$$
11f(x + 2y) + 11f(x - 2y) = 44f(x + y) + 44f(x - y)
$$

+12f(3y) - 48f(2y)
+60f(y) - 66f(x). (1)

The stability problems of several functional equations have been extensively investigated by a number of authors, and there are many interesting results concerning this problem (see [18]–[43]).

Methods

Fuzzy stability of the functional equation (Equation 1): an odd case

In this section, using the fixed point alternative approach, we prove the generalized Hyers-Ulam stability of the functional equation (Equation 1) in fuzzy Banach spaces: an odd case. Throughout this paper, assume that *X* is a vector space and that *(Y* , *N)* is a fuzzy Banach space.

In the work of Lee et al. [32], they considered the following quartic functional equation:

$$
f(2x+y)+f(2x-y) = 4\{f(x+y)+f(x-y)\}+24f(x)-6f(y).
$$
\n(2)

It is easy to show that the function $f(x) = x^4$ satisfies the functional equation (Equation 2), which is called a quartic functional equation, and every solution of the quartic functional equation is said to be a quartic mapping.

One can easily show that an even mapping $f : X \rightarrow$ *Y* satisfies Equation 1 if and only if the even mapping *f* : $X \rightarrow Y$ is a quartic mapping, that is,

$$
f(2x+y)+f(2x-y) = 4\{f(x+y)+f(x-y)\} + 24f(x) - 6f(y),
$$
\n(3)

and an odd mapping $f: X \to Y$ satisfies Equation 1 if and only if the odd mapping $f : X \to Y$ is a additive-cubic mapping, that is,

$$
f(2x+y) + f(2x-y) = 4\{f(x+y) + f(x-y)\} - 6f(x). \tag{4}
$$

It was shown in Lemma 2.2 in the study of Eshaghi Gordji et. al [17] that $g(x) = f(2x) - 2f(x)$ and $h(x) =$ $f(2x) - 8f(x)$ are cubic and additive, respectively, and that $f(x) := \frac{1}{6}g(x) - \frac{1}{6}h(x).$

For a given mapping $f: X \to Y$, we define the following:

$$
\Phi_f(x, y) = 11f(x + 2y) + 11f(x - 2y)
$$

-44{ $f(x + y) + f(x - y)$ }
-12f(3y) + 48f(2y) - 60f(y) + 66f(x),

for all $x, y \in X$.

Theorem 2. Let $\varphi: X^2 \to [0, \infty)$ be a function such that *there exists an α <* 1 *with*

$$
\varphi\left(\frac{x}{2},\frac{y}{2}\right) \le \frac{\alpha}{8}\varphi(x,y),\tag{5}
$$

www.SID.ir

for all $x, y \in X$. Let $f : X \rightarrow Y$ be an odd mapping, *satisfying*

$$
N\left(\Phi_f(x,y),t\right) \geq \frac{t}{t+\varphi(x,y)},\tag{6}
$$

 $for all x, y \in X$ and all $t > 0$, and then the limit

$$
C(x) := N \cdot \lim_{n \to \infty} 8^n \left(f\left(\frac{x}{2^{n-1}}\right) - 2f\left(\frac{x}{2^n}\right) \right)
$$

exists for each x ∈ *X and defines a unique cubic mapping* $C: X \rightarrow Y$ such that

$$
N(f(2x) - 2f(x) - C(x), t)
$$

\n
$$
\geq \frac{(264 - 264\alpha)t}{(264 - 264\alpha)t + 17\alpha\varphi(2x, x) + 17\alpha\varphi(0, x)}.
$$

\n(7)

Proof. Putting $x = 0$ in Equation 6, we have the following:

$$
N\left(12f(3y) - 48f(2y) + 60f(y), t\right) \ge \frac{t}{t + \varphi(0, y)}, \quad (8)
$$

for all $y \in X$ and $t > 0$.

Replacing *x* by 2*y* in Equation 6, we obtain the following:

$$
N\left(11f(4y) - 56f(3y) + 114f(2y) - 104f(y), t\right) \ge \frac{t}{t + \varphi(2y, y)},
$$
\n(9)

for all $y \in X$ and $t > 0$.

By Equations 8 and 9, we have the following:

$$
N\left(f(4y) - 10f(2y) + 16f(y), \frac{17t}{33}\right)
$$

\n
$$
\geq \min\left(N\left(\frac{11f(4y) - 56f(3y) + 114f(2y) - 104f(y)}{11}, \frac{t}{11}\right),\right)
$$

\n
$$
N\left(\frac{14(12f(3y) - 48f(2y) + 60f(y))}{33}, \frac{14t}{33}\right)\right)
$$

\n
$$
\geq \frac{t}{t + \varphi(2y, y) + \varphi(0, y)},
$$
\n(10)

for all $y \in X$ and all $t > 0$. Letting $y := \frac{x}{2}$ and $g(x) =$ $f(2x) - 2f(x)$ for all $x \in X$, we get the following:

$$
N\left(g(x) - 8g\left(\frac{x}{2}\right), \frac{17t}{33}\right) \ge \frac{t}{t + \varphi\left(x, \frac{x}{2}\right) + \varphi\left(0, \frac{x}{2}\right)}
$$

$$
\ge \frac{\frac{8t}{\alpha}}{\frac{8t}{\alpha} + \varphi(2x, x) + \varphi(0, x)}.
$$
(11)

Consider the set $S := \{g : X \to Y\}$ and the generalized metric *d* in *S* defined by the following:

$$
d(f,g) = \inf_{\mu \in \mathbb{R}^+} \left\{ N(g(x) - h(x), \mu t) \right\}
$$

$$
\geq \frac{t}{t + \varphi(2x, x) + \varphi(0, x)}, \forall x \in X, t > 0 \right\},
$$

where inf $\emptyset = +\infty$. It is easy to show that (S, d) is complete (see Lemma 2.1 of [33]).

