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Abstract

Consider the functional equation �1(f ) = �2(f ) (�) in a certain general setting. A function g is an approximate
solution of (�) if �1(g) and �2(g) are close in some sense. The Ulam stability problem asks whether or not there is a
true solution of (�) near g. A functional equation is superstable if every approximate solution of the functional
equation is an exact solution of it. In this paper, for each m = 1, 2, 3, 4, we will find out the general solution of the
functional equation

f (ax + y) + f (ax − y) = am−2[ f (x + y) + f (x − y)] +2(a2 − 1)[ am−2f (x) + (m − 2)(1 − (m − 2)2)

6
f (y)]

for any fixed integer a with a �= 0, ±1.
Using a fixed point method, we prove the generalized Hyers-Ulam stability of homomorphisms in real Banach
algebras for this functional equation. Moreover, we establish the superstability of this functional equation by suitable
control functions.

Keywords: Banach algebra, Approximate homomorphism, Additive, Quadratic, Cubic and quartic functional
equation, Fixed point approach
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Introduction
The problem of stability of functional equations origi-
nated from a question of Ulam [1] concerning the stability
of group homomorphisms: let (G1, ∗) be a group and let
(G2, �, d) be a metric group with the metric d(., .). Given
ε > 0, does there exist a δ(ε) > 0 such that if a map-
ping h : G1 → G2 satisfies the inequality d(h(x ∗ y), h(x) �

h(y)) < δ for all x, y ∈ G1, then there exists a homomor-
phism H : G1 → G2 with d(h(x), H(x)) < ε for all x ∈ G1?
If the answer is affirmative, we would say that the equation
of homomorphism H(x ∗ y) = H(x) � H(y) is stable.
The concept of stability for a functional equation arises
when we replace the functional equation by an inequal-
ity which acts as a perturbation of the equation. Thus,
the stability question of functional equations is that how
do the solutions of the inequality differ from those of the
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given functional equation? Hyers [2] gave a first affirma-
tive answer to the question of Ulam for Banach spaces. Let
X and Y be Banach spaces. Assume that f : X → Y sat-
isfies ‖f (x + y) − f (x) − f (y)‖ ≤ ε for all x, y ∈ X and
some ε > 0. Then, there exists a unique additive map-
ping T : X → Y such that ‖f (x) − T(x)‖ ≤ ε for all
x ∈ X. A generalized version of the theorem of Hyers for
approximately additive mappings was given by Aoki [3]
in 1950 (cf. also [4]). In 1978, a generalized solution for
approximately linear mappings was given by Th.M. Ras-
sias [5]. He considered a mapping f : X → Y satisfying
the condition ‖f (x + y) − f (x) − f (y)‖ ≤ ε(‖x‖p + ‖y‖p)
for all x, y ∈ X, where ε ≥ 0 and 0 ≤ p < 1. This result
was later extended to all p �= 1 and generalized by Gajda
[6], Th.M. Rassias and Semrl [7], Isac and Th.M Rassias
[8]. Lee and Jun [9] have improved the stability problem
for approximately additive mappings. The problem when
p = 1 is not true. Counterexamples for the correspond-
ing assertion in the case p = 1 were constructed by Gadja
[6], Th.M. Rassias and Semrl [7]. Furthermore, a gener-
alization of the Th.M. Rassias’ theorem was obtained by
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Gǎvruta [10], who replaced ε(‖ x ‖p + ‖ y ‖p) by a general
control function ϕ(x, y). The functional equation

f (x + y) + f (x − y) = 2f (x) + 2f (y) (1.1)

is related to a symmetric bi-additive mapping [11,12]. It is
natural that this equation is called a quadratic functional
equation. For more details about various results concern-
ing such problems the reader is referred to [13-25]. Jun
and Kim [26] introduced the following cubic functional
equation

f (2x+y)+f (2x−y) = 2f (x+y)+2f (x−y)+12f (x) (1.2)

and they established the general solution and the gen-
eralized Hyers-Ulam stability for the functional equation
(1.2). Obviously, the function f (x) = cx3 satisfies the
functional equation (1.2), which is called a cubic func-
tional equation. Lee et. al. [27] considered the following
functional equation

f (2x+y)+f (2x−y) = 4f (x+y)+4f (x−y)+24f (x)−6f (y)
(1.3)

It is easy to see that the function f (x) = dx4 is a solution
of the functional equation (1.3), which is called a quartic
functional equation.

