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An iterative scheme for numerical solution of
Volterra integral equations using collocation
method and Chebyshev polynomials
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Abstract

When we discretize nonlinear Volterra integral equations using some numerical, such as collocation methods, the
arising algebraic systems are nonlinear. Applying quasilinear technique to the nonlinear Volterra integral equations
gives raise to linear Volterra integral equations. The solutions of these equations yield a functional sequence
quadratically convergent to the solution. Then, we use collocation method based on Chebyshev polynomials and a
modified Clenshaw-Curtis quadrature and obtain a numerical solution. Error analysis has been performed, and the
method has been applied on three numerical examples.
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Introduction
The method of quasilinearization has been started by
Bellman and Kalaba [1], generalized by Lakshmikantham
[2,3], and applied to a variety of problems by [4-7]. Based
on the idea of quasilinearization [1], the generalized quasi-
linear technique in [8] and later extended in [2] offers
two monotonic sequences of linear iterations, uniformly
and quadratically convergent to the unique solution of the
initial value problem:

u′(t) = f (t, u), u(t0) = 0.

Consider the nonlinear Volterra integral equation:

u(t) = y(t) +
∫ t

0
k(t, s, u(s))ds. (1)

Applying iterative processes to solve this equation, when
k(t, s, u) is nondecreasing with respect to u and satis-
fies a Lipschitz condition, the successive approximations
method [9] yields a monotonic sequence, uniformly con-
vergent to the solution of Equation (1). But the iterations
that define the sequences are all nonlinear, and the rate
of convergence is linear. The iterations employed in the
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monotone iterative technique [10,11] and their conver-
gence rate are linear. The method of the quasilinearization
is developed by [12] to solve Equation (1) by the iterative
scheme:

up(t) = y(t) +
∫ t

0

(
k(t, s, up−1(s)) + ku(t, s, up−1(s))

× (
up(s) − up−1(s)

))
ds,

(2)

for p = 1, 2, · · · , where u0(t) is the lower solution of
Equation (1), defined in the following. This scheme is
linear; under nondecreasing monotonicity and convexity
conditions on k(t, s, u), it is quadratically convergent to
the unique solution of Equation (1) and then rapidly in
comparison with the successive processes in [9-11]. The
purpose of this paper is to employ numerical methods to
approximate the solution of the linear integral equations
(2) in a piecewise continuous polynomial space and then
generate a sequence of approximation solutions where
converge to the unique solution of the nonlinear integral
equation (1) under some conditions on k(t, s, u) as men-
tioned above. For numerical integration and quadrature
formulae, we employ Chebyshev polynomials and a mod-
ified Clenshaw-Curtis quadrature and its error analysis.

This paper has been organized as follows: section
“Volterra integral inequalities and generalized quasilin-
earization” contains a general framework for the idea of
quasilinearization used to solve the integral equations.
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Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
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Section “Piecewise polynomials space and collocation
method” is devoted to derivation of step by step col-
location method in a piecewise polynomials space to
approximate the solution of the integral equations. In
section “Fully discretizing using quadrature formulae
and their errors”, fully discretizing of the algebraic sys-
tem is obtained by using a modified Clenshaw-Curtis
quadrature and its error analysis is given. In section
“Convergence of the fully discretized solution”, the con-
vergence of the method is discussed and the numerical
examples are given in section “Numerical examples”.

Volterra integral inequalities and generalized
quasilinearization
For T ∈ R and T > 0, let J =[ 0, T] and D = {(t, s) ∈ J ×J :
s ≤ t}, consider

u(t) = y(t) +
∫ t

0
k(t, s, u(s))ds, (3)

where y ∈ C[ J ,R] and k ∈ C[ D × R,R].

Definition 1. A function v ∈ C[ J ,R] is called a lower
solution of Equation (3) on J if

v(t) ≤ y(t) +
∫ t

0
k(t, s, v(s))ds, t ∈ J ,

and an upper solution if the reversed inequality holds.

It is shown in [12] that if v0(t) and w0(t) in C[ J ,R]
are lower and upper solutions of Equation (3), respec-
tively, then v0(t) ≤ w0(t) holds on J , when k(t, s, u) is
nondecreasing in u for each fixed (t, s) ∈ D and satisfies
one-sided Lipschitz condition

k(t, s, α) − k(t, s, β) ≤ L(α − β), α ≤ β , L > 0,

provided v0(0) ≤ w0(0). If this holds, there exists a
solution u(t) of Equation (3) such that

v0(t) ≤ u(t) ≤ w0(t),

and this solution is unique.
Now, for v0, w0 ∈ C[ J ,R] and v0(t) ≤ u ≤ w0(t) on J , let

� = {(t, s, u) ∈ D × R ; v0(t) ≤ u ≤ w0(t), t ∈ J},
and ‖u‖ = maxt∈J |u(t)|. By defining two iterative schemes
as two linear integral equations

vp(t) = y(t) +
∫ t

0

(
k(t, s, vp−1(s)) + ku(t, s, vp−1(s))

× (
vp(s) − vp−1(s)

))
ds, (4)

and

wp(t) = y(t) +
∫ t

0

(
k(t, s, wp−1(s)) + ku(t, s, wp−1(s))

× (
wp(s) − wp−1(s)

))
ds, (5)

for p = 1, 2, · · · , and v0(t), w0(t) ∈ C[ J ,R], lower and
upper solutions of Equation (3) respectively, the following
theorem in [12] shows the quadratically convergence of
two sequences {vp(t)} and {wp(t)} derived from Equations
(4) and (5) to the unique solution of Equation (3).