Now, we consider a linear mapping $J : S \rightarrow S$ such that

$$
Jg(x) := 8g\left(\frac{x}{2}\right),\,
$$

for all $x \in X$. Let $g, h \in S$ satisfy $d(g, h) = \epsilon$ and then

$$
N(g(x) - h(x), \epsilon t) \ge \frac{t}{t + \varphi(2x, x) + \varphi(0, x)},
$$

for all $x \in X$ and $t > 0$. Hence,

$$
(264-264\alpha)t
$$

\n $4-264\alpha)t + 17\alpha\varphi(2x, x) + 17\alpha\varphi(0, x)$
\n $3x = 0$ in Equation 6, we have the follow-
\n $-48f(2y) + 60f(y), t) \ge \frac{t}{t + \varphi(0, y)},$
\n $4t > 0.$
\n $48f(2y) + 60f(y), t) \ge \frac{t}{t + \varphi(0, y)},$
\n $56f(3y) + 114f(2y) - 104f(y), t)$
\n $\ge \frac{t}{t + \varphi(2y, y)},$
\n $80f(2y) + 60f(y), t) \ge \frac{t}{t + \varphi(0, y)},$
\n $56f(3y) + 114f(2y) - 104f(y), t)$
\n $80f(4y) - 56f(3y) + 114f(2y) - 104f(y), t)$
\n $80f(4y) - 56f(3y) + 114f(2y) - 104f(y), t)$
\n $60f(4y) - 56f(3y) + 114f(2y) - 104f(y), t$
\n $60f(4y) - 56f(3y) + 114f(2y) - 104f(y), t$
\n $60f(4y) - 56f(3y) + 114f(2y) - 104f(y), t$
\n $60f(4y) - 56f(3y) + 114f(2y) - 104f(y), t$
\n $60f(4y) - 56f(3y) + 114f(2y) - 104f(y), t$
\n $60f(4y) - 56f(3y) + 114f(2y) - 104f(y), t$
\n $60f(4y) - 56f(3y) + 114f(2y) - 104f(y), t$
\n $60f(4y) - 56f(3y) + 114f(2y) - 104f(y), t$ <

for all $x \in X$ and $t > 0$. Thus, $d(g, h) = \epsilon$ implies that $d(Gg, Jh) \leq \alpha \epsilon$. This means that

$$
d(Jg, Jh) \leq \alpha d(g, h),
$$

for all $g, h \in S$. It follows from Equation 11 that

$$
N\left(g(x)-8g\left(\frac{x}{2}\right),\frac{17\alpha t}{264}\right)\geq \frac{t}{t+\varphi(2x,x)+\varphi(0,x)}.
$$

Thus,

$$
d(g, Jg) \le \frac{17\alpha}{264}.
$$

By Theorem 1, there exists a mapping $C: X \rightarrow Y$, satisfying the following:

(1) *C* is a fixed point of *J*, that is,

$$
C\left(\frac{x}{2}\right) = \frac{1}{8}C(x),\tag{12}
$$

for all $x \in X$. The mapping C is a unique fixed point of *J* in the following set: $\Omega = \{h \in S : d(g, h) < \infty\}.$

This implies that *C* is a unique mapping, satisfying Equation 12, such that there exists $\mu \in (0, \infty)$, satisfying the following:

$$
N(g(x) - C(x), \mu t) = N(f(2x) - 2f(x) - C(x), \mu t)
$$

$$
\geq \frac{t}{t + \varphi(2x, x) + \varphi(0, x)},
$$

for all $x \in X$ and $t > 0$.

(2) $d(Jⁿg, C) \rightarrow 0$ as $n \rightarrow \infty$. This implies the following equality:

$$
N \text{-} \lim_{n \to \infty} 8^n g\left(\frac{x}{2^n}\right) = N \text{-} \lim_{n \to \infty} 8^n \left(f\left(\frac{x}{2^{n-1}}\right) - 2f\left(\frac{x}{2^n}\right)\right) = C(x),
$$

for all $x \in X$.

 $d(g, C) \leq \frac{d(g, Jg)}{1 - \alpha}$ $\frac{P(S, g)}{1 - \alpha}$ with *f* ∈ Ω, which implies the following inequality:

$$
d(g, C) \le \frac{17\alpha}{264 - 264\alpha}
$$

This implies that the inequality (Equation 7) holds.

.

Since $\Phi_g(x, y) = \Phi_f(2x, 2y) - 2\Phi_f(x, y)$, using Equation 6, we obtain the following:

$$
N\left(8^n \Phi_g\left(\frac{x}{2^n}, \frac{y}{2^n}\right), 8^n t\right) = N\left(8^n \Phi_f\left(\frac{x}{2^{n-1}}, \frac{y}{2^{n-1}}\right) -2 \cdot 8^n \Phi_f\left(\frac{x}{2^n}, \frac{y}{2^n}\right), 8^n t\right) \ge \frac{t}{t + \varphi\left(\frac{x}{2^n}, \frac{y}{2^n}\right)},
$$
(13)

for all $x, y \in X$, $t > 0$ and all $n \in \mathbb{N}$. Thus, by Equation 5, we have the following:

$$
N\left(8^n\Phi_g\left(\frac{x}{2^n},\frac{y}{2^n}\right),t\right)\geq \frac{\frac{t}{8^n}}{\frac{t}{8^n}+\frac{\alpha^n}{8^n}\varphi\left(x,y\right)},\,
$$

for all $x, y \in X$, $t > 0$ and all $n \in \mathbb{N}$. Since $\lim_{n \to \infty}$ $\frac{\frac{t}{8^n}}{\frac{b^n}{8^n} \varphi(x,y)}$ = 1 for all *x*, *y* \in *X* and all *t* > 0 , we deduce that $N(\Phi_C(x, y), t) = 1$ for all $x, y \in X$ and all $t > 0$. Thus, the mapping $C: X \rightarrow Y$, satisfying Equation 1, as desired. This completes the proof.

Corollary 1. Let $\theta \geq 0$ and let r be a real number with $r > 1$ *. Let X be a normed vector space with norm* $\| \cdot \|$ *. Let* $f: X \to Y$ be an odd mapping, satisfying the following:

$$
N\left(\Phi_f(x,y),t\right) \geq \frac{t}{t+\theta\left(\|x\|^r + \|y\|^r\right)},\tag{14}
$$

for all $x, y \in X$ *and all* $t > 0$ *, and then,*

$$
C(x) := N \cdot \lim_{n \to \infty} 8^n \left(f\left(\frac{x}{2^{n-1}}\right) - 2f\left(\frac{x}{2^n}\right) \right)
$$

exists for each x ∈ *X and defines a unique cubic mapping* $C: X \rightarrow Y$ such that

$$
N(f(2x) - 2f(x) - C(x), t) \ge \frac{33(8^r - 8)t}{33(8^r - 8)t + 17(2^r + 2)\theta ||x||^r},
$$

for all $x \in X$ *and all* $t > 0$ *.*

Proof. The proof follows from Theorem 2 by taking $\varphi(x, y) := \theta\left(\|x\|^r + \|y\|^r\right)$ for all $x, y \in X$, and then we can choose $\alpha = 8^{1-r}$ and get the desired result. \Box

Theorem 3. Let $\varphi: X^2 \to [0, \infty)$ be a function such that *there exists an α <* 1 *with the following:*

$$
\varphi\left(2x,2y\right) \leq 8\alpha\varphi(x,y),\tag{15}
$$

for all $x, y \in X$. Let $f : X \rightarrow Y$ be an odd mapping, *satisfying Equation 6, and then the limit*

$$
C(x) := N \cdot \lim_{n \to \infty} \frac{f(2^{n+1}x) - 2f(2^n x)}{8^n}
$$

exists for each x ∈ *X and defines a unique cubic mapping* $C: X \rightarrow Y$ such that

$$
N(f(2x) - 2f(x) - C(x), t)
$$

\n
$$
\geq \frac{(264 - 264\alpha)t}{(264 - 264\alpha)t + 17\varphi(2x, x) + 17\varphi(0, x)}
$$
(16)

