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Abstract

This article deals with the general oblique derivative boundary value problem for nonlinear elliptic equations of
second order in an unbounded multiply connected domain. The problem includes the Dirichlet problem, the
Neumann problem and the third boundary value problem as its spacial cases. We first provide the formulation of the
above boundary value problem and obtain the representation theorem for the problem. Then, we give a priori
estimates of solutions for the boundary value problem by using the reduction to absurdity and the uniqueness of
solutions. Finally, by the above estimates of solutions and the Leray-Schauder theorem, the existence of solutions of
the above problem for the nonlinear elliptic equations of second order can be proved.
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Introduction
Formulation of oblique derivative problems of
second-order elliptic equations in unbounded domains
Let D be an (N + 1)-connected domain including the infi-
nite point with the boundary � = ∪N

j=0�j in C, where
� ∈ C2

μ (0 < μ < 1). Without loss of generality, we
assume that D is a circular domain in |z| > 1, where the
boundary consists of N +1 circles �0 = �N+1 = {|z| = 1},
�j = {|z − zj| = rj}, j = 1, . . . , N and z = ∞ ∈ D. In
this article, the notations are the same as those in [1-6].
We consider the second-order nonlinear elliptic equation
in the complex form{

uzz̄ = F(z, u, uz, uzz), F = Re [Quzz + A1uz] + Â2u + A3,

Q=Q(z, u, uz, uzz), Aj =Aj(z, u, uz), j=1, 2, 3, Â2 =A2+|u|σ ,
(1)

satisfying the following conditions.

Condition C
1. Q(z, u, w, U) and Aj(z, u, w)(j = 1, 2, 3) are

continuous in D for u ∈ R, w ∈ C for almost every
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point z ∈ D, U ∈ C, and Q = 0 and
Aj = 0 (j = 1, 2, 3) for z �∈ D, where σ is a positive
number.

2. The above functions are measurable in D for all
continuous functions u(z), w(z) in D and satisfy

Lp,2
[
Aj(z, u(z), w(z)), D

]≤k0, j=1, 2,
Lp,2

[
A3(z, u(z), w(z)), D

]≤k1,
(2)

in which p0, p (2 < p0 ≤ p), k0 and k1 are
nonnegative constants.

3. Equation 1 satisfies the uniform ellipticity condition

|F(z, u, w, U1) − F(z, u, w, U2)| ≤ q0 |U1 − U2| , A2 ≥ 0 in D,
(3)

for almost every point z ∈ D and any number
u ∈ R, w, U1, U2 ∈ C, where q0(< 1) is a
nonnegative constant.

Problem O
In the domain D, find a solution u(z) of Equation 1, which
is continuously differential in D and satisfies the boundary
condition
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1
2

∂u
∂ν

+ c1(z)u(z) = c2(z) + h(z), z ∈ �, u(a0) = b0,

(4)

where ν(= ν1 + iν2) can be arbitrary provided that
cos(ν, n) ≥ 0 on �, n is the outward normal vector on �

and a0 = 1. It is easy to see that the boundary condition
(4) can be rewritten in the complex form

Re
[
λ(z)uz

]
+c1(z)u = c2(z)+h(z), z ∈ �, u(a0) = b0,

(5)

for λ(z) = cos(ν, x) + i sin(ν, x) = ei(ν,x), where (ν, x)

is the angle between ν and the x-axis. Suppose that
λ(z), c1(z), c2(z) and h(z) satisfy the conditions

Cα [λ(z), �] ≤ k0, Cα[ c1(z), �] ≤ k0,
Cα [c2(z), �]≤k2, |b0|≤k2, c1(z)≥0 on �,

(6)

in which α (1/2 < α < 1)and k2 are nonnegative con-
stants. If cos(ν, n) = 0 and c1(z) ≡ 0 on �j, we assume
that

u(aj) = bj, 1 ≤ j ≤ N0, (7)

without loss of generality, we suppose that cos(ν, n) = 0
and c1(z) = 0 on �∗ = �1∪. . . ∪ �N0 (N0 ≤ N), but not on
�0 and �j(N0 < j ≤ N), and aj ∈ �j, bj is a real constant,
|bj| ≤ k2, 1 ≤ j ≤ N0. Set �∗∗ = �\{�∗} and

h(z) =
{

h0, z ∈ �0,
0, z ∈ �\�0,

(8)