Bourgin [4,28] is the first mathematician dealing with
stability of (ring) homomorphism f (xy) = f (x)f (y). The
topic of approximate homomorphisms was studied by a
number of mathematicians, see [29-36].

Let A be a ring. A mapping f : A → A is called
a quadratic homomorphism if f is a quadratic mapping
satisfying

f (xy) = f (x)f (y) (1.4)

for all x, y ∈ A. For instance, let A be commutative.
Then the mapping f : A → A, defined by f (x) =
x2 (x ∈ A), is a quadratic homomorphism. Eshaghi
Gordji and Ghobadipour [37] investigated the general-
ized Hyers-Ulam stability of quadratic homomorphisms
and of quadratic derivations on Banach algebras. In addi-
tion, the generalized Hyers-Ulam stability of cubic homo-
morphisms on Banach algebras has been investigated by
Eshaghi Gordji and Bavand Savadkouhi [38].

Definition 1.1. Let A,B be two algebras,

(i) A mapping f : A → B is called an additive
homomorphism (briefly, 1-homomorphism) if f is an
additive mapping satisfying (1.4) for all x, y ∈ A;

(ii) A mapping f : A → B is called a quadratic
homomorphism (briefly, 2-homomorphism) if f is a
quadratic mapping satisfying (1.4) for all x, y ∈ A;

(iii) A mapping f : A → B is called a cubic
homomorphism (briefly, 3-homomorphism) if f is a
cubic mapping satisfying (1.4) for all x, y ∈ A;

(iiii) A mapping f : A → B is called a quartic
homomorphism (briefly, 4-homomorphism) if f is a
quartic mapping satisfying (1.4) for all x, y ∈ A.

Now we will state the following notion of fixed point
theory. For the proof, refer to [39]. For an extensive theory
of fixed point theorems and other nonlinear methods, the
reader is referred to [40]. In 2003, Radu [41] proposed a
new method for obtaining the existence of exact solutions
and error estimations, based on the fixed point alternative
(see also [42-44]).

Let (X, d) be a generalized metric space. An operator
T : X → X satisfies a Lipschitz condition with Lips-
chitz constant L if there exists a constant L ≥ 0 such that
d(Tx, Ty) ≤ Ld(x, y) for all x, y ∈ X. If the Lipschitz con-
stant L is less than 1, then the operator T is called a strictly
contractive operator. Note that the distinction between
the generalized metric and the usual metric is that the
range of the former is permitted to include the infinity. We
recall the following theorem by Margolis and Diaz.

Theorem 1.2. (Cf. [39,41].) Suppose that we are given
a complete generalized metric space (�, d) and a strictly
contractive mapping T : � → � with Lipschitz constant
L. Then for each given x ∈ �, either

d(Tmx, Tm+1x) = ∞ for all m ≥ 0,

or there exists a natural number m0 such that

• d(Tmx, Tm+1x) < ∞ for all m ≥ m0;
• the sequence {Tmx} is convergent to a fixed point y∗

of T;
• y∗ is the unique fixed point of T in

� = {y ∈ � : d(Tm0 x, y) < ∞};
• d(y, y∗) ≤ 1

1−L d(y, Ty) for all y ∈ �.

In this paper, we obtain general solution of the func-
tional equation

f (ax + y) + f (ax − y) = am−2[ f (x + y) + f (x − y)]

+ 2(a2 − 1)[ am−2f (x)

+ (m − 2)(1 − (m − 2)2)

6
f (y)]

(1.5)

for all x, y ∈ X, a �= 0, ±1 and for each m = 1, 2, 3, 4.
Also, we investigate the generalized Hyers-Ulam stabil-
ity of homomorphisms in Banach algebras via fixed point
method for the functional equation (1.5). Moreover, we
establish the superstability of the functional equation (1.5)
by suitable control functions.