Proof. Let (S, d) be the generalized metric space defined as in the proof of Theorem 2. Consider the linear mapping $J: S \to S$ such that $Jg(x) := \frac{1}{8}g(2x)$, for all $x \in X$. Let $g, h \in S$ be such that $d(g, h) = \epsilon$, and

$$
N(g(x) - h(x), \epsilon t) \geq \frac{t}{t + \varphi(2x, x) + \varphi(0, x)},
$$

for all $x \in X$ and $t > 0$. Hence,

54 - 264
$$
\alpha
$$

\nthat the inequality (Equation 7) holds.
\n
$$
D = \Phi_f(2x, 2y) - 2\Phi_f(x, y), \text{ using } \text{exists for each } x \in X \text{ and defines a unique cubic mapping:}
$$
\n
$$
C: X \to Y \text{ such that}
$$
\n
$$
\frac{y}{2^n}, 8^n t = N \left(8^n \Phi_f \left(\frac{x}{2^{n-1}}, \frac{y}{2^{n-1}} \right) \right)
$$
\n
$$
= 2 \cdot 8^n \Phi_f \left(\frac{x}{2^n}, \frac{y}{2^n} \right), 8^n t = N \left(8^n \Phi_f \left(\frac{x}{2^{n-1}}, \frac{y}{2^n} \right) \right)
$$
\n
$$
= 2 \cdot 8^n \Phi_f \left(\frac{x}{2^n}, \frac{y}{2^n} \right), 8^n t = N \Phi_f(3x, 2^2)
$$
\n
$$
= 2 \cdot 8^n \Phi_f \left(\frac{x}{2^n}, \frac{y}{2^n} \right), 8^n t = N \Phi_f(4x, 2^2)
$$
\n
$$
= 2 \cdot 8^n \Phi_f \left(\frac{x}{2^n}, \frac{y}{2^n} \right), 8^n t = N \Phi_f(5x) - N \Phi_f(5x) + N \Phi_f(5x
$$

for all $x \in X$ and $t > 0$. Thus, $d(g, h) = \epsilon$ implies that $d(Jg, Jh) \leq \alpha \epsilon$. This means that $d(Jg, Jh) \leq \alpha d(g, h)$, for all $g, h \in S$. It follows from Equation 10 that

$$
N\left(\frac{g(2x)}{8}-g(x),\frac{17t}{264}\right) \geq \frac{t}{t+\varphi(2x,x)+\varphi(0,x)},
$$

for all $x \in X$ and $t > 0$. Thus, $d(g, Jg) \le \frac{17}{264}$.

By Theorem 1, there exists a mapping $C: X \rightarrow Y$, satisfying the following:

(1) *C* is a fixed point of *J*, that is,

$$
8C(x) = C(2x),\tag{17}
$$

for all $x \in X$. The mapping C is a unique fixed point of *J* in the set $\Omega = \{h \in S : d(g, h) < \infty\}.$

This implies that *C* is a unique mapping, satisfying Equation 17, such that there exists $\mu \in (0, \infty)$, satisfying the following:

$$
N(g(x) - C(x), \mu t) = N(f(2x) - 2f(x) - C(x), \mu t)
$$

$$
\geq \frac{t}{t + \varphi(2x, x) + \varphi(0, x)},
$$

for all $x \in X$ and $t > 0$.

(2) $d(Jⁿg, C) \rightarrow 0$ as $n \rightarrow \infty$. This implies the following equality:

$$
N \text{-} \lim_{n \to \infty} \frac{g(2^n x)}{8^n} = N \text{-} \lim_{n \to \infty} \frac{f(2^{n+1} x) - 2f(2^n x)}{8^n} = C(x),
$$

for all $x \in X$.

 $d(g, C) \leq \frac{d(g, Jg)}{1 - \alpha}$ $\frac{f(g,g)}{1-\alpha}$ with $f \in \Omega$, which implies the following inequality: $d(g, C) \leq \frac{17}{264 - 264\alpha}$. This implies that the inequality (Equation 16) holds.

The rest of the proof is similar to that of the proof of Theorem 2.

 $A = N - \lim_{n \to \infty} \frac{f(2^{n+1}x) - 2f(2^n x)}{8^n} = C(x)$
 $A = \frac{d(g,g)}{1 - g}$ with $f \in \Omega$, which implies the fol-
 $A = \frac{f(x, g)}{1 - g}$ with $f \in \Omega$, which implies the fol-
 $A = \frac{f(x, g)}{1 - g}$ and $f(x, y) = 2h\left(\frac{x}{2}\right)$.
 $A = \frac{f(x, y)}{2h}$ **Corollary 2.** Let $\theta \geq 0$ and let r be a real number with $0 < r < 1$. Let X be a normed vector space with norm $\| \cdot \|$. Let $f: X \to Y$ be an odd mapping, satisfying Equation 14, *and the limit*

$$
C(x) := N \cdot \lim_{n \to \infty} \frac{f(2^{n+1}x) - 2f(2^n x)}{8^n}
$$

exists for each x ∈ *X and defines a unique cubic mapping* $C: X \rightarrow Y$ such that

$$
N(f(2x) - 2f(x) - C(x), t)
$$

\n
$$
\geq \frac{132(1 - 8^{-r})t}{132(1 - 8^{-r})t + 17(2^{r-1} + 1)\theta ||x||^r},
$$

for all $x \in X$ *and all* $t > 0$.

Proof. The proof follows from Theorem 3 by taking $\varphi(x, y) := \theta(\|x\|^r + \|y\|^r)$ for all $x, y \in X$, and then we can choose $\alpha = 8^{-r}$ and get the desired result. \Box

Theorem 4. Let $\varphi: X^2 \to [0, \infty)$ be a function such that *there exists an α <* 1 *with the following:*

$$
\varphi\left(\frac{x}{2},\frac{y}{2}\right) \le \frac{\alpha}{2}\varphi(x,y),\tag{18}
$$

for all $x, y \in X$. Let $f : X \rightarrow Y$ be an odd mapping, *satisfying Equation 6, and then the limit*

$$
A(x) := N \cdot \lim_{n \to \infty} 2^n \left(f\left(\frac{x}{2^{n-1}}\right) - 8f\left(\frac{x}{2^n}\right) \right)
$$

exists for each x ∈ *X and defines a unique additive* $mapping A: X \rightarrow Y such that$

$$
N(f(2x) - 8f(x) - A(x), t)
$$

\n
$$
\geq \frac{(66 - 66\alpha)t}{(66 - 66\alpha)t + 17\alpha\varphi(2x, x) + 17\alpha\varphi(0, x)}.
$$

\n(19)

Proof. Let *(S* , *d)* be the generalized metric space defined as in the proof of Theorem 2.