where h0 is a real constant to be determined appropriately.
It is clear that if cos(ν, n) > 0 on �, Problem O is the

third boundary value problem (Problem III). If cos(ν, n) =
1 and c1(z) = 0 on �, then Problem O is the Neumann
boundary problem (Problem II). If cos(ν, n) = 0 and
c1(z) = 0 on �, Problem O is equivalent to the first bound-
ary value problem (Problem I). It is not difficult to see that
for Problems I, II and III, K0 = arg�0 λ(z)/π = −2, Kj =
arg�j λ(z)/π = 2, j = 1, . . . , N and the index of λ(z) on �

is K =[ K0 + K1 + . . . + KN ] /2 = N − 1. Hence, Problem
O is a general boundary value problem.

Methods
A priori estimates of solutions of oblique derivative
problems for elliptic equations of second order
First of all, we prove the uniqueness of solutions for
Problem O of Equation 1.

Theorem 1. Suppose that Equation 1 satisfies Condi-
tion C. Then, Problem O for Equation 1 with the condition
A3 = 0 in D, c2 = 0 on � and b0 = 0 has only the trivial
solution.

Proof. Let u(z) be any solution of Problem O for
Equation 1. From Condition C, it is easily seen that u(z) is
a solution of the following uniformly elliptic equation:

uzz̄ =Re[ Quzz + A1uz] +(A2 + |u|σ )u,
|Q| ≤ q0 < 1, A2 ≥ 0 in D,

(9)

and satisfies the boundary condition

1
2

∂u
∂ν

+ c1(z)u(z)=h(z), z ∈ �, u(aj)=0, j=0, 1, . . . , N0.

(10)

Substituting the solution u(z) into the coefficients of
Equation 9, we can find a solution 	(z) of Equation 1
satisfying the condition

	(z) = 1 on �; (11)

thus, the function U(z) = u(z)/	(z) is a solution of the
equation

Uzz̄ = Re[ QUzz + A0Uz], A0

= −2(log 	)z̄ + 2Q(log 	)z + A1,
(12)

satisfying the boundary conditions

1
2

∂U
∂ν

+ c∗
1(z)U(z)=h(z) on �, U(aj)=0, j=0, 1, . . . , N0,

(13)

where c∗
1(z) = c1(z) + (∂	/∂ν)/	(z) ≥ 0 on �. If

U(z) �≡ 0 in D, then there exists a point z∗ ∈ � such that
M = U(z∗) = maxD U(z) > 0. When z∗ ∈ �∗, noting
that cos(ν, n) = 0, c1(z) = 0 and ∂	(z)/∂ν = 0 on �∗, we
have ∂U/∂ν = 0 and U(z) = M on L∗, which is impossi-
ble. When z∗ ∈ �∗∗, if cos(ν, n) > 0 at z∗, in the same way
as in the proof of Theorem 2.3.1 (see Chapter 2 in [5]), we
have ∂U/∂ν > 0 at z∗, which contradicts the formula (10)
on �∗∗. If cos(ν, n) = 0 at z∗, denoting the longest curve
of � including the point z∗ by �′ so that cos(ν, n) = 0 and
u(z) = M on �′, then there exists a point z′ ∈ �∗∗\�′, such
that at z′, cos(ν, n) > 0, ∂u/∂n > 0, cos(ν, s) > 0 (< 0)

and ∂u/∂s ≥ 0 (≤ 0); hence,
∂u
∂ν

= cos(ν, n)
∂u
∂n

+ cos(ν, s)
∂u
∂s

> 0 at z′ (14)

holds, where s is the tangent vector of at z′ ∈ �∗∗. Again,
that is impossible, which shows z∗ ∈ �0. Thus, u(z) attains
its maximum M at a point z∗. Similarly, we can prove that
u(z) attains its minimum m at a point z∗; hence, h(z) = 0
on �0. By a similar method, we can verify M = m = 0;
thus, U(z) = 0 in D.