Theorem 1. Assume that (H1) v0, w0 ∈ C[ J ,R], v0(t) ≤
w0(t) on J are lower and upper solutions of Equation (3)
on J, respectively.

(H2) k ∈ C2[ �,R] , ku(t, s, u) ≥ 0, kuu(t, s, u) ≥ 0 for
(t, s, u) ∈ �.

Then, the two iterative schemes (4) and (5) define a non-
decreasing sequence {vp(t)} and a nonincreasing sequence
{wp(t)} in C[ J ,R] such that vp −→ u and wp −→ u
uniformly on J, and the following quadratic convergent
estimates hold:

‖u − vp‖ ≤ A‖u − vp−1‖2,

‖wp − u‖ ≤ B‖wp−1 − u‖2 + A‖u − vp−1‖2,

p = 1, 2, · · · , A > 0, B > 0.

Also, these two sequences satisfy the relation

v0 ≤ v1 ≤ · · · ≤ vp ≤ wp ≤ · · · ≤ w1 ≤ w0.

The following two lemmas in [13] and [14] will be used
during this work. In the whole of the work, we refer to ‖.‖
as the maximum norm of the functions or matrices.

Lemma 1. Suppose that A is a matrix such that ‖A‖ <

1. Then, the matrix (I − A) is nonsingular and

‖(I − A)−1‖ ≤ (1 − ‖A‖)−1.

Lemma 2. (Discrete Gronwall Inequality) Let for all i ∈
N(a) = {a, a + 1, . . .} the following inequality be satisfied:

ui ≤ pi + qi

i−1∑
j=a

fjuj, a ∈ N.

Then, for all i ∈ N(a)

ui ≤ pi + qi

i−1∑
j=a

pjfj
i−1∏

k=j+1
(1 + qkfk).

Piecewise polynomials space and collocation
method
We set the partition {0 = τ0 < τ1 < · · · < τN = T} on J
and put hn = τn − τn−1 with h = maxn{hn} and indicate
the above partition by Jh. In the theory of interpolation,
it is well known that the minimum value of the remain-
der term is obtained when the polynomial interpolation is
carried out on the zeros of Chebyshev polynomials [15].

www.SID.ir



Arc
hive

 of
 S

ID

Rashidinia et al. Mathematical Sciences 2012, 6:60 Page 3 of 10
http://www.iaumath.com/content/6/1/60

The first-kind Chebyshev polynomials are defined by the
relation

Tm(z) = cos(mθ), z = cos(θ), m = 0, 1, 2, . . . ,

and the zeros of these polynomials in an increasing
arrangement are as

zm−k+1 = cos
(

2k − 1
2m

π

)
, k = 1, . . . , m.

We define the mapping δn :[ −1, 1] �−→[ τn−1, τn] with
the relation

δn(z) = τn − τn−1
2

z + τn + τn−1
2

.

Now, consider the linear Volterra integral equation (4).
It may be shown in the form of

vp(t) = y(t) +
∫ t

0
Hp(t, s)ds +

∫ t

0
kp(t, s)vp(s)ds,

p = 1, 2, . . . , (6)

where

Hp(t, s) = k(t, s, vp−1(s)) − ku(t, s, vp−1(s))vp−1(s), (7)

and

kp(t, s) = ku(t, s, vp−1(s)), (t, s) ∈ D. (8)

Definition 2. Suppose that Jh is a given partition on J .
The piecewise polynomial space S(d)

μ (Jh) with μ ≥ 0, −
1 ≤ d ≤ μ is defined by

S(d)
μ (Jh) = {q(t) ∈ Cd[ J ,R] : q|σn ∈ πμ ; 1 ≤ n ≤ N},

where σn = (τn−1, τn] and πμ denotes the space of the
polynomials of degree not exceeding μ, and it is easy to
see that S(d)

μ (Jh) is a linear vector space.