Letting $y := \frac{x}{2}$ and $h(x) : f(2x) - 8f(x)$ for all $x \in X$ in Equation 10, we obtain the following:

$$
N\left(h(x)-2h\left(\frac{x}{2}\right),\frac{17t}{33}\right)\geq \frac{t}{t+\varphi\left(x,\frac{x}{2}\right)+\varphi\left(0,\frac{x}{2}\right)}\tag{20}
$$

Consider the linear mapping $J: S \rightarrow S$ such that

$$
Jh(x) := 2h\left(\frac{x}{2}\right),
$$

for all $x \in X$. Let $g, h \in S$ be such that $d(g, h) = \epsilon$, and then

$$
N(g(x) - h(x), \epsilon t) \ge \frac{t}{t + \varphi(2x, x) + \varphi(0, x)},
$$

for all $x \in X$ and $t > 0$. Hence,

$$
N(Jg(x) - Jh(x), \alpha \in t) = N\left(2g\left(\frac{x}{2}\right) - 2h\left(\frac{x}{2}\right), \alpha \in t\right)
$$

$$
\geq \frac{t}{t + \varphi(2x, x) + \varphi(0, x)},
$$

for all $x \in X$ and $t > 0$. Thus, $d(g, h) = \epsilon$ implies that $d(Jg, Jh) \leq \alpha \epsilon$. This means that $d(Jg, Jh) \leq \alpha d(g, h)$, for all $g, h \in S$. It follows from Equation 20 that

$$
N\left(2h\left(\frac{x}{2}\right)-h(x),\frac{17\alpha t}{66}\right)\geq \frac{t}{t+\varphi(2x,x)+\varphi(0,x)},
$$

for all $x \in X$ and $t > 0$. Thus, $d(g, Jg) \leq \frac{17\alpha}{66}$.

By Theorem 1, there exists a mapping $A: X \rightarrow Y$, satisfying the following:

(1) *A* is a fixed point of *J*, that is,

$$
\frac{1}{2}A(x) = A\left(\frac{x}{2}\right),\tag{21}
$$

for all $x \in X$. The mapping A is a unique fixed point of *J* in the set $\Omega = \{h \in S : d(g, h) < \infty\}.$

This implies that *A* is a unique mapping, satisfying Equation 21, such that there exists $\mu \in (0, \infty)$, satisfying the following:

$$
N(h(x) - A(x), \mu t) = N(f(2x) - 8f(x) - A(x), \mu t)
$$

$$
\geq \frac{t}{t + \varphi(2x, x) + \varphi(0, x)},
$$

for all $x \in X$ and $t > 0$.

(2) $d(J^n h, A) \to 0$ as $n \to \infty$. This implies the following equality:

$$
N \text{-} \lim_{n \to \infty} 2^n h\left(\frac{x}{2^n}\right) = N \text{-} \lim_{n \to \infty} 2^n \left(f\left(\frac{x}{2^{n-1}}\right) - 8f\left(\frac{x}{2^n}\right)\right) = A(x)
$$

for all $x \in X$.

 $d(h, A) \leq \frac{d(h, Jh)}{1 - \alpha}$ $\frac{(h,h)}{1-\alpha}$ with $f \in \Omega$, which implies the following inequality: $d(h, A) \leq \frac{17\alpha}{66-66\alpha}$. This implies that the inequality (Equation 19) holds. The rest of the proof is similar to that of the proof of Theorem 2. \Box

Let $\theta \ge 0$ and let r be a real number with
 A normed vector space with norm $\|\cdot\|$. Let
 $\begin{aligned}\n\lim_{\alpha \to \infty} 2^n \left(f \left(\frac{x}{2^{\mu-1}} \right) - 8f \left(\frac{x}{2^{\mu}} \right) \right) & \text{g, } h \in S$. It is means that $d(g, h) \le \alpha \in \mathbb{R}$. This mean **Corollary 3.** Let $\theta \geq 0$ and let r be a real number with $r > 1$ *. Let X be a normed vector space with norm* $\| \cdot \|$ *. Let f* : *X* → *Y be an odd mapping, satisfying Equation 14, and then*

$$
A(x) := N \cdot \lim_{n \to \infty} 2^n \left(f\left(\frac{x}{2^{n-1}}\right) - 8f\left(\frac{x}{2^n}\right) \right)
$$

exists for each x ∈ *X and defines a unique additive* $mapping A: X \rightarrow Y such that$

$$
N(f(2x) - 8f(x) - A(x), t)
$$

\n
$$
\geq \frac{33(2^{r} - 2)t}{33(2^{r} - 2)t + 17(2^{r} + 2)\theta ||x||^{r}},
$$

for all $x \in X$ *and all* $t > 0$ *.*

Proof. The proof follows from Theorem 4 by taking $\varphi(x, y) := \theta \left(\|x\|^r + \|y\|^r \right)$ for all $x, y \in X$, and then we can choose $\alpha = 2^{1-r}$ and get the desired result.

Theorem 5. Let $\varphi: X^2 \to [0, \infty)$ be a function such that *there exists an α <* 1 *with the following:*

$$
\varphi\left(2x,2y\right)\leq 2\alpha\varphi(x,y),\tag{22}
$$

for all $x, y \in X$ *. Let* $f : X$ → *Y be an odd mapping, satisfying Equation 6, and then the limit*

$$
A(x) := N \cdot \lim_{n \to \infty} \frac{f(2^{n+1}x) - 8f(2^n x)}{2^n}
$$

exists for each x ∈ *X and defines a unique additive* $mapping A: X \rightarrow Y such that$

$$
N(f(2x) - 8f(x) - A(x), t)
$$

\n
$$
\geq \frac{(66 - 66\alpha)t}{(66 - 66\alpha)t + 17\varphi(2x, x) + 17\varphi(0, x)}.
$$
\n(23)

Proof. Let (S, d) be the generalized metric space defined as in the proof of Theorem 2. Consider the linear mapping *J* : *S* \rightarrow *S* such that *Jh*(*x*) := $\frac{1}{2}$ *h*(2*x*), for all *x* \in *X*. Let *g*, *h* \in *S* be such that *d*(*g*, *h*) = ϵ .

