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Jordan-Banach algebras
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Abstract

Using the direct method based on the Hyers-Ulam-Rassias stability, we investigate and prove the Hyers-Ulam stability
of Jordan homomorphisms in Jordan-Banach algebras for the functional equation

n∑
k=2

k∑
i1=2

k+1∑
i2=i1+1

· · ·
n∑

in−k+1=in−k+1

f

⎛⎝ n∑
i=1,i �=i1,··· ,in−k+1

xi −
n−k+1∑

r=1

xir

⎞⎠ + f

(
n∑

i=1

xi

)
− 2n−1f (x1) = 0,

where n is an integer greater than 1.
We have proved the Hyers-Ulam stability of Jordan homomorphisms in Jordan-Banach algebras for the above
functional equation.
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Introduction
A classical question in the theory of functional equations
is that ‘when is it true that a function which approximately
satisfies a functional equation E must be somehow close
to an exact solution of E .’ Such a problem was formulated
by Ulam [1] in 1940 and solved in the next year for the
Cauchy functional equation by Hyers [2]. It gave rise to
the stability theory for functional equations. The result of
Hyers was generalized by Aoki [3] for approximate addi-
tive functions and by Rassias [4] for approximate linear
functions. The stability phenomenon that was proved by
Rassias is called the Hyers-Ulam-Rassias stability or the
generalized Hyers-Ulam stability of functional equations.
In 1994, a generalization of the Th.M. Rassias’ theorem
was obtained by Gǎvruta [5] as follows: Suppose that
(G, +) is an abelian group and E is a Banach space and that
the so-called admissible control function ϕ : G × G → R

satisfies

ϕ̃(x, y) :=
∞∑

n=0
2−nϕ(2nx, 2ny) < ∞
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for all x, y ∈ G. If f : G → E is a mapping with

‖f (x + y) − f (x) − f (y)‖ ≤ ϕ(x, y)

for all x, y ∈ G, then there exists a unique mapping T :
G → E such that T(x + y) = T(x) + T(y) and ‖f (x) −
T(x)‖ ≤ ϕ̃(x, x) for all x, y ∈ G. If, moreover, G is a real
normed space and f (tx) is continuous in t for each fixed x
in G, then T is a linear function.

The stability problems of several functional equations
have been extensively investigated by a number of authors,
and there are many interesting results concerning this
problem (see [6-27]).

Recently, Eshaghi Gordji et al. (unpublished work)
defined the following n-dimensional additive functional
equation

Df (x1, · · · , xn) : =
n∑

k=2

k∑
i1=2

k+1∑
i2=i1+1

· · ·
n∑

in−k+1=in−k+1

×f

⎛⎝ n∑
i=1,i�=in1 ,··· ,in−k+1

xi −
n−k+1∑

r=1
xir

⎞⎠
+f

( n∑
i=1

xi

)
− 2n−1f (x1) = 0, (1.1)
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Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

www.SID.ir



Arc
hive

 of
 S

ID

Gordji et al. Mathematical Sciences 2012, 6:55 Page 2 of 5
http://www.iaumath.com/content/6/1/55

where n is an integer greater than 1, and investigated the
functional equation (1.1) in random normed spaces the via
the fixed point method.

Note that a unital algebra A, endowed with the Jordan
product x◦ y = 1

2 (xy+ yx) on A, is called a Jordan algebra.
A C-linear mapping L of a Jordan algebra A into a Jordan
algebra B is called a Jordan homomorphism if L(x ◦ y) =
(L(x) ◦ L(y)) holds for all x, y ∈ A.

Throughout this paper, let A be a Jordan-Banach algebra
with norm ‖ · ‖ and unit e, and let B be a Jordan-Banach
algebra with norm ‖ · ‖.

Methods
Using the direct method based on the Hyers-Ulam-
Rassias stability, we prove the Hyers-Ulam stability of
Jordan homomorphisms in Jordan-Banach algebras for
the functional equation (1.1).

Results and discussion
We need the following lemma in the proof of our main
theorem.

Lemma 2.1. (Eshaghi Gordji et al., unpublished work) A
mapping f : A → B with f (0) = 0 satisfies (1.1) if and
only if f : A → B is additive.

We are going to prove the main result.

