
Arc
hive

 of
 S

ID

ORIGINAL RESEARCH Open Access

Compact alternating group explicit method for
the cubic spline solution of two point boundary
value problems with significant nonlinear first
derivative terms
Ranjan K Mohanty* and Jyoti Talwar

Abstract

In this paper, we report the application of two parameter coupled alternating group explicit (CAGE) iteration
and Newton-CAGE iteration methods for the cubic spline solution of non-linear differential equation u" = f(r,u,u')
subject to given natural boundary conditions. The error analysis for CAGE iteration method is discussed in details.
We compared the results of proposed CAGE iteration method with the results of corresponding two parameter
alternating group explicit (TAGE) iteration method to demonstrate computationally the efficiency of the
proposed method.
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Introduction
Consider the two point boundary value problem

L u rð Þ½ � ≡� u″ rð Þ þ f r; u;u0ð Þ ¼ 0; 0 < r < 1 ð1Þ
with natural boundary conditions

u 0ð Þ ¼ A; u 1ð Þ ¼ B ð2Þ
where A and B are constants. We assume that for 0 <
r < 1 and − ∞ < u,v < ∞

(i) f (r,u,v)is continuous,

(ii) ∂f
∂u and

∂f
∂v exist and are continuous, and

(iii) ∂f
∂u > 0 and ∂f

∂v

��� ���≤W for some positive constant W.

These conditions assure that the boundary value prob-
lem (1)-(2) has a unique solution (see Keller [1]).
During last four decades, there has been a growing

interest in the theory of splines and their applications

(see [2-6]). Bickley [7], Albasiny and Hoskins [8,9], and
Fyfe [10] have demonstrated the use of cubic spline
function for obtaining the second order approxima-
tion solution for two point boundary value problems.
Later, Chawla and Subramanian [11] have constructed a
fourth order cubic spline method for second-order
mildly nonlinear two point boundary value problems.
In 1983, Jain and Aziz [12] have first developed fourth
order accurate numerical method based on cubic spline
approximation for the solution of more general non-
linear two point boundary value problems. In the recent
past, many authors (see [13-19]) have suggested various
numerical methods based on cubic spline approxima-
tions for the solution of linear singular two point bound-
ary value problems.
In 1985 Evans [20] developed group explicit method

for solving large linear systems arising due to the
discretization of differential equations. Later, Sukon
and Evans [21] have introduced two parameter
alternating group explicit (TAGE) iterative methods for
the solution of tri-diagonal linear system of equations.
Using the technique given in [20,21], Mohanty et al.
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[22-24] have discussed the application of TAGE itera-
tive method to fourth order accurate cubic spline
approximation for the solution of non-linear singular
two point boundary problems. In this paper, we discuss
two parameter coupled alternating group explicit
(CAGE) and Newton-CAGE iteration methods, and
fourth order cubic spline finite difference approximation
and their application to linear and nonlinear differential
equations with singular coefficients. In the next section,
we discuss cubic spline approximation and its applica-
tion to singular problems. In section 3, we discuss the
CAGE and Newton-CAGE iteration methods and con-
vergence analysis. In section 4, we compare the compu-
tational results obtained by using the proposed CAGE
iterative method with the corresponding TAGE iterative
method. Concluding remarks are given in section 5.

Cubic spline approximation and application
To obtain a cubic spline solution of the boundary value
problem (1) and (2), we choose uniform mesh spacing
h > 0 along the r-direction. The interval [0, 1] is divided
into a set of points with interval of h = 1/(N + 1),
N being a positive integer. The cubic spline approxima-
tion to equation (1) is obtained on [0,1] which consists
of the central point rk = kh and the two neighboring
points rk + 1 = rk + h and rk − 1 = rk − h, k = 1(1)N, where
r0 = 0 and rN+ 1 = 1. Let Uk = u(rk) be the exact solution
of u at the grid point rk and is approximated by uk.
At each internal mesh point rk, we denote:

Mk ¼ u″ rkð Þ ¼ f rk ; u rkð Þ; u0 rkð Þð Þ; k ¼ 0 1ð ÞN þ 1:

Given the values u0, u1, . . ., uN + 1 of the function u(r)
at the mesh points r0, r1, . . ., rN + 1 and the values of the
second derivatives of u at the end points u0″ and uN + 1″ ,
there exists a unique interpolating cubic spline function
S(r) with the following properties:

(i) S(r) coincides with a polynomial of degree three on
each [rk − 1, rk], k = 1(1)N + 1

(ii) S(r) 2 C2[0, 1] and
(iii) S(rk) = uk, k = 0(1)N + 1

The interpolating cubic spline polynomial may be writ-
ten as:

S rð Þ ¼ rk � rð Þ3
6h

Mk�1 þ r � rk�1ð Þ3
6h

Mk

þ uk�1 � h2

6
Mk�1

� �
rk � rð Þ
h

þ uk � h2

6
Mk

� �
r � rk�1ð Þ

h
; rk�1 ≤ r ≤ rk ; k

¼ 1 1ð ÞN þ 1 ð3Þ

We consider the following approximations:

rk�η ¼ rk � ηh; 0 < η ≤ 1; ð4:1Þ

�mk ¼ �u0k ¼ ukþ1 � uk�1ð Þ
2h

; ð4:2Þ

�mk�1 ¼ �3uk�1∓4uk � uk∓1ð Þ
2h

; ð4:3Þ

�f k ¼ f rk ;uk ; �mkð Þ; ð4:4Þ
�f k�1 ¼ f rk�1; uk�1; �mk�1ð Þ; ð4:5Þ
��uk�η ¼ ηuk�1 þ 1� ηð Þuk þ h2 p�f k�1 þ q�f k

� �
; ð4:6Þ

��mk�η ¼ � 1
h

uk�1 � ukð Þ � h p��f k�1 þ q��f k
� �

; ð4:7Þ

m̂k ¼ �mk � h
12

�f kþ1 � �f k�1

� �
; ð4:8Þ

��f k�η ¼ f rk�η; ��uk�η; �mk�η

� �
; ð4:9Þ

f̂ k ¼ f rk ;uk ; m̂kð Þ; ð4:10Þ

where p ¼ η η2�1ð Þ
6 ; p� ¼ dp

dη ¼ 1
2 η2 � 1

3

� �
;

q ¼ 1� ηð Þ 1� ηð Þ2 � 1
	 


6
; q� ¼ dq

dη
¼ 1

2
1
3
� 1� ηð Þ2

� �

Then the cubic spline method with order of accuracy
four for the differential equation (1) may be written as:

Ukþ1 � 2Uk þ Uk�1 ¼ h2

12η2
��f kþη þ ��f k�η þ 12η2 � 2

� �
f̂ k

h i

þ Tk ; 0 < η ≤ 1; k ¼ 1 1ð ÞN ð5Þ
where Tk =O(h6) (See Jain and Aziz [12]) with u0 =
A and uN + 1 = B.
Let us discuss the application of the difference formula

(5) to the following singular problems

u″ ¼ D rð Þu0 þ E rð Þuþ f rð Þ; 0 < r < 1 ð6Þ
and

vu″ ¼ B rð Þu0 þ uu0 þ C rð Þuþ g rð Þ; 0 < r < 1 ð7Þ
where v = R− 1 > 0 is a constant and D(r) = − α/r and
E(r) = α/r2, B(r) = − αv/r and E(r) = αv/r2.
For α = 1 and 2, the linear singular equation (6)

becomes cylindrical and spherical problems, respectively,
and for α = 0, 1 and 2, the non-linear singular problem
(7) represents steady-state Burger’s equation in Cartesian,
cylindrical and spherical coordinates respectively.
Now applying the difference formula (5) to the sin-

gular equations (6) and (7) and using the technique
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discussed by Mohanty et al. [22], we may obtain the fol-
lowing fourth order difference scheme

akuk�1 þ 2bkuk þ ckukþ1 ¼ dk ; 0 < η ≤ 1; k ¼ 1 1ð ÞN ;