Solution of Eq. (1.5)
We here present the general solution of (1.5).
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Theorem 2.1. Let X, Y be real vector spaces, and let f :
X → Y be a mapping satisfying (1.5). Then the following
assertions hold:

(a) Eq. (1.5) with m = 1 is equivalent to the additive
functional equation. So every solution of Eq. (1.5)
with m = 1 is also an additive mapping (briefly,
1-function);

(b) Eq. (1.5) with m = 2 is equivalent to the functional
quadratic equation. So every solution of Eq. (1.5)
with m = 2 is also a quadratic mapping (briefly,
2-function);

(c) Eq. (1.5) with m = 3 is equivalent to the cubic
functional equation. So every solution of Eq. (1.5)
with m = 3 is also a cubic mapping (briefly,
3-function);

(d) Eq. (1.5) with m = 4 is equivalent to the quartic
equation. So every solution of Eq. (1.5) with m = 4 is
also a quartic mapping (briefly, 4-function).

Proof. (a): Let f : X → Y satisfy the additive functional
equation

f (x + y) = f (x) + f (y) (2.1)

for all x, y ∈ X. Putting x = y = 0 in (2.1), we get f (0) = 0.
Setting y := −x in (2.1), we get f (−x) = −f (x). Letting
y := x and y := 2x in (2.1), respectively, we obtain that
f (2x) = 2f (x) and f (3x) = 3f (x) for all x, y ∈ X. By induc-
tion we lead to f (kx) = kf (x) for all positive integers k.
Replacing x := x + y and y := x − y in (2.1), we have

f (x + y) + f (x − y) = 2f (x) (2.2)

for all x, y ∈ X. Replacing x by ax in (2.2), we get

f (ax + y) + f (ax − y) = 2af (x)

for all x, y ∈ X. Multiplying the above equation by a, we
obtain that

af (ax + y) + af (ax − y) = 2a2f (x)

for all x, y ∈ X. From (2.2) we have

f (x + y) + f (x − y) − 2f (x) = 0

for all x, y ∈ X. By the last two equations, we infer that

af (ax+y)+af (ax−y) = f (x+y)+f (x−y)+2(a2 −1)f (x)

for all x, y ∈ X. That is, f satisfy the functional equation
(1.5) with m = 1.

On the other hand, let f satisfy (1.5) with m = 1. Letting
x = y = 0 in (1.5), we get f (0) = 0. Putting x = 0, we see
that f is odd. Setting y = 0 in (1.5), we get

f (ax) = af (x) (2.3)

for all x ∈ X. Putting y := x + ay in (1.5), we get

af (a(x + y) + x) + af (a(x − y) − x) = f (2x + ay) + f (−ay)

+ 2(a2 − 1)f (x)

(2.4)

for all x, y ∈ X. Letting y := −y in (2.4), we obtain that

af (a(x − y) + x) + af (a(x + y) − x) = f (2x − ay) + f (ay)

+ 2(a2 − 1)f (x)

(2.5)

for all x, y ∈ X. Adding Eq. (2.4) to (2.5) and using the
oddness of f, we see that

af (a(x + y) + x) + af (a(x + y) − x) + af (a(x − y) + x)

+ af (a(x − y) − x) = f (2x + ay)+ f (2x−ay)

+ 4(a2 − 1)f (x)

(2.6)

for all x, y ∈ X. Replacing x and y by x + y and x in (1.5),
respectively, we obtain

af (a(x + y) + x) + af (a(x + y) − x) = f (2x + y) + f (y)

+ 2(a2 − 1)f (x + y)
(2.7)

for all x, y ∈ X. Replacing y by −y in (2.7), we get

af (a(x − y) + x) + af (a(x − y) − x) = f (2x − y) + f (−y)

+ 2(a2 − 1)f (x − y)
(2.8)

for all x, y ∈ X. Adding Eq. (2.7) to (2.8), and using the
oddness of f, we obtain that

af (a(x + y) + x) + af (a(x + y) − x) + af (a(x − y) + x)

+ af (a(x − y) − x) = f (2x + y) + f (2x − y)

+ 2(a2 − 1)[ f (x + y) + f (x − y)]
(2.9)

for all x, y ∈ X. By (2.6) and (2.9), we have

f (2x + ay) + f (2x − ay) + 4(a2 − 1)f (x) = f (2x + y)