Theorem 2.2. Let h : A → B be a mapping with h(0) =
0 for which there exists a function ϕ : An+2 →[ 0, ∞) such
that

ϕ̃(x1, · · · xn, z, w) :=
∞∑

j=0
2−jϕ(2jx1, · · · 2jxn, 2jz, 2jw) < ∞,

(2.1)∥∥∥∥∥∥
n∑

k=2

k∑
i1=2

k+1∑
i2=i1+1

· · ·
n∑

in−k+1=in−k+1

×h

⎛⎝ n∑
i=1,i�=i1,··· ,in−k+1

μxi −
n−k+1∑

r=1
μxir

⎞⎠
+μh

( n∑
i=1

xi

)
− μ2n−1h(x1) + h(z ◦ w) − h(z) ◦ h(w)

∥∥∥∥∥
� ϕ(x1, . . . xn, z, w) (2.2)

for all μ ∈ T1 := {λ ∈ C| |λ| = 1} and x1, . . . xn, z, w ∈
A. Then, there exists a unique Jordan homomorphism L :
A → B such that

‖h(x) − L(x)‖ ≤ 1
2n−1 ϕ̃(x, x, 0 . . . 0︸ ︷︷ ︸

n−times

) (2.3)

for all x ∈ A.

Proof. Let μ = 1. Using the relation

1 +
n−k∑
k=1

(
n − k

k

)
=

n−k∑
k=0

(
n − k

k

)
= 2n−k (2.4)

for all n > k and putting x1 = x2 = x and xi = z = w = 0
(i = 3, . . . , n) in (2.2), we obtain∥∥2n−2h(2x) − 2n−1h(x)

∥∥ ≤ ϕ(x, x, 0, . . . , 0︸ ︷︷ ︸
n−times

) (2.5)

for all x ∈ A. So,∥∥∥∥h(2x)

2
− h(x)

∥∥∥∥ ≤ 1
2n−1 ϕ(x, x, 0, . . . , 0︸ ︷︷ ︸

n−times

) (2.6)

for all x ∈ A. By induction on m, we can show that∥∥∥∥h(2mx)

2m − h(x)

∥∥∥∥ ≤ 1
2n−1

m−1∑
j=0

1
2j ϕ(2jx, 2jx, 0, . . . , 0︸ ︷︷ ︸

n−times

) (2.7)

for all x ∈ A. It follows from (2.1) and (2.7) that the
sequence

{
h(2mx)

2m

}
is a Cauchy sequence for all x ∈ A.

Since A is complete, the sequence
{

h(2mx)
2m

}
converges.

Thus, one can define the mapping L : A → B by

L(x) := lim
m→∞

h(2mx)

2m

for all x ∈ A. Let z = w = 0 and μ = 1 in (2.2). By (2.1)

‖Df (x1, ..., xn)‖ = lim
j→∞

1
2j

∥∥Df
(
2jx1, ..., 2jxn

)∥∥
≤ lim

j→∞
1
2j ϕ

(
2jx1, ..., 2jxn, 0, 0

) = 0

for all x1, · · · , xn ∈ A. So, Df (x1, · · · , xn) = 0. By Lemma
2.1, the mapping L : A → B is additive. Moreover, passing
the limit m → ∞ in (2.7) we get the inequality (2.3).

Now, let L′ : A → B be another additive mapping
satisfying (1.1) and (2.3). Then,

‖L(x) − L′(x)‖ = 1
2n ‖L(2nx) − L′(2nx)‖

≤ 1
2m (‖L(2nx) − h(2nx)‖ + ‖L′(2nx)

− h(2nx)‖)
≤ 2

2m2n−1 ϕ̃(2mx, 2mx, 0, . . . , 0︸ ︷︷ ︸
n−times

)

which tends to zero as m → ∞ for all x ∈ A. So, we can
conclude that L(x) = L′(x) for all x ∈ A. This proves the
uniqueness of L.
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Let μ ∈ T
1. Set x1 = x and z = w = xi = 0 (i = 2, ..., n)

in (2.2). Then, by (2.1), we get

‖2n−1h(μx) − 2n−1μh(x)‖ ≤ ϕ(x, 0, ..., 0, 0, 0) (2.8)

for all x ∈ A. So,

‖2−m(h(2mμx) − μh(2mx))‖ ≤ 2−m

2n−1 ϕ(2mx, 0, ..., 0, 0, 0)

for all x ∈ A. Since the right hand side of the above
inequality tends to zero as m → ∞, we have

L(μx) = lim
m→∞

h(2mμx)

2m = lim
m→∞

μh(2mx)

2m = μL(x)

(2.9)

for all μ ∈ T
1 and all x ∈ A.