ð8Þ
for the numerical solution of the differential equation (6),
where

ak ¼ �1þ α

12η
6η
k
þ 1
2k3

6ηþ αη� 2αð Þ þ 2� αηð Þ
k2

� �
;

bk ¼ 1þ α

12η
1
k2

6ηþ αη� 2ð Þ þ 1
2k4

6ηþ αη� 2αð Þ
� �

;

ck ¼ �1þ α

12η
�6η
k

� 1
2k3

6ηþ αη� 2αð Þ þ 2� αηð Þ
k2

� �
;

dk ¼ �h2

12η
η 12fk þ hα

k
f 0k þ h2f ″k

� �
þ α

k2
fk 3η2 � 2η
� �� �

:

and the following fourth order difference scheme

φ uk�1; uk ; ukþ1ð Þ≡� v ukþ1 � 2uk þ uk�1½ �

þ h2

12
I1uk þ I2 ukþ1 � uk�1ð Þ þ I3 ukþ1 � 2uk þ uk�1ð Þ½

þI4u
2
k þ I5uk ukþ1 � uk�1ð Þ þ I6uk ukþ1 � 2uk þ uk�1ð Þ

þI7 u2kþ1 � u2k�1

� �þ I8 u2kþ1 � u2k�1

� �
ukþ1 � uk�1ð Þ

þI9u
2
k ukþ1 � 2uk þ uk�1ð Þ þ I10uk ukþ1 � uk�1ð Þ2

þΣf � ¼ 0; k ¼ 1 1ð ÞN ; ð9Þ

for the numerical solution of the differential equation (7),
where

I1 ¼ 12αv

rkð Þ2 þ
αvh2 6� αð Þ

rkð Þ4 � v�1h2f 0k ;

I2 ¼ �6αv
hrk

þ αvh α� 6ð Þ
2 rkð Þ3 � v�1h

2
fk ;

I3 ¼ αv 2� αð Þ
rkð Þ2 ; I4 ¼ 2αh2

rkð Þ3 ; I5 ¼
4
h
� 2αh

3 rkð Þ2 ; I6 ¼
2α
rkð Þ ;

I7 ¼ 1
h
þ αh

3 rkð Þ2 ; I8 ¼
v�1

6
; I9 ¼ �v�1; I10 ¼ � v�1

3
;

and

Σf ¼ 12fk þ h2f ″k þ
αh2

xkð Þ2 fk þ xkf
0
k

� �
:

In order to avoid the numerical complexity, we con-
sider η = 1.
If the differential equation is linear, we can apply

the two parameter CAGE iterative method and in the

non-linear case, we can use the Newton-CAGE iterative
method to obtain the solution.

CAGE Algorithm and convergence analysis
The linear system (8) in matrix form may be written as:

Au ¼ RH ð10Þ

where

A ¼

2b1 c1 0
a2 2b2 c2

⋱
aN�1 2bN�1 cN�1

0 aN 2bN

2
66664

3
77775
N�N

; u ¼

u1
u2
⋮
⋮
uN

2
66664

3
77775
N�1

and RH ¼

X
f1 � a1u0X
f2

⋮
⋮X

fN � cNuNþ1

2
666664

3
777775
N�1

¼

RH1

RH2

⋮
⋮
RHN

2
66664

3
77775
N�1

(say).

To implement the CAGE iterative method, we split
the coefficient matrix A into two sub-matrices A = G1 +
G2, where G1 and G2 satisfy the conditions:

(i) G1+ω1I and G2+ω2I are non-singular for any ω1 > 0
and ω2 > 0.

(ii) For any vectors v1 and v2 and ω1 > 0 , ω2 > 0, it
is ‘convenient’ to solve the system explicitly, i.e.
z1 = (G1 + ω1I)

− 1ν1 and z2 = (G2 + ω2I)
− 1ν2 for

vectors z1 and z2, respectively.

We shall be concerned here with the situation where
G1 and G2 are small (2 × 2) block systems.
Now we discuss the case when N is odd (with x0 = 0,

xN + 1 = 1).
Let

G1 ¼

b1 0
b2 c2
a3 b3

⋱
0

bN�1 cN�1

aN bN

2
66664

3
77775
N�N

;

and

G2 ¼

b1 c1
a2 b2

0

⋱
bN�1 cN�1

aN bN
0 bN

2
66664

3
77775
N�N
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So that the system (10) can be re-written as

G1 þ G2ð Þu ¼ RH ð11Þ
Then a two parameter AGE method for solving the

above system may be written as

G1 þ ω1Ið Þz sð Þ ¼ RH � G2 � ω1Ið Þu sð Þ; s ¼ 0; 1; 2; . . .