With this definition, we select the Lagrange polynomi-
als constructed on the zeros of the Chebyshev polynomial
Tm(z) as a basis for πm−1 on the subinterval σn and
approximate the solution of the integral equation (6) in
the piecewise polynomial space S(d)

m−1(Jh) using colloca-
tion method. Then, by letting tn,k = δn(zk) and Yh = {tn,k :
n = 1, . . . , N , k = 1, . . . , m}, the collocation points, this
collocation solution v̂p(t) ∈ S(d)

m−1(Jh) in the subinterval σn
may be written as

v̂p(t) = v̂p(δn(z)) = v̂p,n(z) =
m∑

k=1
V̂ p

n,kLk(z), z ∈ (−1, 1] ,

n = 1, . . . , N , (9)

for p = 1, 2, . . . , where V̂ P
n,k = v̂p(tn,k) and Lk(z) are the

Lagrange polynomials defined by the relation

Lk(z) =
m∏

j=1
j 	=k

z − zj

zk − zj
, k = 1, . . . , m.

We observe that this collocation solution is not neces-
sary to be continuous on J . Then, we must let d = −1 and
v̂p(t) ∈ S(−1)

m−1(Jh). For t ∈ σi, Equation (6) may be written
as

vp(t) = y(t) +
∫ τi−1

0
Hp(t, s)ds +

∫ t

τi−1
Hp(t, s)ds

+
∫ τi−1

0
kp(t, s)vp(s)ds +

∫ t

τi−1
kp(t, s)vp(s)ds

= y(t) +
i−1∑
j=1

∫ τj

τj−1

(
Hp(t, s) + kp(t, s)vp(s)

)
ds

+
∫ t

τi−1
Hp(t, s)ds +

∫ t

τi−1
kp(t, s)vp(s)ds

= y(t)+
i−1∑
j=1

hj

2

∫ 1

−1

(
Hp(t, δj(z))+kp(t, δj(z))vp,j(z)

)
dz

+ hi
2

∫ δ−1
i (t)

−1
Hp(t, δi(z))dz

+ hi
2

∫ δ−1
i (t)

−1
kp(t, δi(z))vp,i(z)dz, (10)

where vp,i(z) = vp(δi(z)).
The collocation equation is defined by replacing the
exact solution vp(t) with the collocation solution v̂p(t) in
Equation (6) on the collocation points Yh.

Then, using Equation (10) for ti,k ∈ Yh, the collocation
equation has the form

V̂ p
i,k = v̂p(ti,k)

= y(ti,k)

+
i−1∑
j=1

hj

2

∫ 1

−1

(
Hp(ti,k , δj(z))+kp(ti,k , δj(z))v̂p,j(z)

)
dz

+ hi
2

∫ zk

−1
Hp(ti,k , δi(z))dz+ hi

2

∫ zk

−1
kp(ti,k , δi(z))v̂p,j(z)dz

= y(ti,k) +
i−1∑
j=1

hj

2

⎛
⎝ ∫ 1

−1
Hp(ti,k , δj(z))ds

+
m∑

q=1
V̂ p

j,q

∫ 1

−1
kp(ti,k , δj(z))Lq(z)dz

⎞
⎠

+ hi
2

∫ zk

−1
Hp(ti,k , δi(z))dz

+ hi
2

m∑
q=1

V̂ p
i,q

∫ zk

−1
kp(ti,k , δi(z))Lq(z)dz, (11)
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for k = 1, . . . , m, where we have used Equation (9) and by
denoting the following vectors and matrices forms,

V̂ p
i =

[
V̂ p

i,1, . . . , V̂ p
i,m

]T
, yi = [

y(ti,1), . . . , y(ti,m)
]T ,

i = 1, . . . , N ,

Hp,j
i =

[
hp,j

i (1), . . . , hp,j
i (m)

]T

=
[∫ 1

−1
Hp(ti,1, δj(z))dz , . . . ,

∫ 1

−1
Hp(ti,m, δj(z))dz

]T
,

Hp
i = [

hp
i (1), . . . , hp

i (m)
]T

=
[∫ z1

−1
Hp(ti,1, δi(z))dz , . . . ,

∫ zm

−1
Hp(ti,m, δi(z))dz

]T
,

Bp,j
i =

[
bp,j

i (k, q)
]

=
[∫ 1

−1
kp(ti,k , δj(z))Lq(z)dz

]
,

k, q = 1, . . . , m,

Bp
i = [

bp
i (k, q)

] =
[∫ zk

−1
kp(ti,k , δi(z))Lq(z)dz

]
,

k, q = 1, . . . , m, j = 1, . . . , i − 1, (12)

Equation (11) is transformed to the linear system
(

Im − hi
2

Bp
i

)
V̂ p

i = yi + hi
2

Hp
i +

i−1∑
j=1

hj

2

(
Hp,j

i + Bp,j
i V̂ p

j

)
,

i = 1, . . . , N , (13)

where Im is the identity matrix with dimension m.