Next, we consider the nonlinear elliptic equations of
second order

uzz̄ − Re [Quzz + A1uz] − Â2u = A3, (15)

where Â2 = A2 +|u|σ , σ is a positive number, and assume
that the above equation satisfies the above Condition C.
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Theorem 2. Let Equation 15 satisfy Condition C. Then,
any solution of Problem O for Equation 15 satisfies the
estimates

Ĉβ

[
u, D

]=C1
β

[|u|σ+1, D
]≤M1, ||u||W 2

p0,2(D) ≤M1,

Ĉβ

[
u, D

] ≤ M2(k1 + k2), ||u||W 2
p0,2(D) ≤M2(k1 + k2),

(16)

in which k = (k0, k1, k2), β (0 < β ≤ α), M1 =
M1(q0, p0, β , k, D) and M2 = M2(q0, p0, β , k0, p, D) are
nonnegative constants.

Proof. By using the reduction to absurdity, we shall
prove that any solution u(z) of Problem O satisfies the
estimate of boundedness

Ĉ
[
u, D

]=C
[|u|σ+1, D

] + C
[
uz, D

]≤M3, (17)

where M3 = M3(q0, p0, α, k, p, D) is a nonnegative con-
stant. Suppose that Equation 17 is not true, then there
exist sequences of coefficients {A(m)

j } (j = 1, 2, 3), {Q(m)},
{λ(m)(z)}, {c(m)

j }(j = 1, 2) and {b(m)
j }(j = 0, 1, . . . , N0),

which satisfy the same conditions of Condition C and
Equations 6 to 8, such that {A(m)

j } (j = 1, 2, 3), {Q(m)},
{λ(m)(z)}, {c(m)

j } (j = 1, 2) and {b(m)
j } (j = 0, 1, ..., N0) in

D, � weakly converge or uniformly converge to A(0)
j (j =

1, 2, 3), Q(0), λ(0)(z), c(0)
j (j = 1, 2), b(0)

j (j = 0, 1, . . . , N0),
and the corresponding boundary value problems

uzz̄−Re
[
Q(m)uzz+A(m)

1 uz
]
−Â(m)

2 u=A(m)
3 , Â(m)

2 =A(m)
2 +|u|σ

(18)

and
1
2

∂u
∂ν

+c(m)
1 (z)u=c(m)

2 (z)

+ h(z) on �, u(aj)=bj, j=0, 1, . . . , N0

(19)

have the solutions {u(m)(z)}, where Ĉ
[
u(m)(z), D

]
(m =

1, 2, . . .) are unbounded. Hence, we can choose a sub-
sequence of {u(m)(z)} denoted by {u(m)(z)} again, such
that hm = Ĉ

[
u(m)(z), D

] → ∞ as m → ∞. We can
assume hm ≥ max [k1, k2, 1]. It is obvious that ũ(m)(z) =
u(m)(z)/hm(m = 1, 2, . . .) are solutions of the boundary
value problems

ũzz̄ −Re
[
Q(m)ũzz + A(m)

1 ũz
]
− Â(m)

2 ũ = A(m)
3 /hm (20)

and

1
2

∂ũ
∂ν

+ c(m)
1 (z)ũ=c(m)

2 (z)/hm + h(z) on �, ũ(aj)

= b(m)
j , j=0, 1, . . . , N0.

(21)

We can see that the functions in the above equation and
boundary conditions satisfy Condition C, Equations 6 to 8
and

|u|σ+1 /hm ≤ 1, Lp,2
[
A(m)

3 /hm, D
]

≤ 1,∣∣∣c(m)
2 /hm

∣∣∣≤1,
∣∣∣b(m)

j /hm

∣∣∣≤1, j=0, 1, . . . , N0;
(22)

hence, we can obtain the estimate

Ĉβ

[
ũ(m)(z), D

]
≤ M4,

∥∥∥ũ(m)(z)
∥∥∥

W 2
p0,2(D)

≤ M4,

in which M4 = M4(q0, p0, β , k, D) is a nonnegative con-
stant. Thus, from the sequence of functions

{
ũ(m)(z)

}
, we

can choose the subsequence denoted by
{

ũ(m)(z)
}

, which
uniformly converges to ũ(0)(z) in D and whose partial
derivatives ũ(m)

x and ũ(m)
y in D are uniformly convergent

and ũ(m)
xx , ũ(m)

yy and ũ(m)
xy in D are weakly convergent. This

shows that ũ0(z) is a solution of the boundary value
problem

ũ0zz̄ − Re
[
Q(0)ũ0zz + A(0)

1 ũ0z
]

− Â(0)
2 ũ0 = 0 (23)

and

1
2

∂ũ0
∂ν

+ c(0)
1 (z)ũ0 =h(z) on �, u0(aj)=0, j=0, 1, . . . , N0.