ð12Þ
G2 þ ω2Ið Þu sþ1ð Þ ¼ RH � G1 � ω2Ið Þz sð Þ; s ¼ 0; 1; 2; . . .

ð13Þ
where zðsÞ is an intermediate vector.
Eliminating zðsÞ and combining equations (12) and (13),

we obtain the iterative method

G2 þ ω2Ið Þu sþ1ð Þ ¼ I � ω1 þ ω2ð Þ G1 þ ω1Ið Þ�1	 

� G2 � ω1Ið Þu sð Þ þ ω1 þ ω2ð Þ
� G1 þ ω1Ið Þ�1RH; s ¼ 0; 1; 2; . . .

ð14Þ
or

u sþ1ð Þ ¼ Twu
sð Þ þ RHw; s ¼ 0; 1; 2; . . . ð15Þ

where

Tw ¼ G2 þ ω2Ið Þ�1 G2 � ω1Ið Þ � ω1 þ ω2ð Þ½
� G1 þ ω1Ið Þ�1 G2 � ω1Ið Þ


and

RHw ¼ ω1 þ ω2ð Þ G2 þ ω2Ið Þ�1 G1 þ ω1Ið Þ�1RH

The new iterative method (14) or (15) is called the two
parameter CAGE iterative method and the matrix Tw is
called the CAGE iteration matrix.
To prove the convergence of the method, we need to

prove that S(Tw) ≤ 1, where S(Tw) denotes the spectral
radius of Tw.
Let λi and μi, i = 1(1)N, be the eigen values of G1 and

G2, respectively.
Since (G2 + ω2I)

− 1, (G2 − ω1I), and (G1 + ω1I)
−1,

(G2 − ω1I), commute with each other

Twk k2 ¼ max
λi;μi

μi � ω1

μi þ ω2
� ω1 þ ω2ð Þ μi � ω1ð Þ

μi þ ω2ð Þ λi þ ω1ð Þ
����

����
¼ max

λi

λi � ω2ð Þ
λi þ ω1ð Þ

����
���� max

μi

μi � ω1

μi þ ω2

����
���� ð16Þ

The eigen values λi of sub-matrices G1, satisfy the
equation

bi � λi ci
aiþ1 biþ1 � λi

����
���� ¼ 0 ð17Þ

or

λ2i � bi þ biþ1ð Þλi þ bibiþ1 � aiþ1cið Þ ¼ 0 ð18Þ

Simplifying, we get

λi ¼ 1
2

bi þ biþ1ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bi � biþ1ð Þ2 þ 4aiþ1ci

q� �
ð19Þ

It is easy to verify that Re(λi) > 0, hence

λi � ω2

λi þ ω1

����
���� < 1; i ¼ 1ð ÞN for all ω1 > 0;ω2 > 0 ð20Þ

Similarly, the eigenvalues μi of the sub-matrices of G2

satisfy Re(μi) > 0, hence

μi � ω1

μi þ ω2

����
���� < 1; i ¼ 1 1ð ÞN for all ω1 > 0;ω2 > 0 ð21Þ

Therefore from the equation (16), we conclude that

S Twð Þ ¼ Twk k2 < 1 ð22Þ

Hence, the convergence of the CAGE method (15)
follows.
Now we discuss the CAGE algorithm, when N is odd.
For simplicity we denote:

pk ¼ bk þ ω1; qk ¼ bk � ω1; rk ¼ bk þ ω2 for k ¼ 1 1ð ÞN

and for ( pk pk+1 − ck ak+1) ≠ 0, we define dk = 1/(pk pk+1 −
ck ak+1) for k = 1(1)N − 1.
By carrying out the necessary algebra in equation (14),

we obtain the following CAGE parallel algorithm:
Let

Δ1 ¼ r1r2 � c1a2 ≠ 0;

S1 ¼ q1u
sð Þ
1 þ c1u

sð Þ
2 � 2ω

p1
q1u

sð Þ
1 þ c1u

sð Þ
2 � RH1

h i
;