Fully discretizing using quadrature formulae and
their errors
The fundamental theorem of orthonormal Fourier expan-
sions in the space C[ −1, 1] implies that for any f ∈
C[ −1, 1], there exists an expansion of Chebyshev polyno-
mials as follows:

f (z) =
∞∑

r=0

′
arTr(z), ar = 2

π

∫ 1

−1

f (z)Tr(z)√
1 − z2

dz,

where the prime denotes that the first term is halved.
Integration of both sides of this expansion gives:

If =
∫ 1

−1
f (z) dz =

∞∑
r=0

′ 2a2r
1 − 4r2 . (14)

Then, we approximate the integral (14) by M + 1 first
terms of the series:∫ 1

−1
f (z) dz ≈

M∑
r=0

′ 2a2r
1 − 4r2 ,

and the coefficients ai also are approximated by the
closed Gauss-Chebyshev rule. This is the Clenshaw-Curtis
quadrature for estimating the integral (14), but we mod-
ify this rule and use it to the components of the matrices
Hp,j

i , Hp
i , Bp,j

i , and Bp
i with the open Gauss-Chebyshev

because this rule does not use the end points of the inter-
vals and uses one node less than close Gauss-Chebyshev
and same accuracy. M nodes open Gauss-Chebyshev rule
for approximating ar has the form

ar ≈ ãM
r = 2

M

M∑
l=1

f
(
ξ

(M)

l

)
cos

(
r

2l − 1
2M

π

)
, (15)

ξ
(M)

l = cos
(

2l − 1
2M

π

)
,

and we use the following equation as an approximation for
the integral (14):

If ≈ Qf =
M∑

r=0

′ 2ãM
2r

1 − 4r2 .

For the components of the matrices Hp
i and Bp

i , we use
change of variable z = θk(w) :[ −1, 1] �−→[ −1, zk] defined
by

θk(w) = zk + 1
2

w + zk − 1
2

, k = 1, . . . , m.

For the error analysis of this quadrature formula using
the equality (14), we have

If − Qf =
M∑

r=0

′ 2
(
a2r − ãM

2r
)

1 − 4r2 +
∞∑

r=M+1

2a2r
1 − 4r2 . (16)

To compute (ar − ãM
r ), we utilize conclusions in [16]

which presents the equality

ar − ãM
r = −2

∞∑
l=1

(−1)lcr,2Ml, (17)

cr,l = 2
π

∫ 1

−1

f (z)Tr(z)Tl(z)√
1 − z2

dz.

Moreover, the coefficients cr,l depend on the properties
of the function f (z)Tr(z) using the following lemma which
follows from results in [17].

Lemma 3. Let f (z) ∈ Cp[ −1, 1], and suppose f (p+1)(z)
exists and is continuous in [ −1, 1] except possibly for a
finite number of finite discontinuities, then for some Cf and
all i > 0 the fourier coefficients ai satisfies in the relation

|ai| ≤ Cf i−p−1.
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Substituting this result into (17), we find

|ar − ãM
r | ≤

2Cf ′

(2M)p+1

∞∑
l=1

1
lp+1 ≤

2(p + 1)Cf ′

p(2M)p+1 , (18)

where Cf ′ is related to the function f (z)Tr(z), and we have
used the following relation in [18]

∞∑
l=R+1

(l − i)−r ≤ (R + 1 − i)−r+1 r
r − 1

, r > 1.

Applying Equations (18) to (16) and reusing lemma (3)
for aM

r , we obtain the bound

|If − Qf | ≤
4(p + 1)Cf ′

p(2M)p+1 + Cf

(2M + 1)(2M + 2)p+1 =MM

= O
(
(2M)−p−1) , (19)

where the constant Cf is related to the function f (z).
According to this numerical quadrature, we define fully

discretized matrices related to the matrices (12) as

H̃p,j
i =

[
h̃p,j

i (1), . . . , h̃p,j
i (m)

]T
,

H̃p
i =

[
h̃p

i (1), . . . , h̃p
i (m)

]T
,

B̃p,j
i =

[
b̃p,j

i (k, q)
]

, k, q = 1, . . . , m,

B̃p
i =

[
b̃p

i (k, q)
]

, k, q = 1, . . . , m,

and refresh the linear system (13) for them

(
Im − hi

2
B̃p

i

)
Ṽ p

i = yi + hi
2

H̃p
i +

i−1∑
j=1

hj

2

(
H̃p,j

i + B̃p,j
i Ṽ p

j

)
,

i = 1, . . . , N , (20)

where Ṽ p
i =

[
Ṽ p

i,1, . . . , Ṽ p
i,m

]T
. Then, we define the fully

discretized solution ṽ(t) ∈ S(−1)
m−1(Jh) on σi by the relation

ṽp(t) = ṽp(δi(z)) = ṽp,i(z) =
m∑

k=1
Ṽ p

i,kLk(z), z ∈ (−1, 1] .

Theorem 2. There exists an h̄ > 0 such that for any
partition Jh with 0 < h < h̄, the linear system (20) has a
unique solution Ṽ p

i for 1 ≤ i ≤ N and p = 1, 2, . . ..