Then

$$
N(g(x) - h(x), \epsilon t) \geq \frac{t}{t + \varphi(2x, x) + \varphi(0, x)},
$$

for all $x \in X$ and $t > 0$. Hence,

$$
N(Jg(x) - Jh(x), \alpha \epsilon t) = N\left(\frac{g(2x)}{2} - \frac{h(2x)}{2}, \alpha \epsilon t\right)
$$

=
$$
N\left(g(2x) - h(2x), 2\alpha \epsilon t\right)
$$

$$
\geq \frac{2\alpha t}{2\alpha t + \varphi(4x, 2x) + \varphi(0, 2x)}
$$

$$
= \frac{t}{t + \varphi(2x, x) + \varphi(0, x)},
$$

for all $x \in X$ and $t > 0$. Thus, $d(g, h) = \epsilon$ implies that $d(Jg, Jh) \leq \alpha \epsilon$. This means that $d(Jg, Jh) \leq \alpha d(g, h)$, for all $g, h \in S$. It follows from Equation 10 that

$$
N\left(\frac{h(2x)}{2}-h(x),\frac{17t}{66}\right) \geq \frac{t}{t+\varphi(2x,x)+\varphi(0,x)},
$$

for all $x \in X$ and $t > 0$. Thus,

$$
d(g, Jg) \leq \frac{17}{66}.
$$

By Theorem 1, there exists a mapping $A: X \rightarrow Y$, satisfying the following:

(1) *A* is a fixed point of *J*, that is,

$$
2A(x) = A(2x),\tag{24}
$$

for all $x \in X$. The mapping A is a unique fixed point of *J* in the set $\Omega = \{h \in S : d(g, h) < \infty\}.$

This implies that *A* is a unique mapping, satisfying Equation 24, such that there exists $\mu \in (0, \infty)$, satisfying the following:

$$
N(h(x) - A(x), \mu t) = N(f(2x) - 8f(x) - A(x), \mu t)
$$

$$
\geq \frac{t}{t + \varphi(2x, x) + \varphi(0, x)},
$$

for all $x \in X$ and $t > 0$.

(2) $d(J^n h, A) \to 0$ as $n \to \infty$. This implies the following equality:

$$
N \cdot \lim_{n \to \infty} \frac{h(2^n x)}{2^n} = N \cdot \lim_{n \to \infty} \frac{f(2^{n+1} x) - 8f(2^n x)}{2^n} = A(x),
$$

for all $x \in X$.

 $d(h, A) \leq \frac{d(h, Jh)}{1 - \alpha}$ $\frac{(h,h)}{1-\alpha}$ with $f \in \Omega$, which implies the following inequality: $d(h, A) \leq \frac{17}{66 - 66\alpha}$.

This implies that the inequality (Equation 23) holds. The rest of the proof is similar to that of the proof of Theorem 2. \Box

Corollary 4. Let $\theta \geq 0$ and let r be a real number with $0 < r < 1$. Let X be a normed vector space with norm $\| \cdot \|$. Let $f: X \to Y$ be an odd mapping, satisfying Equation 14, *and then the limit*

$$
A(x) := N \cdot \lim_{n \to \infty} \frac{f(2^{n+1}x) - 8f(2^n x)}{2^n}
$$

exists for each x ∈ *X and defines a unique additive* $mapping A: X \rightarrow Y such that$

$$
N(f(2x) - 8f(x) - A(x), t)
$$

\n
$$
\geq \frac{33(2^{r} - 1)t}{33(2^{r} - 1)t + 17 \cdot 2^{r}(2^{r-1} + 1)\theta ||x||^{r}},
$$

for all $x \in X$ *and all* $t > 0$ *.*

Proof. The proof follows from Theorem 5 by taking $\varphi(x, y) := \theta(||x||^r + ||y||^r)$, for all $x, y \in X$, and then we can choose $\alpha = 2^{-r}$ and get the desired result.

Fuzzy stability of the functional equation (Equation 1): an even case

Throughout this section, using the fixed point alternative approach, we prove the generalized Hyers-Ulam stability of the functional equation (Equation 1) in fuzzy Banach spaces: an even case.

Theorem 6. Let $\varphi: X^2 \to [0, \infty)$ be a function such that *there exists an α <* 1 *with the following:*

$$
\varphi\left(\frac{x}{2},\frac{y}{2}\right) \le \frac{\alpha}{16}\varphi(x,y),\tag{25}
$$

for all $x, y \in X$. Let $f : X \rightarrow Y$ be an even mapping, *satisfying the following:*

$$
N\left(\Phi_f(x,y),t\right) \ge \frac{t}{t + \varphi(x,y)},\tag{26}
$$

 $for all x, y \in X$ and all $t > 0$, and then the limit

$$
Q(x) := N \cdot \lim_{n \to \infty} 16^n f\left(\frac{x}{2^n}\right)
$$

exists for each x ∈ *X and defines a unique quartic mapping* $Q: X \rightarrow Y$ such that

$$
N(f(x) - Q(x), t) \ge \frac{(352 - 352\alpha)t}{(352 - 352\alpha)t + 13\alpha\varphi(x, x) + 13\alpha\varphi(0, x)}.
$$
\n(27)

Proof. Putting *x* = 0 in Equation 26, we have the following:

$$
N\left(12f(3y) - 70f(2y) + 148f(y), t\right) \ge \frac{t}{t + \varphi(0, y)},\tag{28}
$$

for all $y \in X$ and $t > 0$.

Substituting $x = y$ in Equation 26, we obtain the following:

$$
N(f(3y) - 4f(2y) - 17f(y), t) \ge \frac{t}{t + \varphi(y, y)}, \quad (29)
$$

for all $y \in X$ and $t > 0$.

By Equations 28 and 29, we have the following:

$$
N\left(f(2y) - 16f(y), \frac{13t}{22}\right)
$$

\n
$$
\geq \min\left(N\left(\frac{12f(3y) - 70f(2y) + 148f(y)}{22}, \frac{t}{22}\right),\right)
$$

\n
$$
N\left(\frac{6(f(3y) - 4f(2y) - 17f(y))}{22}, \frac{6t}{11}\right)\right)
$$

\n
$$
\geq \frac{t}{t + \varphi(y, y) + \varphi(0, y)},
$$
\n(30)

for all $y \in X$ and all $t > 0$. By replacing $y := \frac{x}{2}$ for all $x \in X$, we get the following:

Archive of SID ^N f(x) [−] ¹⁶ *x*2 , 11 *t* 22 ≥ *t t* + *ϕ* 0, *x*2 + *ϕ x*2 , *x*2 ≥ 16 *t α* 16 *t α* + *ϕ(x* , *x)* + *ϕ(*0, *x)* . (31)

Consider the set $S := \{g : X \to Y\}$, and the generalized metric *d* in *S* defined by

$$
d^*(f,g) = \inf_{\mu \in \mathbb{R}^+} \left\{ N(g(x) - h(x), \mu t) \right\}
$$

$$
\geq \frac{t}{t + \varphi(x,x) + \varphi(0,x)}, \forall x \in X, t > 0 \right\},
$$

where $\inf \emptyset = +\infty$. It is easy to show that (S, d^*) is complete (see Lemma 2.1 in [33]).