+ f (2x − y) + 2(a2 − 1)[ f (x + y) + f (x − y)]
(2.10)

for all x, y ∈ X. Replacing x and y by 2x and ay in (1.5),
respectively, and using (2.3), we see that

f (2x + ay) + f (2x − ay) =a2f (2x + y) + a2f (2x − y)
+ 2(1− a2)f (x) (2.11)

for all x, y ∈ X. By (2.10) and (2.11), we have

f (2x+y)+f (2x−y) = 2f (x+y)+2f (x−y)+2f (2x)−4f (x)

(2.12)
www.SID.ir
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for all x, y ∈ X. Replacing x and y by x + y and x − y in
(2.12), respectively, we obtain that

f (3x + y) + f (x + 3y) = 2f (2x) + 2f (2y) + 2f (2x + 2y)
− 4f (x + y) (2.13)

for all x, y ∈ X. Replacing y by x + y in (2.12) and using the
oddness of f, we obtain that

f (3x+y)+f (x−y) = 2f (2x+y)+2f (2x)−2f (y)−4f (x)

(2.14)

for all x, y ∈ X. By (2.14), we get the relation

f (x+3y)−f (x−y) = 2f (x+2y)−2f (x)+2f (2y)−4f (y)
(2.15)

for all x, y ∈ X. Combining (2.14) with (2.15) and using
(2.13), one gets

f (2x+2y) = f (2x+y)+f (x+2y)+2f (x+y)−3f (x)−3f (y)
(2.16)

for all x, y ∈ X. Replacing y by −y in (2.16) and then adding
the result to (2.16), we obtain

f (2x + 2y) + f (2x − 2y) = f (2x + y) + f (2x − y) + f (x + 2y)
+ f (x − 2y) + 2f (x + y) + 2f (x − y) − 6f (x)

(2.17)

for all x, y ∈ X. In turn, substituting 2y for y in (2.12), we
obtain

f (2x+2y)+f (2x−2y)=2f (x+2y)+2f (x−2y)+2f (x)−4f (x)

(2.18)

for all x, y ∈ X. It follows from (2.12), (2.17) and (2.18) that

f (x+2y)+f (x−2y) = 4f (x+y)+4f (x−y)−6f (x) (2.19)

for all x, y ∈ X. Letting y = x in (2.12) and using f (0) =
0, we get f (3x) = 4f (2x) − 5f (x) for all x ∈ X. Setting
y = 2x in (2.12) and using the oddness of f, we get f (4x) =
10f (2x) − 16f (x) for all x ∈ X. By induction, we get the
relation

f (kx) = k(k2 − 1)

6
f (2x) + k(4 − k2)

3
f (x) (2.20)

for all x ∈ X and each positive integer k. By using (2.20)
for k = a and (2.3), we obtain f (2x) = 2f (x) for all x ∈ X.
Replacing x by 2x in (2.19) and using f (2x) = 2f (x), we get

2f (2x+y)+2f (2x−y) = f (x+y)+f (x−y)+6f (x) (2.21)

for all x, y ∈ X.
The rest of the proof is similar to Theorem 2.1 of [45].
For m = 2, 4, Lee and Chung [46,47] showed that Eq.

(1.5) is equivalent to the quadratic functional equation and
the quartic functional equation, respectively. Moreover,
Najati [48] solved the solution of (1.5) for m = 3.

Approximation of homomorphisms in Banach
algebras
In this section, we prove the generalized Hyers-Ulam sta-
bility of homomorphisms in real Banach algebras for the
functional equation (1.5).

Throughout this section we suppose that X is a normed
algebra, and Y is a Banach algebra. For convenience, we
use the following abbreviation for a given mapping f :
X → Y :
�mf (x, y) = f (ax + y) + f (ax−y)−am−2[ f (x + y) + f (x − y)]

− 2(a2−1)[ am−2f (x)+ (m−2)(1−(m−2)2)

6
f (y)]

for all x, y ∈ X and any fixed integer a �= 0, ±1.
From now on, let m be a positive integer less than 5.

Theorem 3.1. Let f : X → Y be a mapping for which
there exist functions ϕm, ψm : X × X →[ 0, ∞) such that

‖�mf (x, y)‖ ≤ ϕm(x, y), (3.1)

‖f (xy) − f (x)f (y)‖ ≤ ψm(x, y) (3.2)
for all x, y ∈ X. If there exists a constant 0 < L < 1 such
that

ϕm
( x

a
,

y
a

)
≤ L

am ϕm(x, y), (3.3)

ψm
( x

a
,

y
a

)
≤ L

a2m ψm(x, y) (3.4)

for all x, y ∈ X, then there exists a unique m-
homomorphism H : X → Y such that

‖f (x) − H(x)‖ ≤ L
2am(1 − L)

ϕm(x, 0), (3.5)

H(x)[ H(y) − f (y)] = [ H(x) − f (x)] H(y) = 0 (3.6)
for all x, y ∈ X.