Proof. We first give a bound for the ‖B̃p
i ‖ then use the

lemma (1). The matrix B̃p
i has the components

b̃p
i (k, q) =

M∑
r=0

′ 2ãM
2r

1 − 4r2 , k, q = 1, . . . , m,

ãM
r = 1 + zk

M

M∑
l=1

kp
(

ti,k , δj
(
θk

(
ξ

(M)

l

)))
Lq

(
θk

(
ξ

(M)

l

))

× cos
(

r
2l − 1

2M
π

)
.

Then,

|ãM
r | < 2Kuϕ,

‖B̃p
i ‖ <

M∑
r=0

′ 4Kuϕ

|1 − 4r2| ≤ 4Kuϕ,

Ku = max
�

ku(t, s, u), ϕ = max
q=1,...,m

‖Lq(z)‖.

Now using lemma (1), the matrix
(

Im − hi
2 B̃p

i

)
is non-

singular if we get

0 < h <
1

2Kuϕ
= h̄,

and for this selection

‖
(

Im − hi
2

B̃p
i

)−1
‖ ≤ 1

1 − hi
2 ‖B̃p

i ‖
≤ 1

1 − 2hKuϕ
,

and the linear system (20) has the unique solution

Ṽ p
i =

(
Im − hi

2
B̃p

i

)−1
⎛
⎝yi+ hi

2
H̃p

i +
i−1∑
j=1

hj

2

(
H̃p,j

i +B̃p,j
i Ṽ p

j

)⎞⎠
i = 1, . . . , N . (21)

It is easy to see that with this choice of h, the linear
system (13) has a unique solution because of

‖Bp
i ‖ ≤ 2Kuϕ.

For the complete error analysis, we need the following
bounds in the next section which we can conclude them
until now:
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‖Bp
i ‖ ≤ 2Kuϕ,

‖
(

Im − hi
2

Bp
i

)−1
‖ ≤ 1

1 − hi
2 ‖Bp

i ‖
≤ 1

1 − hKuϕ
= αh,

‖Bp,j
i ‖ ≤ 2Kuϕ, ‖B̃p,j

i ‖ ≤ 4Kuϕ, ‖B̃p
i ‖ ≤ 4Kuϕ,

‖Hp
i ‖ ≤ 2(K +Ku‖u‖), ‖Hp,j

i ‖≤2(K +Ku‖u‖),
K = max

�
|k(t, s, u)|,

‖H̃p
i ‖ ≤ 4(K +Ku‖u‖), ‖H̃p,j

i ‖≤4(K +Ku‖u‖),

‖
(

Im − hi
2

B̃p
i

)−1
‖ ≤ 1

1 − hi
2 ‖B̃p

i ‖
≤ 1

1 − 2hKuϕ
= βh,

‖EHp
i ‖ = ‖Hp

i − H̃p
i ‖ ≤ LM,

‖EHp,j
i ‖ = ‖Hp,j

i − H̃p,j
i ‖ ≤ LM,

‖EBp
i ‖ = ‖Bp

i − B̃p
i ‖ ≤ LM,

‖EBp,j
i ‖ = ‖Bp,j

i − B̃p,j
i ‖ ≤ LM,

LM = O
(
(2M)−p−1) .

(22)

The last error bounds are obtained by applying Equation
(19) to the entries of the matrices Hp

i − H̃p
i , Hp,j

i − H̃p,j
i ,

Bp
i − B̃p

i , and Bp,j
i − B̃p,j

i .

Convergence of the fully discretized solution
To analyze the error of the fully descretized solution, we
employ the Cauchy remainder for polynomial interpola-
tion in σi

vp(t) = vp,i(z) = Pm−1vp(t) +
∏m

k=1(t − ti,k)

m!
v(m)

p (ξ)

=
m∑

k=1
V p

i,kLk(z) + 2Tm(z)
m!

(
hi
4

)m
v(m)

p (ξ)

=
m∑

k=1
V p

i,kLk(z) + Rm,i(z; ξ), z ∈ (−1, 1] ,

(23)

where V p
i,k = vp(ti,k). The error function εp(t) = vp(t) −

ṽp(t) on σi satisfies in the equation

εp(t) = εp,i(z) =
m∑

k=1
ε

p
i,kLk(z) + Rm,i(z; ξ), (24)

with ε
p
i,k = vp

i,k − ṽp
i,k . Then,

‖εp,i(z)‖≤mϕ‖εp
i ‖+ 2

m!