Now, we consider a linear mapping $J : S \rightarrow S$ such that $Jg(x) := \log\left(\frac{x}{2}\right)$, for all $x \in X$. Let $g, h \in S$ satisfy $d^*(g, h) = \epsilon$, and then

$$
N(g(x) - h(x), \epsilon t) \geq \frac{t}{t + \varphi(x, x) + \varphi(0, x)},
$$

for all $x \in X$ and $t > 0$. Hence,

$$
N(Jg(x) - Jh(x), \alpha \in t) = N\left(16g\left(\frac{x}{2}\right) - 16h\left(\frac{x}{2}\right), \alpha \in t\right)
$$

$$
= N\left(g\left(\frac{x}{2}\right) - h\left(\frac{x}{2}\right), \frac{\alpha \in t}{16}\right)
$$

$$
\geq \frac{\frac{\alpha t}{16}}{\frac{\alpha t}{16} + \varphi\left(\frac{x}{2}, \frac{x}{2}\right) + \varphi\left(0, \frac{x}{2}\right)}
$$

$$
\geq \frac{\frac{\alpha t}{16}}{\frac{\alpha t}{16} + \frac{\alpha}{16}\varphi(x, x) + \frac{\alpha}{8}\varphi(0, x)}
$$

$$
= \frac{t}{t + \varphi(x, x) + \varphi(0, x)}, \qquad \qquad WWW \cdot SID.ir
$$

for all $x \in X$ and $t > 0$. Thus, $d^*(g, h) = \epsilon$ implies that $d^*(Jg, Jh) \leq \alpha \epsilon$. This means that $d^*(Jg, Jh) \leq \alpha d^*(g, h)$, for all $g, h \in S$. It follows from Equation 31 that

$$
N\left(f(x)-16\left(\frac{x}{2}\right),\frac{13\alpha t}{352}\right)\geq \frac{t}{t+\varphi(x,x)+\varphi(0,x)}.
$$

Thus, $d^*(f, f) \leq \frac{13\alpha}{352}$. By Theorem 1, there exists a mapping $Q: X \to Y$, satisfying the following:

(1) *Q* is a fixed point of *J*, that is,

$$
Q\left(\frac{x}{2}\right) = \frac{1}{16}Q(x),\tag{32}
$$

for all $x \in X$. The mapping Q is a unique fixed point of J in the following set: $\Omega = \{ h \in S : d^*(g, h) < \infty \}.$ This implies that *Q* is a unique mapping, satisfying Equation 32, such that there exists $\mu \in (0, \infty)$, satisfying the following:

$$
N(f(x) - Q(x), \mu t) \geq \frac{t}{t + \varphi(x, x) + \varphi(0, x)},
$$

for all $x \in X$ and $t > 0$.

(2) $d^*(J^n f, Q) \rightarrow 0$ as $n \rightarrow \infty$. This implies the following equality: *N*- $\lim_{n\to\infty} 16^n f\left(\frac{x}{2^n}\right) = Q(x)$, for all $x \in X$.

 $d^*(f, Q) \leq \frac{d^*(f, f)}{1-\alpha}$ $\frac{f(y, y)}{1-\alpha}$ with $f \in \Omega$, which implies the following inequality: $d^*(f, Q) \leq \frac{13\alpha}{352-352\alpha}$. This implies that the inequality (Equation 27) holds.

On the other hand, by Equation 26, we obtain the following:

,

$$
N\left(16^n\Phi_f\left(\frac{x}{2^n},\frac{y}{2^n}\right),16^nt\right)\geq \frac{t}{t+\varphi\left(\frac{x}{2^n},\frac{y}{2^n}\right)}
$$

for all $x, y \in X$, $t > 0$ and all $n \in \mathbb{N}$. Thus,

$$
N\left(16^n\Phi_f\left(\frac{x}{2^n},\frac{y}{2^n}\right),t\right)\geq \frac{\frac{t}{16^n}}{\frac{t}{16^n}+\frac{\alpha^n}{16^n}\varphi\left(x,y\right)},
$$

for all $x, y \in X$, $t > 0$ and all $n \in \mathbb{N}$. Since $\lim_{n \to \infty}$ $\frac{\frac{t}{16^n}}{16^n+\frac{\alpha^n}{16^n}\varphi(x,y)} = 1$ for all $x, y \in X$ and all $t > 0$, we deduce that $N(\Phi_Q(x, y), t) = 1$ for all $x, y \in X$ and all $t > 0$. Thus, the mapping $Q: X \to Y$, satisfying Equation 1, as desired. This completes the proof.

Corollary 5. Let $\theta \geq 0$ and let r be a real number with $r > 1$ *. Let X be a normed vector space with norm* $\| \cdot \|$ *. Let* $f: X \to Y$ be an even mapping, satisfying Equation 14, *and then the limit*

$$
Q(x) := N \cdot \lim_{n \to \infty} 16^n f\left(\frac{x}{2^n}\right)
$$

exists for each x ∈ *X and defines a unique quartic mapping* $Q: X \rightarrow Y$ such that

$$
N(f(x) - Q(x), t) \ge \frac{352(16^r - 1)t}{352(16^r - 1)t + 39\theta ||x||^r},
$$

for all $x \in X$ *and all* $t > 0$ *.*

Proof. The proof follows from Theorem 6 by taking $\varphi(x, y) := \theta \left(\|x\|^r + \|y\|^r \right)$, for all $x, y \in X$, and then we can choose $\alpha = 16^{-r}$ and get the desired result. \Box

Theorem 7. Let $\varphi: X^2 \to [0, \infty)$ be a function such that *there exists an α <* 1 *with the following:*

$$
\varphi(2x, 2y) \le 16\alpha\varphi(x, y),\tag{33}
$$

for all $x, y \in X$. Let $f : X \rightarrow Y$ be an even mapping, *satisfying Equation 26, and then the limit*

$$
Q(x) := N \cdot \lim_{n \to \infty} \frac{f(2^n x)}{16^n}
$$

exists for each x ∈ *X and defines a unique quartic mapping* $Q: X \rightarrow Y$ such that

$$
N(f(x) - Q(x), t) \ge \frac{(352 - 352\alpha)t}{(352 - 352\alpha)t + 13\varphi(x, x) + 13\varphi(0, x)}.
$$
\n(34)