Proof. It follows from (3.3) and (3.4) that

lim
n→∞ amnϕm

( x
an ,

y
an

)
= 0, (3.7)

lim
n→∞ a2mnψm

( x
an ,

y
an

)
= 0 (3.8)

for all x, y ∈ X. By (3.7), limn→∞ amnϕm(0, 0) = 0. Hence
ϕm(0, 0) = 0. Letting x = y = 0 in (3.1), we get f (0) ≤
ϕm(0, 0) = 0. So f (0) = 0.

Let � = {g| g : X → Y , g(0) = 0}. We introduce a
generalized metric on � as follows:

d(g, h) = dϕm(g, h) = inf{K ∈ (0, ∞) : ‖g(x) − h(x)‖
≤ Kϕm(x, 0), x ∈ X}

It is easy to show that (�, d) is a complete generalized
metric space [43].
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Now we consider the mapping T : � → � defined by
Tg(x) = am g( x

a ) for all x ∈ X and all g ∈ �. Note that for
all g, h ∈ �,

d(g, h) < K ⇒ ‖g(x) − h(x)‖
≤ Kϕm(x, 0), for all x ∈ X,

⇒ ‖amg
( x

a

)
− amh

( x
a

)
‖

≤ am K ϕm
( x

a
, 0

)
, for all x ∈ X,

⇒ ‖amg
( x

a

)
− amh

( x
a

)
‖

≤ L K ϕm(x, 0), for all x ∈ X,
⇒ d(Tg, Th) ≤ L K .

Hence we see that

d(Tg, Th) ≤ L d(g, h)

for all g, h ∈ �, that is, T is a strictly self-function of �

with the Lipschitz constant L.
Putting y = 0 in (3.1), we have

‖2f (ax) − 2amf (x)‖ ≤ ϕm(x, 0) (3.9)

for all x ∈ X. So

‖f (x) − amf
( x

a

)
‖ ≤ 1

2
ϕm

( x
a

, 0
)

≤ L
2am ϕm(x, 0)

for all x ∈ X, that is, d(f , Tf ) ≤ L
2am < ∞.

Now, from the fixed point alternative, it follows that
there exists a fixed point H of T in � such that

H(x) = lim
n→∞ amnf

( x
an

)
(3.10)

for all x ∈ X, since lim
n→∞ d(Tnf , H) = 0.

On the other hand it follows from (3.1), (3.7) and (3.10)
that

‖�mH(x, y)‖ = lim
n→∞ amn‖�mf

( x
an ,

y
an

)
‖

≤ lim
n→∞ amnϕm

( x
an ,

y
an

)
= 0

for all x, y ∈ X. So �mH(x, y) = 0. By Theorem 2.1, H is
an m-function. So it follows from the definition of H, (3.2)
and (3.8) that

‖H(xy)−H(x)H(y)‖ = lim
n→∞ a2mn‖f

( xy
a2n

)
− f

( x
an

)
f
( y

an

)
‖

≤ lim
n→∞ a2mnψm

( x
an ,

y
an

)
= 0

for all x, y ∈ X. So H(xy) = H(x)H(y). Similarly, we have
from (3.2) and (3.8) that

H(xy) = H(x)f (y), H(xy) = f (x)H(y) (3.11)

for all x, y ∈ X. Since H(xy) = H(x)H(y), we get (3.6) from
(3.11).

According to the fixed point alterative, since H is the
unique fixed point of T in the set � = {g ∈ � : d(f , g) <

∞}, H is the unique function such that

‖f (x) − H(x)‖ ≤ K ϕm(x, 0)

for all x ∈ X and K > 0. Again using the fixed point
alterative, gives

d(f , H) ≤ L
1 − L

d(f , Tf ) ≤ L
2am(1 − L)

so we conclude that

‖f (x) − H(x)‖ ≤ L
2am(1 − L)

ϕm(x, 0)

for all x ∈ X. This completes the proof.