(
h
4

)m
‖v(m)

p ‖, i=1, . . . , N , (25)

where ε
p
i =[ ε

p
i,1, . . . , εp

i,m]T . Now, we need a bound for the
‖εp

i ‖. Letting Equation (23) in Equation (10) for t = ti,k
and applying notation (12), we obtain

V p
i,k = vp

(
ti,k

)=y(ti,k)+
i−1∑
j=1

hj

2

⎛
⎝hp,j

i (k)+
m∑

q=1
V p

i,qbp,j
i (k, q)

⎞
⎠

+ hi
2

hp
i (k) + hi

2

m∑
q=1

V p
i,qbp

i (k, q) + rp
i,k ,

rp
i,k =

i−1∑
j=1

hj

2

∫ 1

−1
kp(ti,k , δj(z))Rm,j(z; ξ)dz

+ hi
2

∫ zk

−1
kp(ti,k , δi(z))Rm,i(z; ξ)dz

(26)

for k = 1, . . . , m.
The fully discretized version of this equation is

Ṽ p
i,k = y(ti,k) +

i−1∑
j=1

hj

2

⎛
⎝h̃p,j

i (k) +
m∑

q=1
Ṽ p

i,qb̃p,j
i (k, q)

⎞
⎠

+ hi
2

h̃p
i (k) + hi

2

m∑
q=1

Ṽ p
i,qb̃p

i (k, q).

From these two equations, we obtain

ε
p
i,k =

i−1∑
j=1

hj

2

m∑
q=1

(
vp

j,qbp,j
i (k, q) − ṽp

j,qb̃p,j
i (k, q)

)

+ hi
2

m∑
q=1

(
vp

i,qbp
i (k, q) − ṽp

i,qb̃p
i (k, q)

)

+
i−1∑
j=1

hj

2
Ehp,j

i (k) + hi
2

Ehp
i (k)+rp

i,k

=
i−1∑
j=1

hj

2

m∑
q=1

bp,j
i (k, q)ε

p
j,q +

i−1∑
j=1

hj

2

m∑
q=1

ṽp
j,qEbp,j

i (k, q)

+ hi
2

m∑
q=1

bp
i (k, q)ε

p
i,q + hi

2

m∑
q=1

ṽp
i,qEbp

i (k, q)

+
i−1∑
j=1

hj

2
Ehp,j

i (k)+ hi
2

Ehp
i (k) + rp

i,k ,

k = 1, . . . , m,

www.SID.ir



Arc
hive

 of
 S

ID

Rashidinia et al. Mathematical Sciences 2012, 6:60 Page 7 of 10
http://www.iaumath.com/content/6/1/60

where Ehp,j
i (k) = hp,j

i (k) − h̃p,j
i (k) and Ehp

i (k) = hp
i (k) −

h̃p
i (k). This is equivalent to the linear system

(
Im − hi

2
Bp

i

)
ε

p
i =

i−1∑
j=1

hj

2

(
EHp,j

i + Bp,j
i ε

p
j + EBp,j

i Ṽ p
j

)

+hi
2

EHp
i + hi

2
EBp

i Ṽ p
i + rp

i ,

and rp
i =[ rp

i,1, . . . , rp
i,m]T . With the selection 0 < h < h̄,

this system has the unique solution

ε
p
i =

(
Im − hi

2
Bp

i

)−1
⎛
⎝ i−1∑

j=1

hj

2

(
EHp,j

i +Bp,j
i ε

p
j + EBp,j

i Ṽ p
j

)

+ hi
2

EHp
i + hi

2
EBp

i Ṽ p
i + rp

i

⎞
⎠ .

We use this equation and find a bound for the ε
p
i . Taking

norm of both sides yields

‖εp
i ‖ ≤ ‖

(
Im − hi

2
Bp

i

)−1
‖

×
⎛
⎝ i−1∑

j=1

hj

2

(
‖EHp,j

i ‖ + ‖Bp,j
i ‖‖εp

j ‖ + ‖EBp,j
i ‖‖Ṽ p

j ‖
)

+hi
2

‖EHp
i ‖ + hi

2
‖EBp

i ‖‖Ṽ p
i ‖ + ‖rp

i ‖
⎞
⎠ ,

and employing the bounds (22), we get

‖εp
i ‖ ≤ αh

⎛
⎝hKuϕ

i−1∑
j=1

‖εp
j ‖ + h

2
LM

i∑
j=1

‖Ṽ p
j ‖

+ ih
2
LM + ‖rp

i ‖
⎞
⎠ , (27)

but from Equation (21), ‖Ṽ p
i ‖ satisfies in the inequality

‖Ṽ p
i ‖ ≤ βh

⎛
⎝‖y‖+ hi

2
‖H̃p

i ‖+
i−1∑
j=1

hj

2

(
‖H̃p,j

i ‖+‖B̃p,j
i ‖‖Ṽ p

j ‖
)⎞⎠

≤ βh

⎛
⎝‖y‖ + ih(K + Ku‖u‖) + 2hKuϕ

i−1∑
j=1

‖Ṽ p
j ‖

⎞
⎠

≤ βh‖y‖ + iβhh(K + Ku‖u‖) + (βh − 1)

i−1∑
j=1

‖Ṽ p
j ‖;

then, we can apply lemma (2) to this inequality and after
simplification deduce

‖Ṽ p
i ‖ ≤ βh‖y‖ + 2iβhh (K + Ku‖u‖) + (βh − 1)

i−1∑
j=1

(
βh‖y‖ + 2jβhh (K + Ku‖u‖)) i−1∏

k=j+1
βh

= ‖y‖β i
h + 2h

βh
βh − 1

(K + Ku‖u‖)(β i
h − 1).