(24)

We see that the above Equation 23 possesses the con-
dition A(0)

3 = 0 and Equation 24 is the homogeneous
boundary condition. On the basis of Theorem 1, the solu-
tion ũ0(z) = 0. However, from Ĉ

[
ũ(m)(z), D

] = 1, we
can derive that there exists a point z∗ ∈ D, such that[
|ũ0(z)|σ+1 + |ũ0z|

]
z=z∗ �= 0, which is impossible. This

shows that the first two estimates in Equation 16 are true.
Moreover, it is not difficult to verify the third estimate in
Equation 16.

Results and discussion
Solvability of oblique derivative problem for nonlinear
elliptic equations of second order
By the above estimates and the Leray-Schauder theorem,
we can prove the existence of solutions of Problem O
for Equation 1. We first introduce the nonlinear elliptic
equation of second order

uzz̄ = fm (z, u, uz, uzz) , fm (z, u, uz, uzz)

= Re [Qmuzz + A1muz] + Â2mu + A3 in D,
(25)

with the coefficients

Qm =
{

Q,
0,

Ajm =
{

Aj,
0,

j = 1, 3, Â2m =
{

Â2

0
in Dm,
in C\Dm,
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where Dm = {z ∈ D|dist(z, � ∪ {∞}) ≥ 1/m} and m is a
positive integer.

Theorem 3. If Equation 25 satisfies Condition C and
u(z) is any solution of Problem O for Equation 25, then
u(z) can be expressed in the form⎧⎪⎨

⎪⎩
u(z) = U(z) + ṽ(z) = U(z) + v̂(z) + v(z),

v(z)=Hfm = 2
π

∫ ∫
D0

fm(1/ζ )

|ζ |4 ln
∣∣∣∣1−ζ z

ζ

∣∣∣∣ dσζ .

Here, ṽ(z) = v̂(z) + v(z) is a solution of Equation 25 with
the homogeneous Dirichlet boundary condition

ṽ(z) = 0 on ∂D0 = {|z| = 1} ,

in which D0 is the image domain of {|ζ | < 1} under the
mapping z = 1/ζ ; the above boundary value problem
is called Problem D, in which U(z) is a solution of the
boundary value problems (32) and (33) in the succeeding
paragraph and U(z) and ṽ(z) satisfy the estimates

Ĉ1
β

[
U , D

] + ‖U‖W 2
p0,2(D) ≤ M5,

Ĉ1
β

[
ṽ, D0

] + ‖ṽ‖W 2
p0,2(D0)

≤ M6,
(26)

where β(> 0) and Mj = Mj(q0, p0, β , k, Dm)(j = 5, 6) are
nonnegative constants.

Proof. It is clear that the solution u(z) can be expressed
as before. On the basis of Theorem 2, it is easy to see that
ṽ satisfies the second estimate in Equation 26, and then we
know that U(z) satisfies the first estimate of Equation 26.

Theorem 4. If Equation 1 satisfies Condition C, then
Problem O for Equation 1 has a solution.

Proof. In order to prove the existence of solutions of
Problem O for Equation 25 by using the Leray-Schauder
theorem, we introduce the equation with the parameter
t ∈[ 0, 1]:

Vzz̄ = tfm (z, u, uz, (U + V )zz) in D. (27)

Denote by BM a bounded open set in the Banach space
B = Ŵ 2

p0,2(D0) = Ĉ1
β(D0) ∩ W 2

p0,2(D0)(0 < β ≤ α), the
elements of which are real functions V (z) satisfying the
inequalities

Ĉ1
β

[
V (z), D0

] + ||V ||W 2
p0,2(D0) < M7 = M6 + 1, (28)

in which M6 is a nonnegative constant as stated in
Equation 26. We choose any function V (z) ∈ BM and
make an integral v(z) = Hρ as follows:

v(z) = Hρ = 2
π

∫ ∫
D0

ρ(1/ζ )

|ζ |4 ln
∣∣∣∣1 − ζ z

ζ

∣∣∣∣ dσζ , (29)

where ρ(z) = Vzz̄. Next, we find a solution v̂(z) of the
boundary value problem in D0:

v̂zz̄ = 0 in D0, (30)

v̂(z) = −v(z) on ∂D0. (31)
Denote ṽ(z) = v̂(z) + v(z). Moreover, we find a solution
U(z) of the boundary value problem in D:

Uzz̄ = 0 in D, (32)

1
2

∂U
∂ν

+c1(z)U = c2(z) − ∂ ṽ
∂ν

− c1(z)ṽ + h(z) on �

U(aj) = bj, j = 0, 1, . . . , N0.
(33)

Now, we discuss the equation

Ṽzz̄ = tfm(z, u, uz, Uzz + ṽzz), 0 ≤ t ≤ 1, (34)

where u(z) = U(z) + ṽ(z). By using Condition C and
the principle of contraction mapping, the boundary value
problem, i.e. Problem D for Equation 34 in D0 has a unique
solution Ṽ (z) with the boundary condition

Ṽ (z) = 0 on ∂D0.

Denote by Ṽ = S(V , t)(0 ≤ t ≤ 1) the mapping from V
onto Ṽ . Furthermore, if u(z) is a solution of Problem O in
D for the equation

uzz̄ = tfm(z, u, uz, uzz), 0 ≤ t ≤ 1, (35)

then from Theorem 2, the solution u(z) of Problem O for
Equation 35 satisfies Equation 16; consequently, Ṽ (z) =
u(z) − U(z) ∈ BM. Set B0 = BM×[ 0, 1]. In the following,
we shall verify that the mapping Ṽ = S(V , t) satisfies the
three conditions of the Leray-Schauder theorem:

1. For every t ∈[ 0, 1] , Ṽ = S(V , t) continuously maps
the Banach space B into itself and is completely
continuous in BM . Besides, for every function
V (z) ∈ BM, S(V , t) is uniformly continuous with
respect to t ∈[ 0, 1].
In fact, we arbitrarily choose Vn(z) ∈ BM,
n = 1, 2, . . .. It is clear that from {Vn(z)}, there exists
a subsequence {Vnk (z)}, such that {Vnk (z)}, {Vnkz(z)}
and corresponding functions {Unk (z)} and {Unkz(z)}
uniformly converge to V0(z), V0z(z), U0(z) and
U0z(z) in D, respectively. We can find a solution
Ṽ0(z) of Problem D for the equation

Ṽ0zz̄ = hfm(z, u0, u0z, U0zz + ṽ0zz), 0 ≤ t ≤ 1.

Noting that unkzz̄ = Unkzz̄ + ṽnkzz̄, from
Ṽnk = S(Vnk , t) and Ṽ0 = S(V0, t), we have

(Ṽnk − Ṽ0)zz̄ = h[ fm(z, unk , unkz, Unkzz + ṽnkzz)

−fm(z, unk , unkz, Unkzz + ṽ0zz) + Cnk (z)] , 0 ≤ t ≤ 1,
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where

Cnk = fm(z, unk , unkz, Unkzz + ṽ0zz)

−fm(z, u0, u0, U0zz + ṽ0zz), z ∈ D0.

Similar to (2.4.18) (see Chapter 2 in [6]), we can derive

Lp0,2
[
Cnk , D0

] → 0 as k → ∞.

Similar to Equations 16 to 24, we can derive that

∥∥∥Ṽnk − Ṽ0

∥∥∥
Ŵ 2

p0,2(D0)
≤ Lp0,2

[
Cnk , D0

]
/[ 1 − q0] ,

(36)

where q0 < 1. It is easy to show that∥∥∥Ṽnk − Ṽ0

∥∥∥
Ŵ 2

p0,2(D)
→ 0 as k → ∞. Moreover, from

Theorem 2, we can verify that from {Ṽnk (z) − Ṽ0(z)},
there exists a subsequence, denoted by
{Ṽnk (z) − Ṽ0(z)} again, such that
C1

β

[
Ṽnk − Ṽ0, D0

]
→ 0 as k → ∞. This shows that

the complete continuity of Ṽ = S(V , t)(0 ≤ t ≤ 1) in
BM . By using a similar method, we can prove that
Ṽ = S(V , t)(0 ≤ t ≤ 1) continuously maps BM into
B, and Ṽ = S(V , t) is uniformly continuous with
respect to t ∈[ 0, 1] for V ∈ BM .