Corollary 3.2. Let θ , r, s be non-negative real numbers
with r > m and s > 2m. Suppose that f : X → Y is a
mapping such that

‖�mf (x, y)‖ ≤ θ(‖x‖r + ‖y‖r),

‖f (xy) − f (x)f (y)‖ ≤ θ(‖x‖s + ‖y‖s)

for all x, y ∈ X. Then there exists a unique m-
homomorphism H : X → Y satisfying

‖f (x) − H(x)‖ ≤ θ

2(ar − am)
‖x‖r ,

H(x)[ H(y) − f (y)] =[ H(x) − f (x)] H(y) = 0
for all x, y ∈ X.

Proof. The proof follows from Theorem 3.1 by taking

ϕm(x, y) := θ(‖x‖r + ‖y‖r), ψm(x, y) := θ(‖x‖s + ‖y‖s)

for all x ∈ X. Then we can choose L = am−r and we get
the desired results.

Remark 3.3. Let f : X → Y be a mapping with f (0) = 0
for which there exist functions ϕm, ψm : X × X →[ 0, ∞)

satisfying (3.1) and (3.2). Let 0 < L < 1 be a constant
such that ϕm(ax, ay) ≤ amLϕm(x, y) and ψm(ax, ay) ≤
a2mLψm(x, y) for all x, y ∈ X. By a similar method to the
proof of Theorem 3.1, one can show that there exists a
unique m-homomorphism H : X → Y satisfying (3.6) and

‖f (x) − H(x)‖ ≤ 1
2am(1 − L)

ϕm(x, 0)

for all x ∈ X.
For the case ϕm(x, y) := δ + θ(‖x‖r + ‖y‖r) and

ψm(x, y) := δ+θ(‖x‖s+‖y‖s) (where θ , δ are non-negative
real numbers and 0 < r, s < m), there exists a unique
m-homomorphism H : X → Y satisfying

‖f (x) − H(x)‖ ≤ δ

2(am − ar)
+ θ

2(am − ar)
‖x‖r

for all x ∈ X.
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Next, we formulate and prove a theorem in supersta-
bility of m-homomorphisms for the functional equation
(1.5).

Theorem 3.4. Suppose there exist functions ϕm, ψm :
X × X →[ 0, ∞) such that

lim
n→∞ amnϕm

(
0,

y
an

)
= 0, (3.12)

lim
n→∞ a2mnψm

( x
an ,

y
an

)
= 0 (3.13)

for all x, y ∈ X. Moreover, assume that f : X → Y is a
mapping such that

‖�mf (x, y)‖ ≤ ϕm(0, y), (3.14)

‖f (xy) − f (x)f (y)‖ ≤ ψm(x, y) (3.15)

for all x, y ∈ X. Then f is an m-homomorphism.

Proof. f (0) = 0, since ϕm(0, 0) = 0. Letting y = 0 in
(3.14), we get f (ax) = amf (x) for all x ∈ X. By using
induction we obtain that

f (anx) = amnf (x)

for all x ∈ X and n ∈ N. So

f (x) = amnf
( x

an

)
(3.16)

for all x ∈ X and n ∈ N. It follows from (3.15) and (3.16)
that

‖f (xy) − f (x)f (y)‖ = a2mn‖f
( xy

a2n

)
− f

( x
an

)
f
( y

an

)
‖

≤ a2mnψm
( x

an ,
y

an

)

(3.17)

for all x, y ∈ X and n ∈ N. Hence, by n → ∞ in (3.17) and
using (3.13), we have f (xy) = f (x)f (y) for all x, y ∈ X. On
the other hand, we have

‖�mf (x, y)‖ = amn‖�mf
( x

an ,
y

an

)
‖ ≤ amnϕm

(
0,

y
an

)
(3.18)

for all x, y ∈ X and n ∈ N. So, by n → ∞ in (3.18) and
using (3.12), we have �mf (x, y) = 0 for all x, y ∈ X.

Therefore, f is an m-homomorphism.

Corollary 3.5. Let θ , r, s be non-negative real numbers
with r > m and s > 2m. Suppose that f : X → Y is a
mapping such that

‖�mf (x, y)‖ ≤ θ‖y‖r , ‖f (xy)−f (x)f (y)‖ ≤ θ(‖x‖s+‖y‖s)

for all x, y ∈ X. Then f is an m-homomorphism.