From this relation, we get
i∑

j=1
‖Ṽ p

j ‖ ≤ ‖y‖βh
i − 1

2hKuϕ
+ K + Ku‖u‖

Kuϕ

(
β i

h − 1
2hKuϕ

− i
)

,

and a bound for ‖rp
i ‖ is obtained using Equation (26) as

follows

‖rp
i ‖ = max

k
|rp

i,k| ≤ h
2

(
(i − 1)

4Ku
m!

(
h
4

)m
‖v(m)

p ‖

+ 2 (zm + 1) Ku
m!

(
h
4

)m
‖v(m)

p ‖
)

≤ 2hKu
m!

(
h
4

)m
‖v(m)

p ‖i = Cmi.

Taking these two results into Equation (27) after simpli-
fication and noticing that hKuϕαh = αh − 1, we have

‖εp
i ‖ ≤

( ‖y‖
4Kuϕ

+ K + Ku‖u‖
(2Kuϕ)2

)
αh

(
β i

h − 1
)
LM

+ αh

(
Cm + h

2
LM − h

2
K + Ku‖u‖

Kuϕ
LM

)
i

+ (αh − 1)

i−1∑
j=1

‖εp
j ‖.

We utilize lemma (2) again to this inequality and
conclude

‖εp
i ‖ ≤

( ‖y‖
4Kuϕ

+ K + Ku‖u‖
(2Kuϕ)2

)
αh

(
β i

h − 1
)
LM

+ αh

(
Cm + h

2
LM − h

2
K + Ku‖u‖

Kuϕ
LM

)
i

+ (αh − 1)αi−1
h

⎡
⎣( ‖y‖

4Kuϕ
+ K + Ku‖u‖

(2Kuϕ)2

)
αhLM

×
⎛
⎝ i−1∑

j=1

(
βh
αh

)j
−

i−1∑
j=1

1
α

j
h

⎞
⎠(

αhCm + αhh
2

LM

− αhh
2

K + Ku‖u‖
Kuϕ

LM

) i−1∑
j=1

j
α

j
h

⎤
⎦ . (28)

www.SID.ir



Arc
hive

 of
 S

ID

Rashidinia et al. Mathematical Sciences 2012, 6:60 Page 8 of 10
http://www.iaumath.com/content/6/1/60

Calculating the sums separately

i−1∑
j=1

j
α

j
h

=
i−1∑
j=1

i−1∑
k=j

1
αhk = 1

αh − 1

(
αh− 1

αhi−2

αh − 1
− i − 1

αhi−1

)
,

i−1∑
j=1

(
βh
αh

)j
=

β i
h

αi−1
h

− βh

βh − αh
,

i−1∑
j=1

1
α

j
h

=
1 − 1

αhi−1

αh − 1

and setting in Equation (19), we get

‖εp
i ‖ ≤

( ‖y‖
4Kuϕ

+ K + Ku‖u‖
(2Kuϕ)2

)
αh

βh − 1
βh − αh

(
β i

h − αi
h
)
LM

+
(
Cm+ h

2
LM−

(
h
2

)
K +Ku‖u‖

Kuϕ
LM

)
αh

αh−1
(
αi

h−1
)
,

and using the following relations

αh
αh − 1

= 1
hKuϕ

,

αh
βh − 1
βh − αh

= 2.

By recalling the value of Cm, yields to

‖εp
i ‖ ≤ 2

(
αi

h − 1
)

ϕ m!

(
h
4

)m
‖x(m)‖ + ‖y‖ (

β i
h − αi

h
)

2Kϕ
LM.

Setting this bound in Equation (25), we obtain the main
result as follows

‖εp,i(z)‖ ≤
(

m
(
αi

h − 1
) + 1

)
2

m!

(
h
4

)m
‖v(m)

p ‖

+ m
2Ku

[(
‖y‖ + K + Ku‖u‖

Kuϕ

) (
β i

h − αi
h
)

+
(

1 − K + Ku‖u‖
Kuϕ

(
αi

h − 1
))]

LM.

In this error bound, the behavior of the αi
h and β i

h when
N is increasing must be specified. To do this for simplicity,

we assume that the partition Jh is uniform, that is h = T
N .

With this selection for large N

αi
h = 1(

1 − TKuϕ
N

)i ≤ 1(
1 − TKuϕ

N

)N ∼ eTKuϕ ,

β i
h − αi

h = αi
h

((
βh
αh

)i
− 1

)
≤ 1(

1 − TKuϕ
N

)N

×
((

1 + TKuϕ

N − 2TKuϕ

)N
− 1

))

∼ eTKuϕ
(

eTKuϕ − 1
)

,

and when N increases, we deduce that the error bound is
asymptotically equal to

‖εp(z)‖ ≤
(

m
(

eTKuϕ − 1
)

+ 1
) 2

m!