Proof. Let (S, d^*) be the generalized metric space defined as in the proof of Theorem 6. Consider the linear mapping $J : S \rightarrow S$ such that

$$
Jg(x) := \frac{1}{16}g(2x),
$$

for all $x \in X$. Let $g, h \in S$ be such that $d^*(g, h) = \epsilon$, and then

$$
N(g(x) - h(x), \epsilon t) \geq \frac{t}{t + \varphi(x, x) + \varphi(0, x)},
$$

for all $x \in X$ and $t > 0$. Hence,

\n The mapping *Q* is a unique fixed point of *J*
$$
Q(x) := N - \lim_{n \to \infty} \frac{1 - x}{16^n}
$$
\n

\n\n (a) $x \cdot 12 = \{h \in S : d^*(g, h) < \infty\}$. This is a unique mapping, satisfying Equation 32, $Q : X \to Y$ such that $x \cdot x \cdot 12 = \frac{t}{t + \varphi(x, x) + \varphi(0, x)}$, $N(f(x) - Q(x), t) \geq \frac{352 - 352\alpha}{t + 3\varphi(x, x) + 13\varphi(x, x) + 13\varphi(0, x)}$ \n

\n\n (a) $x \cdot 12 = \frac{1}{t + \varphi(x, x) + \varphi(0, x)}$, $N(f(x) - Q(x), t) \geq \frac{352 - 352\alpha}{t + 3\varphi(x, x) + 13\varphi(x, x) + 13\varphi(0, x)}$ \n

\n\n (b) $N - \lim_{n \to \infty} \log(f^*(\frac{x}{2^n}) = Q(x), \text{ for all } x \in \mathbb{R}^n$ for all $x \in X$. Let *g, h* ∈ *S* be such that $d^*(g, h) = \epsilon$, and $\frac{d^*(f, f)}{2^n}, \frac{13}{2^n}$, $f \geq \frac{13}{t + \varphi(\frac{x}{2^n}, \frac{y}{2^n})}$, $t > 0$ and all *n* ∈ *N*. Thus,\n

\n\n (a) $\left(\frac{x}{2^n}, \frac{y}{2^n}\right), 16^n t \right) \geq \frac{t}{t + \varphi(\frac{x}{2^n}, \frac{y}{2^n})}$, $N(g(x) - h(x), \epsilon t) \geq \frac{t}{t + \varphi(x, x) + \varphi(0, x)}$, for all $x \in X$ and $t > 0$. Hence,\n

\n\n $\left(\frac{x}{2$

for all $x \in X$ and $t > 0$. Thus, $d^*(g, h) = \epsilon$ implies that $d^*(Jg, Jh) \leq \alpha \epsilon$. This means that $d^*(Jg, Jh) \leq \alpha d^*(g, h)$ for all $g, h \in S$. It follows from Equation 30 that

$$
N\left(\frac{f(2x)}{16} - f(x), \frac{13t}{352}\right) \ge \frac{t}{t + \varphi(x, x) + \varphi(0, x)},
$$

for all $x \in X$ and $t > 0$. Thus, $d^*(g, Jg) \le \frac{13}{352}$.

By Theorem 1, there exists a mapping $Q: X \rightarrow Y$ satisfying the following:

(1) *Q* is a fixed point of *J*, that is,

$$
16Q(x) = Q(2x),
$$
\n⁽³⁵⁾
\n
$$
WWW, \text{SID.ir}
$$

for all $x \in X$. The mapping Q is a unique fixed point of J in the set $\Omega = \{ h \in S : d^*(g, h) < \infty \}.$

This implies that *Q* is a unique mapping, satisfying Equation 35, such that there exists $\mu \in (0, \infty)$, satisfying the following:

$$
N(f(x) - Q(x), \mu t) \geq \frac{t}{t + \varphi(x, x) + \varphi(0, x)},
$$

for all $x \in X$ and $t > 0$.

(2) $d^*(J^n f, Q) \rightarrow 0$ as $n \rightarrow \infty$. This implies the following equality: *N*- $\lim_{n\to\infty} \frac{f(2^n x)}{16^n} = Q(x)$, for all $x \in$ *X* .

 $\therefore N- \lim_{n\to\infty} \frac{N-2}{16^n}$ or $\frac{N-2}{16^n}$ or $\frac{N}{16^n}$ or $\frac{N}{$ $d^*(f, Q) \leq \frac{d^*(f, f)}{1-\alpha}$ $\frac{f(y,y)}{1-\alpha}$ with $f \in \Omega$, which implies the following inequality: $d(f, Q) \le \frac{13}{352 - 352\alpha}$. This implies that the inequality (Equation 34) holds. The rest of the proof is similar to that of the proof of Theorem 2.

Corollary 6. Let $\theta \geq 0$ and let r be a real number with $0 < r < 1$. Let X be a normed vector space with norm $\| \cdot \|$. Let $f: X \to Y$ be an even mapping, satisfying Equation 14, *and then the limit*

$$
Q(x) := N \cdot \lim_{n \to \infty} \frac{f(2^n x)}{16^n}
$$

exists for each x ∈ *X and defines a unique quartic mapping* $Q: X \rightarrow Y$ such that

$$
N(f(x) - Q(x), t) \ge \frac{352(16 - 16^r)t}{352(16 - 16^r)t + 624\theta ||x||^r},
$$

for all $x \in X$ *and all* $t > 0$ *.*

Proof. The proof follows from Theorem 7 by taking the following: $\varphi(x, y) := \theta \left(\Vert x \Vert^r + \Vert y \Vert^r \right)$, for all $x, y \in X$, and then we can choose $\alpha = 16^{r-1}$ and get the desired result.

Results and discussion

We linked here three different disciplines, namely fuzzy Banach spaces, functional equations, and fixed point theory. We established the Hyers-Ulam-Rassias stability of functional Equation 1 in fuzzy Banach spaces by fixed point method.

Conclusions

Throughout this paper, using the fixed point method, we proved the Hyers-Ulam-Rassias stability of a mixed type ACQ functional equation in fuzzy Banach spaces.

Competing interests

The author declares that there are no competing interests.