S2 ¼ a2u
sð Þ
1 þ q2u

sð Þ
2 � 2ωd2 a2p3u

sð Þ
1 þ p3q2u

sð Þ
2

h

�c2q3u
sð Þ
3 � c2c3u

sð Þ
4 � p3RH2 þ c2RH3

i

then

u sþ1ð Þ
1 ¼ S1r2 � S2c1ð Þ

Δ1
; s ¼ 0; 1; 2; . . . ð23Þ

u sþ1ð Þ
2 ¼ S2r1 � S1a2ð Þ

Δ1
; s ¼ 0; 1; 2; . . . ð24Þ

For k = 3(2) N-2

Δ ¼ rkrkþ1 � ckakþ1 ≠ 0;
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Table 1 Problem 1: the RMS errors

N TAGE method CAGE method RMS errors (for both
TAGE and CAGE method)ω1opt = ω2opt = ωopt iter CPU time (in sec) ω1opt = ω2opt = ωopt iter CPU time (in sec)

β=10

10 0.725 24 0.0016 0.55 12 0.0003 0.1619(−03)

20 0.41 48 0.0034 0.35 21 0.0008 0.1169(−04)

30 0.28 70 0.0062 0.25 31 0.0015 0.2428(−05)

40 0.21 100 0.0108 0.19 41 0.0025 0.7884(−06)

60 0.15 150 0.0228 0.13 61 0.0054 0.1599(−06)

80 0.11 200 0.0398 0.106 79 0.0092 0.5131(−07)

β=100

10 6.0 18 0.0014 4.72 09 0.00024 0.8820(−01)

20 2.4 17 0.0019 2.37 06 0.00027 0.1977(−01)

30 1.61 20 0.0024 1.60 06 0.00036 0.6125(−02)

40 1.22 26 0.0035 1.19 07 0.00049 0.2331(−02)

60 0.82 38 0.0065 0.83 08 0.00077 0.5187(−03)

80 0.62 50 0.0105 0.59 11 0.00133 0.1684(−03)

Figure 1 Graph of the exact solution and the approximate solution for N = 80, beta = 100 for problem 1.
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Table 2 Problem 2: the RMS errors

N TAGE method CAGE method RMS errors (for both
TAGE and CAGE method)ω1opt ω2opt iter CPU time (in sec) ω1opt ω2opt iter CPU time ( in sec)

α=1

10 0.573 0.574 32 0.0017 0.510 0.530 19 0.0004 0.6666(−03)

20 0.305 0.319 60 0.0038 0.390 0.290 37 0.0012 0.5173(−04)

30 0.218 0.224 86 0.0070 0.185 0.225 53 0.0025 0.1093(−04)

40 0.166 0.158 114 0.0128 0.167 0.166 67 0.0040 0.3575(−05)

60 0.109 0.109 163 0.0234 0.120 0.113 95 0.0082 0.7282(−06)

80 0.0478 0.0475 319 0.0600 0.091 0.086 124 0.0139 0.2331(−07)

α=2

10 0.660 0.678 29 0.0019 0.451 0.455 19 0.0004 0.7861(−03)

20 0.350 0.369 53 0.0035 0.240 0.241 38 0.0013 0.6101(−04)

30 0.242 0.250 77 0.0085 0.244 0.240 53 0.0025 0.1289(−04)

40 0.186 0.187 100 0.0105 0.179 0.163 71 0.0042 0.4213(−05)

60 0.126 0.126 144 0.0200 0.083 0.100 101 0.0086 0.8590(−06)

80 0.087 0.087 200 0.0370 0.090 0.083 131 0.0146 0.2760(−06)

Figure 2 Graph of the exact solution and the approximate solution for N = 80, alpha = 2.0 for problem 2.
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S3 ¼ qku
sð Þ
k þ cku

sð Þ
kþ1 � 2ωdk�1 �ak�1aku

sð Þ
k�2

h

�akqk�1u
sð Þ
k�1 þ pk�1qku

sð Þ
k þ pk�1cku

sð Þ
kþ1

þakRHk�1 � pk�1RHk

i
;