Now let λ ∈ C(λ �= 0) and M an integer greater than
4|λ|. Then, |λ/M| < 1/4 < 1 − 2/3 = 1/3. By Theorem
1 of [28], there exist three elements μ1, μ2, μ3 ∈ T

1 such
that 3 λ

M = μ1 + μ2 + μ3, and L(x) = L
(
3 · 1

3 x
) = 3L

( 1
3 x

)
for all x ∈ A. So, L

( 1
3 x

) = 1
3 L(x) for all x ∈ A. Thus, by

(2.9),

L(λx) = L
(

M
3

· 3
λ

M
x
)

= M · L
(

1
3

· 3
λ

M
x
)

= M
3

L
(

3
λ

M
x
)

= M
3

L(μ1x + μ2x + μ3x)

= M
3

(L(μ1x) + L(μ2x) + L(μ3x))

= M
3

(μ1 + μ2 + μ3)L(x)

= M
3

· 3
λ

M
L(x) = λL(x)

for all x ∈ A. Hence,

L(ζx1 + ηx2) = L(ζx1) + L(ηx2) = ζL(x1) + ηL(x2)

for all ζ , η ∈ C (ζ , η �= 0) and all x1, x2 ∈ A, and L(0x) =
0 = 0L(x) for all x ∈ A.

So, L : A → B is C-linear.
Let xi = 0 (i ≥ 0) in (2.2). Then, we get

‖h(z ◦ w) − h(z) ◦ h(w)‖ ≤ ϕ(0, · · · , 0︸ ︷︷ ︸
n−times

, z, w)

for all z, w ∈ A. Since

1
22m ϕ(0, · · · , 0︸ ︷︷ ︸

n−times

, 2mz, 2mw) ≤ 1
2m ϕ(0, · · · , 0︸ ︷︷ ︸

n−times

, 2mz, 2mw),

1
22m

∥∥h(2mz ◦ 2mw) − h(2mz) ◦ h(2mw)
∥∥

≤ 1
22m ϕ(0, . . . , 0︸ ︷︷ ︸

n−times

, z, w)

≤ 1
2m ϕ(0, . . . , 0︸ ︷︷ ︸

n−times

, z, w),

which tends to zero as m → ∞ for all z, w ∈ A. Hence,

L(z ◦ w) = lim
m→∞

h
(
22m(z ◦ w)

)
22m

= lim
m→∞

h(2mz ◦ 2mw)

22m

= lim
m→∞

1
22m

(
h(2mz) ◦ h(2mw)

)
= lim

m→∞

(
h(2mz)

2m ◦ h(2mw)

2m

)
= L(z) ◦ L(w)

for all z, w ∈ A. So, the C-linear mapping L : A → B is a
Jordan homomorphism satisfying (2.3).

Corollary 2.3. Let h : A → B be a mapping with h(0) =
0 for which there exist constants ε ≥ 0 and p ∈[ 0, 1) such
that∥∥∥∥∥∥

n∑
k=2

k∑
i1=2

k+1∑
i2=i1+1

· · ·
n∑

in−k+1=in−k+1

×h

⎛⎝ n∑
i=1,i�=i1,··· ,in−k+1

μxi −
n−k+1∑

r=1
μxir

⎞⎠
+μh

( n∑
i=1

xi

)
− μ2n−1h(x1) + h(z ◦ w) − h(z) ◦ h(w)

∥∥∥∥∥
≤ ε(‖x1‖p + · · · + ‖xn‖p + ‖z‖p + ‖w‖p)

for all μ ∈ T
1 and all x1, x2, ..., xn, z, w ∈ A. Then, there

exists a unique Jordan homomorphism L : A → B such
that

‖h(x) − L(x)‖ ≤ ε

2n(1 − 2p−1)
‖x‖p

for all x ∈ A.

Proof. Define ϕ(x1, · · · xn, z, w)= ε(‖x1‖p+· · ·+‖xn‖p+
‖z‖p + ‖w‖p) and apply Theorem 2.2 Then, we get the
desired result.

Corollary 2.4. Suppose that h : A → B is mapping
with h(0) = 0 satisfying (2.2) If there exists a function
ϕ : An+2 →[ 0, ∞) such that

ϕ̃(x1,· · · xn, z, w) :=
∞∑

j=0
2jϕ(2−jx1,· · · 2−jxn, 2−jz, 2−jw)<∞
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for all z, w, xi ∈ A (i = 1, ..., n), then there exists a unique
Jordan homomorphism L : A → B such that

‖h(x) − L(x)‖ ≤ 1
2n−1 ϕ̃(x, x, 0 . . . 0︸ ︷︷ ︸

n−times

)

for all x ∈ A.