Received: 28 July 2012 Accepted: 25 September 2012 Published: 24 October 2012

References

- 1. Katsaras, AK: Fuzzy topological vector spaces. Fuzzy Sets and Syst. **12** , 143–154 (1984)
- 2. Felbin, C: Finite-dimensional fuzzy normed linear space. Fuzzy Sets and Syst. **48**, 239–248 (1992)
- 3. Krishna, SV, Sarma, KKM: Separation of fuzzy normed linear spaces. Fuzzy Sets and Syst. **63**, 207–217 (1994)
- 4. Park, C: Fuzzy stability of a functional equation associated with inner product spaces. Fuzzy Sets and Syst. **160**, 1632–1642 (2009)
- 5. Bag, T, Samanta, SK: Finite dimensional fuzzy normed linear spaces. J Fuzzy Mathematics. **11**, 687–705 (2003)
- 6. Cheng, SC, Mordeson, JN: Fuzzy linear operators and fuzzy normed linear spaces. Bull. Calcutta Math. Soc. **86**, 429–436 (1994)
- 7. Karmosil, I, Michalek, J: Fuzzy metric and statistical metric spaces. Kybernetica. **11**, 326–334 (1975)
- 8. Bag, T, Samanta, SK: Fuzzy bounded linear operators. Fuzzy Sets and Syst. **151**, 513–547 (2005)
- 9. Cădariu, L, Radu, V: Fixed points and the stability of Jensen's functional equation. J. Inequal. Pure Appl. Math. **4**(1), 4 (2003)
- 10. Diaz, J, Margolis, B: A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Amer. Math. Soc. **74**, 305–309 (1968)
- 11. Ulam, SM: Problems in Modern Mathematics. John Wiley and Sons, New York (1964)
- 12. Hyers, DH: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA. **27**, 222–224 (1941)
- 13. Rassias, ThM: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. **72**, 297–300 (1978)
- 14. Skof, F: Local properties and approximation of operators. Rendiconti del Seminario Matematico e Fisico di Milano. **53**, 113–129 (1983)
- 15. Cholewa, PW: Remarks on the stability of functional equations. Aequationes Mathematicae. **27**, 76–86 (1984)
- 16. Czerwik, S: On the stability of the quadratic mapping in normed spaces. Abh. Math. Sem. Univ. Hambourg. **62**, 239–248 (1992)
- 17. Eshaghi-Gordji, M, Kaboli-Gharetapeh, S, Park, C, Zolfaghri, S: Stability of an additive-cubic-quartic functional equation. Advances in Difference Equations. **2009**, 395693 (2009)
- 18. Agarwal, RP, Cho, YJ, Saadati, R, Wang, S: Nonlinear L-fuzzy stability of cubic functional equations. J. Inequal. Appl. **2012**, 77 (2012)
- 19. Azadi Kenary, H: Non-Archimedean stability of Cauchy-Jensen type functional equation. Int. J. Nonlinear Anal. Appl. **1**(2), 1–10 (2010)
- 20. Azadi Kenary, H: Stability of a Pexiderial functional equation in random normed spaces. Rend. Del Circolo Math. Di Palermo. **60**(1), 59–68 (2011)
- 21. Azadi Kenary, H, Shafaat, Kh, Shafei, M, Takbiri, G: Hyers-Ulam-Rassias stability of the Appollonius quadratic mapping in RN-spaces. J. Nonlinear Sci. Appl. **4**(1), 110–119 (2011)
- 22. Eshaghi-Gordji, M, Abbaszadeh, S, Park, C: J. Inequal. Appl. **2009**, 153084 (2009)
- 23. Eshaghi Gordji, M, Khodaei, H, Rassias, JM: Fixed point methods for the stability of general quadratic functional equation. Fixed Point Theory. **12**(1), 71–82 (2011)
- 24. Eshaghi Gordji, M, Park, C, Savadkouhi, MB: The stability of quartic functional equation with the fixed point alternative. Fixed Point Theory. **11**(2), 265–272 (2010)
- 25. Eshaghi Gordji, M: Stability of a functional equation deriving from quartic and additive functions. Bull. Korean Math. Soc. **47**(3), 491–502 (2010)
- 26. Eshaghi Gordji, M, Ebadian, A, Zolfaghari, S: Stability of a functional equation deriving from cubic and quartic functions. Abstract and Appl. Anal. **2008**, 801904 (2008)
- 27. Eshaghi Gordji, M, Khodaei, H: Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi–Banach spaces. Nonlinear Analysis–TMA. **71**, 5629–5643 (2009)
- 28. Găvruta, P: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. **184**, 431–436 (1994)
- 29. Jun, K, Cho, Y: Stability of generalized Jensen quadratic functional equations. J. Chungcheong Math. Soc. **29**, 515–523 (2007)

6:54 Page 9 of 10

- 30. Jung, S: Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor (2001)
- 31. Khodaei, H, Eshaghi Gordji, M, Kim, SS, Cho, YJ: Approximation of radical functional equations related to quadratic and quartic mappings. J. Math. Anal. Appl. **397**, 284–297 (2012)
- 32. Lee, SH, Im, SM, Hwang, IS: Quartic functional equations. J. Math. Anal. Appl. **307**(2), 387–394 (2005)
- 33. Mihet, D, Radu, V: On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl. **343**, 567–572 (2008)
- 34. Park, C: On the stability of the linear mapping in Banach modules. J. Math. Anal. Appl. **275**, 711–720 (2002)
- 35. Park, C: Modefied Trif's functional equations in Banach modules over a *C*∗-algebra and approximate algebra homomorphism. J. Math. Anal. Appl. **278**, 93–108 (2003)
- 36. Park, C, Moradlou, F: Stability of homomorphisms and derivations on *C*∗-ternary rings. Taiwanese J. Math. **13**, 1985–1999 (2009)
- 37. Rassias, ThM: On the stability of the quadratic functional equation and it's application. Studia Univ. Babes-Bolyai. **XLIII**, 89–124 (1998)
- 38. Rassias, ThM: On the stability of functional equations in Banach spaces. J. Math. Anal. Appl. **251**, 264–284 (2000)
- 39. Rassias, ThM, Šemrl, P: On the Hyers-Ulam stability of linear mappings. J. Math. Anal. Appl. **173**, 325–338 (1993)
- Au-Fislabilty of formomorphismics and derivations on
 Archive stability of the quadratic functional equations and
 Archive of SIDP (Archive of Archive of Archives of Archives of SIDP)
 Archive of SIDP (Archive of Arch 40. Saadati, R, Park, C: Non-Archimedean L-fuzzy normed spaces and stability of functional equations. Journal Computers & Mathematics with Applications. **60**, 2488–2496 (2010)
- 41. Saadati, R, Park, JH: On the intuitionistic fuzzy topological spaces. Chaos, Solitons and Fractals. **27**, 331–44 (2006)
- 42. Saadati, R, Vaezpour, M, Cho, YJ: J. Ineq. Appl. **2009**, 214530 (2009)
- 43. Saadati, R, Zohdi, MM, Vaezpour, SM: Nonlinear L-random stability of an ACQ functional equation. J. Ineq. Appl. **2011**, 194394 (2011)

doi:10.1186/2251-7456-6-54

Cite this article as: Kenary: Nonlinear fuzzy approximation of a mixed type ACQ functional equation via fixed point alternative. Mathematical Sciences 2012 **6**:54.

Submit your manuscript to a journal and benefit from:

- \blacktriangleright Convenient online submission
- \blacktriangleright Rigorous peer review
- \blacktriangleright Immediate publication on acceptance
- \blacktriangleright Open access: articles freely available online
- \blacktriangleright High visibility within the field
- \blacktriangleright Retaining the copyright to your article

Submit your next manuscript at 7 **springeropen.com**