2. For t = 0, from Theorem 2 and Equation 28, it is
clear that Ṽ (z) = S(V , 0) ∈ BM .

3. From Theorem 2 and Equation 28, we see that
Ṽ = S(V , t)(0 ≤ t ≤ 1) does not have a solution
Ṽ (z) on the boundary ∂BM = BM\BM .
Hence, by the Leray-Schauder theorem, we know
that Problem O for Equation 27 with t = 1, namely
Equation 25, has a solution
u(z) = U(z) + ṽ(z) = U(z) + v̂(z) + v(z) ∈ BM .

Theorem 5. Under the same conditions in Theorem 3,
Problem O for Equation 1 has a solution.

Proof. By Theorems 2 and 4, Problem O for Equation 25
possesses a solution um(z), and the solution um(z)
of Problem O for Equation 25 satisfies the estimate
(Equation 16), where m = 1, 2, . . .. Thus, we can choose
a subsequence {umk (z)}, such that {umk (z)} and {umkz(z)}
in D uniformly converge to u0(z) and u0z(z), respec-
tively. Obviously, u0(z) satisfies the boundary conditions
of Problem O for Equation 1.

Solvability of oblique derivative problems for general
nonlinear elliptic equations of second order
In this section, we consider the general nonlinear elliptic
equations⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

uzz̄ = F(z, u, uz, uzz) + G(z, u, uz),

F = Re [ Quzz + A1uz] +Â2u + A3,
G=G(z, u, uz), Q=Q(z, u, uz, uzz),

Aj = Aj(z, u, uz), j = 1, 2, 3, Â2 =A2+|u|σ
(37)

and assume that Equation 37 satisfies Condition C′,
in which Condition C, as stated in the ‘Formulation
of oblique derivative problems of second-order elliptic
equations in unbounded domains’ section, is met and the
function G(z, u, uz) possesses the form

G(z, u, uz) = ReB1uz + B2|u|τ in D, (38)

where 0 < τ < ∞ and Lp,2
[
Bj, D

] ≤ k0 (< ∞, j =
1, 2, 2 < p0 ≤ p) with a positive constant k0; the above
conditions will be called Condition C′.

Theorem 6. Let the complex Equation 37 satisfy Condi-
tion C′.

1. When 0<τ <1, Problem O for⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wz̄ = F(z, u, w, wz) + G(z, u, w),

F = Re [ Qwz + A1w] +Â2u + A3,
G = G(z, u, w), Q = Q(z, u, w, wz),
Aj =Aj(z, u, w), j=1, 2, 3, w=uz

(39)

has a solution [ w(z), u(z)] , where
w(z), u(z) ∈ W 1

p0,2(D) and p0 (2 < p0 ≤ p) is a
constant as stated before.

2. When τ > 1, Problem O for Equation 39 has a
solution [ w(z), u(z)], where w(z) ∈ W 1

p0,2(D),
provided that

M8 = Lp0,2
[
A3, D

] + Cα [c2, �] +
N0∑
j=0

|bj| (40)

is sufficiently small.

Proof. 1. In this case, the algebraic equation for t is as
follows:

M2

⎧⎨
⎩Lp0,2

[
A3, D

]+Lp0,2
[
B2, D

]
tτ +Lα[ c2, �]+

N0∑
j=0

∣∣bj
∣∣
⎫⎬
⎭= t,

(41)

where M2 is a constant as stated in Equation 16.
Because 0 < τ < 1, Equation 41 has a unique
solution t = M9 > 0. Now, we introduce a bounded,
closed and convex subset B∗ of the Banach space
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C(D) × C(D), whose elements are of the form
[ w(z), u(z)] satisfying the condition

w(z), u(z) ∈ C(D), C[ w(z), D] +C[ |u(z)|σ+1, D] ≤ M9.
(42)

We choose a pair of functions [ w̃(z), ũ(z)] ∈ B∗ and
substitute it into the appropriate positions of
F(z, u, w, wz) and G(z, u, w) in Equation 39 and the
boundary conditions (5) and (7) and obtain

wz̄ = F̃(z, u, w, ũ, w̃, wz) + G(z, ũ, w̃), (43)

Re
[
λ(z)w(z)

]
=−c1(z)ũ+c2(z)+h(z), z∈�,

u(aj) = bj, 0 ≤ j ≤ N0,
(44)

where
F̃(z, u, w, ũ, w̃, wz) =Re [Q(z, ũ, w̃, wz)wz

+A1(z, ũ, w̃)w]

+ Â2(z, ũ, w̃)u + A3(z, ũ, w̃).