S4 ¼ akþ1u
sð Þ
k þ qkþ1u

sð Þ
kþ1 � 2ωdkþ1 pkþ2akþ1u

sð Þ
k

h

þpkþ2qkþ1u
sð Þ
kþ1 � ckþ1qkþ2u

sð Þ
kþ2 þ ckþ1ckþ2u

sð Þ
kþ3

�pkþ2RHkþ1 þ ckþ1RHkþ2

i

then

u sþ1ð Þ
k ¼ S3rkþ1 � S4ckð Þ

Δ
; s ¼ 0; 1; 2; . . . ð25Þ

u sþ1ð Þ
kþ1 ¼ S4rk � S3akþ1ð Þ

Δ
; s ¼ 0; 1; 2; . . . ð26Þ

Finally, for k = N:

Similarly, we can write the CAGE algorithm when N
is even.

Now we discuss the two parameter Newton-CAGE it-
erative method for the non-linear difference equation
(9). We follow the approaches given by Evans [25].
Let us define

u ¼
u1
u2
⋮
uN

2
664

3
775
N�1

;ϕ uð Þ ¼
φ1 uð Þ
φ2 uð Þ
⋮
φN uð Þ

2
664

3
775
N�1

and

ak uð Þ ¼ ∂φk

∂uk�1
; k ¼ 2 1ð ÞN

2bk uð Þ ¼ ∂φk

∂uk
; k ¼ 1 1ð ÞN ð28Þ

ck uð Þ ¼ ∂φk

∂ukþ1
; k ¼ 1 1ð ÞN � 1

u sþ1ð Þ
N ¼ qNu

sð Þ
N � 2ωdN�1½�aN�1aNu

sð Þ
N�2 � aNqN�1u

sð Þ
N�1 þ pN�1qNu

sð Þ
N þ aNRHN�1 � pN�1RHN �

rN
;

s ¼ 0; 1; 2; . . . (27)

Table 3 Problem 3: the RMS errors

N Newton-TAGE method Newton-CAGE method RMS errors (for both
Newton-TAGE and
Newton-CAGE method)

ω1opt = ω2opt = ωopt iter CPU time (in sec) ω1opt = ω2opt = ωopt iter CPU time (in sec)

R = 10, β = 1/2

20 0.0270 15 0.0190 0.0245 09 0.0019 0.6970(−06)

30 0.0202 21 0.0212 0.0180 12 0.0034 0.1452(−06)

40 0.0154 28 0.0248 0.0142 15 0.0044 0.4719(−07)

60 0.0105 43 0.0353 0.0100 21 0.0082 0.9581(−08)

80 0.0093 57 0.0505 0.0076 27 0.0128 0.3081(−08)

R = 50, β = 1/2

20 0.0100 06 0.0176 0.0110 05 0.0014 0.1992(−03)

30 0.0080 06 0.0180 0.0106 06 0.0023 0.4113(−04)

40 0.0054 08 0.0191 0.0060 06 0.0024 0.1295(−04)

60 0.0041 09 0.0208 0.0041 06 0.0034 0.2571(−05)

80 0.0029 12 0.0246 0.0031 07 0.0047 0.8188(−06)

R = 100, β = 1/2

20 0.0070 05 0.0175 0.0210 05 0.0016 0.1016(−02)

30 0.0078 05 0.0182 0.0102 05 0.0021 0.3038(−03)

40 0.0044 06 0.0183 0.0068 05 0.0024 0.1518(−03)

60 0.0041 06 0.0195 0.0044 06 0.0037 0.3085(−04)

80 0.00303 07 0.0212 0.0031 06 0.0047 0.9571(−05)
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Then the Jacobian of φ(u) can be written as the Nth-
order tri-diagonal matrix

T ¼ ∂ϕ uð Þ
∂u

¼

2b1 uð Þ c1 uð Þ 0
a2 uð Þ 2b2 uð Þ c2 uð Þ

⋱
⋱

0 aN uð Þ 2bN uð Þ

2
66664

3
77775
N�N

ð29Þ

Now with any initial vector u(0), we define

u sþ1ð Þ ¼ u sð Þ þ Δu sð Þ; s ¼ 0; 1; 2; . . . ð30Þ

where Δu(s) is the solution of the nonlinear system

TΔu sð Þ ¼ �ϕ u sð Þ
� �

; s ¼ 0; 1; 2; . . . ð31Þ

For the Newton-CAGE method, we consider the
case when N is odd. We split the matrix T as T = T1 +
T2, where