Remark 3.6. Let θ , r be non-negative real numbers with
r < m. Suppose there exists a function ψm : X × X →
[ 0, ∞) such that

lim
n→∞

1
a2mn ψm(anx, any) = 0

for all x, y ∈ X. Moreover, assume that f : X → Y is a
mapping such that

‖�mf (x, y)‖ ≤ θ‖y‖r , ‖f (xy) − f (x)f (y)‖ ≤ ψm(x, y)

for all x, y ∈ X. Then f is an m-homomorphism.
For the case ψm(x, y) := θ(‖x‖s + ‖y‖s) (where θ is a

non-negative real number and 0 < s < 2m), f is an m-
homomorphism.

Example 3.7. Let X = R
10. We define

(a1, a2, . . . , a10)(b1, b2, . . . , b10) := (0, a1b5, a1b6 + a2b8, a1b7

+ a2b9 + a3b10, 0, a5b8, a5b9 + a6b10, 0, a8b10, 0)

for all a1, . . . , a10, b1, . . . , b10 ∈ R and

‖ (a1, a2, . . . , a10) ‖ :=
10∑

i=1
|ai| (ai ∈ R) .

Then X is a Banach algebra. Let

b := (0, 1, 1, 1, 0, 1, 1, 0, 0, 0)

be fixed, and we define f : X → X by f (x) = x4 + b, and

ϕ4(x, y) := ‖�4f (x, y)‖ = 2a2(a2 − 1)‖b‖ = 10a2(a2 − 1),

ψ4(x, y) := ‖f (xy) − f (x)f (y)‖ = ‖b‖ = 5.
Then we have

∞∑
i=0

1
a4i ϕ4(aix, aiy) =

∞∑
i=0

10a2(a2 − 1)

a4i = 10a6

a2 + 1
,

lim
n→∞

1
a8n ψ4(anx, any) = 0.

Also,

H(x) = lim
n→∞

1
a4n f (anx) = lim

n→∞

(
x4 + b

a4n

)
= x4.

So

H(xy) = (xy)4 = x4y4 = H(x)H(y)

for all x, y ∈ X. Furthermore �4H(x, y) = 0 for all x, y ∈ X.
Thus, H is a 4-homomorphism.

Example 3.8. Let X = R
6. We define

(a1, a2,. . . , a6)(b1, b2,. . . , b6) :=(0, a1b4, a1b5+a2b6, 0, a4b6, 0)

for all a1, . . . , a6, b1, . . . , b6 ∈ R and

‖ (a1, a2, . . . , a6) ‖ :=
6∑

i=1
|ai| (ai ∈ R) .
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Then X is a Banach algebra. Let

b := (0, 1, 2, 0, 1, 0)

be fixed, and we define f : X → X by f (x) = x3 + b, and

ϕ3(x, y) := ‖�3f (x, y)‖ = 2|a3 − 1|‖b‖ = 8|a3 − 1|,
ψ3(x, y) := ‖f (xy) − f (x)f (y)‖ = ‖b‖ = 4.

Then we have
∞∑

i=0

1
a3i ϕ3(aix, aiy) =

∞∑
i=0

8|a3 − 1|
a3i = 8|a|3,

lim
n→∞

1
a6n ψ3(anx, any) = 0.

Also,

H(x) = lim
n→∞

1
a3n f (anx) = lim

n→∞

(
x3 + b

a3n

)
= x3.

So

H(xy) = (xy)3 = x3y3 = H(x)H(y)

for all x, y ∈ X. Furthermore �3H(x, y) = 0 for all x, y ∈ X.
Thus, H is a 3-homomorphism.

One can obtain two similar examples to Examples 3.7
and 3.8 for 2-homomorphism and 1-homomorphism.
Also from these examples, it is clear that the superstability
of the system of functional equations

f (ax + y)+f (ax − y) = am−2[ f (x + y) + f (x − y)] +2(a2 − 1)

×[ am−2f (x)+ (m−2)(1−(m−2)2)

6
f (y)] ,

f (xy) = f (x)f (y),
with the control functions in Remark 3.6 does not hold.
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