In accordance with the method in the proof of
Theorem 5, we can prove that the boundary value
problems (43) and (44) have a unique solution
[ w(z), u(z)]. Denote by [ w, u] = T[ w̃(z), ũ(z)] the
mapping from [ w̃(z), ũ(z)] to [ w(z), u(z)] . Noting
that Condition C′ and other conditions, as stated in
the ‘Formulation of oblique derivative problems of
second order elliptic equations in unbounded
domains’ section, are similar to the proof of Theorem
2, we can obtain

C
[
w(z), D

] + C
[|u(z)|σ+1, D

]
≤ M2

{
Lp0,2

[
A3, D

]+Cα[ c2, �]+
∑N

j=0
|bj|+Lp,2[ G, D]

}

≤ M2
{

M9 + Lp0,2
[
B2, D] C[ ũ, D

]τ }
≤ M2

{
M9 + Lp0,2

[
B2, D

]
Mτ

10
} = M10.

(45)

This shows that T maps B∗ onto a compact subset in
B∗. Next, we verify that T in B∗ is a continuous
operator. In fact, we arbitrarily select a sequence
{w̃n(z), ũn(z)} in B∗, such that

C(w̃n −w̃0, D)+C(|ũn − ũ0|σ+1, D) → 0 as n → ∞.
(46)

We can see that
Lp0,2

[
Aj(z, ũn, w̃n)−Aj(z, ũ0, w̃0), D

]
→0 (j = 1, 2, 3) as n → ∞.

(47)

Moreover, from [ wn, un] = T[ w̃n, ũn] and
[ w0, u0] = T[ w̃0, ũ0] , it is clear that

[ wn − w0, un − u0] is a solution of Problem O for the
following equation:

(wn − w0)z̄ =F̃(z, un, wn, ũn, w̃n, wnz)

− F̃(z, u0, w0, ũ0, w̃0, w0z) + G(z, ũn, w̃n)

− G(z, ũ0, w̃0) in D,
(48)

Re
[
λ(z)(wn − w0)

]
= −c1(z)(ũn − ũ0)+h(z) on �,

(49)

un(aj)−u0(aj) = 0, j = 1, ..., N0, un(1)−u0(1) = 0.
(50)

In accordance with the method in the proof of
Theorem 2, we can obtain the estimate

C
[
wn(z)−w0(z), D

] + C
[|un(z)−u0(z)|σ+1 , D

]
≤ M10

{
Lp0,2[ Â2(z, ũn, w̃n)ũn−Â2(z, ũ0, w̃0)ũ0, D]

+ Lp0,2
[
A3(z, ũn, w̃n) − A3(z, ũ0, w̃0), D

]
+ Lp0,2

[
G(z, ũn, w̃n)−G(z, ũ0, w̃0), D

]
+Cα [c1(z)(ũn−ũ0), �]

}
,

(51)

in which M10 = M10(q0, p0, k0, α, K , D). From
Equations 46 and 47 and the above estimate, we
obtain C

[
wn − w0, D

] + C
[
un − u0, D

] → 0 as
n → ∞. On the basis of the Schauder fixed-point
theorem, there exists a function
[ w(z), u(z)] (w(z), u(z) ∈ C(D)) such that
[ w(z), u(z)] = T[ w(z), u(z)] , and from Theorem 2, it
is easy to see that w(z), u(z) ∈ W 1

p0,2(D) and
[ w(z), u(z)] is a solution of Problem O for Equation
37 and w(z) = uz with 0 < τ < 1.

2. When τ > 1, in this case, Equation 41 has the
solution t = M9 provided that M8 in Equation 39 is
small enough. Now ,we consider a closed and convex
subset B∗ in the Banach space C(D) × C(D), i.e.

B∗ ={
w(z), u(z) ∈ C(D), C

[
w, D

]+C
[|u|σ+1, D

]≤M9
}

.
(52)

Applying a method similar as before, we can verify
that there exists a solution
[ w(z), u(z)] ∈ W 1

p0,2(D) × W 1
p0,2(D) of Problem O for

Equation 39 for the constant τ > 1, and then u(z) is
a solution of Problem O for Equation 37.
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Conclusions
Some solvability results of the general oblique derivative
boundary value problem for nonlinear elliptic equations
of second order in an unbounded multiply connected
domain are obtained.
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