T1 ¼

b1 0
b2 c2
a3 b3

⋱
0

bN�1 cN�1

aN bN

2
66664

3
77775
N�N

; ð32Þ

and

T2 ¼

b1 c1
a2 b2

0

⋱
bN�1 cN�1

aN bN
0 bN

2
66664

3
77775
N�N

ð33Þ

Figure 3 Graph of the exact solution and the approximate solution for N = 60, R = 100 for problem 3.
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then we write Newton-CAGE method as:

T2 þ ω2Ið ÞΔu sþ1ð Þ ¼ I� ω1 þ ω2ð Þ T1 þ ω1Ið Þ�1	 

� T2 � ω1Ið ÞΔu sð Þ � ω1 þ ω2ð Þ
� T1 þ ω1Ið Þ�1ϕ u sð Þ

� �
;

s ¼ 0; 1; 2; . . . ð34Þ
where ω1 > 0,ω2 > 0 are relaxation parameters and (T1 +
ω1I) and (T2 + ω2I) are non-singular.
Since (T1 + ω1I) and (T2 + ω2I) consists of (2 × 2)

sub-matrices, they can be easily inverted.

and

with pk = bk + ω1, k = 1(1)N and Δk = pkpk + 1 − ckak + 1, k =
2(2)N − 1 and rk = bk + ω2, k = 1(1)N and Δk = rkrk + 1 −
ckak + 1, k = 1(2)N − 2.
Further the matrices (T2 + ω2I)

− 1(T1 + ω1I)
− 1(T2 − ω1I)

and (T2 + ω2I)
− 1(T1 + ω1I)

− 1 can be evaluated in a
manner suitable for parallel computing. In order for this
Newton-CAGE method to converge, it is sufficient that
the initial vector u(0) be close to the solution.
In a similar manner, we can write the Newton-CAGE

algorithm when N is even.

T2þω2Ið Þ�1¼

r2 �c1
�a2 r1

� �
=Δ1 0

⋱

0
rN�1 �cN�2

�aN�1 rN�2

� �
=ΔN�2

1=rN

2
666664

3
777775
N�N

ð36Þ

Table 4 Problem 4: the RMS errors

N Newton-TAGE method Newton-CAGE method RMS errors (for both Newton-TAGE
and Newton-CAGE method)ω1opt ω2opt iter CPU time (in sec) ω1opt ω2opt iter CPU time (in sec)

R = 10, α = 1

40 0.0174 0.0182 21 0.1853 0.0173 0.0188 13 0.1626 0.1238(−05)

50 0.0157 0.0153 26 0.2798 0.0150 0.0153 15 0.1934 0.5160(−06)

60 0.0128 0.0131 30 0.3790 0.0108 0.0126 18 0.2440 0.2516(−06)

70 0.0110 0.0113 37 0.5395 0.0108 0.0100 22 0.3070 0.1369(−06)

80 0.0092 0.00935 41 0.6778 0.0086 0.0096 25 0.3796 0.8075(−07)

R = 50, α = 1

40 0.0056 0.0057 16 0.1445 0.0054 0.006 12 0.1437 0.5441(−05)

50 0.0050 0.0044 18 0.1988 0.0043 0.0048 13 0.1797 0.2268(−05)

60 0.0035 0.0039 21 0.2697 0.0052 0.0041 13 0.2000 0.1106(−05)

70 0.0035 0.0031 25 0.3691 0.0040 0.0033 14 0.2265 0.6022(−06)

80 0.0028 0.0031 27 0.4513 0.0029 0.00294 16 0.2700 0.3551(−06)

R = 10, α = 2

40 0.0200 0.0210 19 0.1696 0.0180 0.0188 15 0.1612 0.1374(−05)

50 0.0161 0.0151 24 0.2580 0.0169 0.0151 18 0.2147 0.5727(−06)

60 0.0129 0.0132 29 0.3660 0.0117 0.0134 22 0.2760 0.2794(−06)