Proof. By the same method as in the proof of Theorem
2.2 one can obtain that

L(x) = lim
m→∞

h(2mx)

2m

for all x ∈ A.

The rest of the proof is similar to the proof of Theorem
2.2.

Theorem 2.5. Let h : A → B be a mapping with h(0) =
0 for which there exists a function ϕ : An+2 →[ 0, ∞)

satisfying (2.1) such that∥∥∥∥∥∥
n∑

k=2

k∑
i1=2

k+1∑
i2=i1+1

· · ·
n∑

in−k+1=in−k+1

×h

⎛⎝ ∑
i=1,i�=i1,··· ,in−k+1

μxi −
n−k+1∑

r=1
μxir

⎞⎠
+μh

( n∑
i=1

xi

)
− μ2n−1h(x1) + h(z ◦ w) − h(z) ◦ h(w)

∥∥∥∥∥
� ϕ(x1, · · · xn, z, w) (2.10)

for μ = 1, i and all x1, · · · , xn, z, w ∈ A. If h(tx) is con-
tinuous in t ∈ R for each fixed x ∈ A, then there exists a
unique Jordan homomorphism L : A → B satisfying (2.3).

Proof. Put z = w = 0 in (2.10). By the same reasoning as
in the proof of Theorem 2.2, there exists a unique additive
mapping L : A → B satisfying (2.3). The additive mapping
L : A → B is given by

L(x) = lim
m→∞

h(2mx)

2m

for all x ∈ A. By the same reasoning as in the proof of
Theorem 2.2 the additive mapping L : A → B is R-linear.

Putting xi = z = w = 0 (i = 2, · · · , n) and μ = i in
(2.10), we get

‖h(ix) − ih(x)‖ ≤ ϕ(x, 0, · · · , 0︸ ︷︷ ︸
(n+1)−times

)

for all x ∈ A. So,

1
2n

∥∥h(2mix) − ih(2mx)
∥∥ ≤ 1

2n ϕ(2nx, 0, . . . , 0︸ ︷︷ ︸
(n+1)−times

),

which tends to zero as m → ∞. Hence,

L(ix) = lim
m→∞

h(2mix)

2m = lim
m→∞

ih(2mx)

2m = iL(x)

for all x ∈ A.
For each element λ ∈ C, λ = s + it, where s, t ∈ R. So,

L(λx) = L(sx + itx) = sL(x) + tL(ix) = sL(x) + itL(x)

= (s + it)L(x) = λL(x)

for all x ∈ A. So,

L(ζx1 + ηx2) = L(ζx1) + L(ηx2) = ζL(x1) + ηL(x2)

for all ζ , η ∈ C, and all x1, x2 ∈ A. Hence, the additive
mapping L : A → B is C-linear.

The rest of the proof is the same as in the proof of
Theorem 2.2

Corollary 2.6. Let h : A → B be a mapping with h(0) =
0 for which there exist constants ε ≥ 0 and p > 1 such that∥∥∥∥∥∥

n∑
k=2

k∑
i1=2

k+1∑
i2=i1+1

· · ·
n∑

in−k+1=in−k+1

×h

⎛⎝ n∑
i=1,i�=i1,··· ,in−k+1

μxi −
n−k+1∑

r=1
μxir

⎞⎠
+μh

( n∑
i=1

xi

)
− μ2n−1h(x1) + h(z ◦ w) − (h(z) ◦ h(w))

∥∥∥∥∥
≤ ε(‖x1‖p + . . . + ‖xn‖p + ‖z‖p + ‖w‖p)

for all z, w, xi ∈ A (i = 1, 2, · · · , n) and all μ ∈ T
1. Then,

there exists a unique Jordan homomorphism L : A → B
such that

‖h(x) − L(x)‖ ≤ ε

2n(21−p − 1)
‖x‖p

for all x ∈ A.

Proof. Define ϕ(x1, · · · xn, z, w)=ε(‖x1‖p+· · ·+‖xn‖p +
‖z‖p + ‖w‖p) and apply Theorem 2.2 Then, we get the
desired result.

Conclusions
We have proved the Hyers-Ulam stability of Jordan homo-
morphisms in Jordan-Banach algebras for the functional
equation (1.1).
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