70 0.0106 0.0101 36 0.5241 0.0118 0.0112 25 0.3380 0.1521(−06)

80 0.0106 0.0101 38 0.6287 0.0099 0.0100 29 0.4199 0.8970(−07)

R = 50, α = 2

40 0.0055 0.0064 15 0.1371 0.0045 0.0060 13 0.1370 0.5713(−05)

50 0.0053 0.0046 16 0.1785 0.0054 0.0038 14 0.1764 0.2382(−05)

60 0.0037 0.00385 20 0.2585 0.0034 0.0047 14 0.2063 0.1162(−05)

70 0.0027 0.003 24 0.3557 0.0042 0.0032 15 0.2378 0.6325(−06)

80 0.0029 0.0032 26 0.4345 0.0039 0.0026 17 0.2811 0.3730(−06)

T1þω1Ið Þ�1¼

1=p1 0
p3 �c2
�a3 p2

� �
=Δ2

0 ⋱
pN �cN�1

�aN pN�1

� �
=ΔN�1

2
666664

3
777775
N�N

ð35Þ
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Numerical illustrations
To illustrate the proposed CAGE iterative methods, we
have solved the following four problems whose exact
solutions are known. We have also compared the pro-
posed CAGE iterative methods with the corresponding
TAGE iterative methods. The right-hand side functions
and boundary conditions can be obtained by using the
exact solutions. The initial vector 0 is used in all itera-
tive methods, and iterations were stopped when |u(s + 1)

− u(s)| ≤ 10− 10 was achieved. While solving non-linear
difference equations, we have considered five inner
iterations only.

Problem 1

u″ ¼ βu0; 0 < r < 1 Convection � Diffusion equationð Þ
ð37Þ

The exact solution is u(x) = (1 − e− β(1 − r))/(1 − e− β).The
root mean square (RMS) errors and the number of itera-
tions both for CAGE and TAGE methods are presented
in Table 1 for various values of β. The graph of the exact
solution and the approximate solution for N = 80, β =
100 is give in the Figure 1.

Problem 2

u″þ α

r
u0 � α

r2
u ¼ f rð Þ; 0 < r < 1;

α ¼ 1; 2 Linear Singular Equationð Þ
ð38Þ

The exact solution is u rð Þ ¼ er
4
. The RMS errors and

the number of iterations for both CAGE and TAGE
methods are presented in Table 2 for α = 1,2. The graph
of the exact solution and the approximate solution for
N = 80, α = 2 is give in the Figure 2.

Figure 4 Graph of the exact solution and the approximate solution for N = 80, R = 50 for problem 4.
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Problem 3

νu″ ¼ u� βð Þu 0
; 0 < r < 1 Burgers’equationð Þ

ð39Þ

The exact solution is u(r) = β[1 − tanh(βr/2ν)]. The
root mean square (RMS) errors and the number of itera-
tions both for both Newton-CAGE and Newton-TAGE
methods are presented in Table 3 for β = 1/2 and various
values of R = v-1. The graph of the exact solution and
the approximate solution for N = 60, R = 100 is given in
the Figure 3.

Problem 4

1
R

u″þ α

r
u0 � α

r2
u

h i
¼ uu0 þ g rð Þ; 0 < r < 1;

α ¼ 1; 2 Burgers’equationð Þ
ð40Þ

The exact solution is u(r) = r2 cosh(r). The RMS errors
and the number of iterations for both Newton-CAGE
and Newton-TAGE methods are presented in Table 4
for α = 1,2 and various values of Re.The graph of the
exact solution and the approximate solution for N = 80,
R = 50 is given in the Figure 4.

Final remarks
The TAGE method requires two sweeps to solve a prob-
lem and also, it requires a lot of algebra for computa-
tional work, whereas the CAGE method requires only
one-sweep to solve the problem. Experimentally, as
compared to the TAGE method the corresponding
CAGE method is requires very less number of itera-
tions and better time because it uses less intermediate
variables. We have solved four benchmark problems and
numerical results show the efficiency of the proposed
CAGE method. The results conclude that the two
parameter CAGE method is competitive to solve the
one-dimensional problem and it can be extended to
solve multi-dimensional problems.
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