(
h
4

)m
‖v(m)

p ‖ + m
2Ku

×
[(

‖y‖ + K + Ku‖u‖
Kuϕ

)
eTKuϕ

(
eTKuϕ − 1

)

+
(

1 − K + Ku‖u‖
Kuϕ

(
eTKuϕ − 1

))]
LM.

After deriving fully discretized solution ṽp(t), an
approximation to the solution vp(t) of linear integral
equations (6), we can write general error bound as follows:

‖u(t) − ṽp(t)‖ ≤ ‖u(t) − vp(t)‖ + ‖vp(t) − ṽp(t)‖
≤ ‖u(t) − vp(t)‖ +

(
m

(
eTKuϕ − 1

)
+ 1

)
× 2

m!

(
h
4

)m
‖v(m)

p ‖ + m
2Ku

×
[(

‖y‖+ K +Ku‖u‖
Kuϕ

)
eTKuϕ

(
eTKuϕ−1

)

+
(

1 − K + Ku‖u‖
Kuϕ

(
eTKuϕ − 1

))]
LM.

The first part of this general error bound is due to the
quasilinearization, and it has been proven in Theorem (1)

Table 1 Absolute errors for Example 1: N = 4, m = 3 and
M = 4

ti p = 1 p = 2 p = 3 p = 4 p = 5

-1.00 8.33 E - 03 2.83 E - 04 4.02 E - 07 3.31 E - 10 6.14 E - 16

-0.75 2.21 E - 01 6.48 E - 02 3.84 E - 05 3.27 E - 09 3.33 E - 15

-0.50 3.51 E - 01 9.25 E - 02 3.24 E - 05 2.38 E - 08 2.22 E - 15

-0.25 4.25 E - 01 1.27 E - 01 6.13 E - 04 4.53 E - 08 1.11 E - 15

0.00 4.86 E - 01 1.66 E - 01 4.78 E - 04 2.18 E - 07 2.61 E - 14

0.25 5.41 E - 01 1.89 E - 01 7.45 E - 03 1.26 E - 07 1.11 E - 14

0.50 5.37 E - 01 1.69 E - 01 6.36 E - 03 1.14 E - 07 1.11 E - 14

0.75 5.54 E - 01 1.77 E - 01 3.20 E - 03 2.74 E - 06 4.44 E - 13

1.00 1.07 E - 00 1.75 E - 01 1.66 E - 02 1.40 E - 06 1.92 E - 13
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Figure 1 The convergence of the sequence {v̂p(t)} to the exact
solution of Example 1.

that is quadratically convergent. The second term is due to
collocation which has a convergence order O(hm), and the
third part of the above error is due to the quadrature for-
mula which is convergent with the order O

(
(2M)−p−1).

Numerical examples
In what follows, the method presented in this paper is
applied to solve three numerical examples of the integral
equation (3).

Example 1. The following integral equation is dis-
cussed in [19]:

u(t) = 1
15

(−2t6 + 5t4 − 15t2 + 8t + 20
)

+
∫ t

−1
(2s − t) u2 (s) ds, (29)

where −1 ≤ t ≤ 1, and k(t, s, u(s)) = (t − 2s)u2(s) is
convex and nondecreasing with respect to u for u ≥ 0.

Table 2 Absolute errors for Examples 2 and 3: N = 4
m = 3 and M = 5 m = 5 and M = 5

ti p = 3 p = 4 p = 4 p = 5

0.0 0.00 0.00 0.00 0.00

0.1 1.33 E - 05 1.2416 E - 08 8.0286 E - 08 1.3721 E - 11

0.2 1.89 E - 05 3.4211 E - 08 6.0680 E - 07 1.8541 E - 10

0.3 2.31 E - 04 3.5308 E - 07 1.9592 E - 06 1.0478 E - 10

0.4 2.67 E - 04 2.3369 E - 06 4.4503 E - 06 1.0371 E - 09

0.5 2.98 E - 04 5.3270 E - 06 8.3357 E - 05 5.9125 E - 09

0.6 3.27 E - 03 1.2519 E - 05 1.3822 E - 04 9.3062 E - 08

0.7 3.53 E - 03 2.4433 E - 05 2.1077 E - 04 1.0544 E - 08

0.8 3.78 E - 03 2.5173 E - 05 3.0230 E - 03 1.5937 E - 08

0.9 4.01 E - 03 9.9403 E - 04 4.1387 E - 03 6.2534 E - 07

1.0 4.22 E - 03 2.5673 E - 04 5.4624 E - 03 1.5917 E - 07

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Exact Solution

Lower Solutions

Figure 2 The convergence of the sequence {v̂p(t)} to the exact
solution of Example 2.

The exact solution is u(t) = 1−t2, and v0(t) = 0 is a lower
solution. The iterative scheme is

vp(t) =
(

1
15

(−2t6 + 5t4 − 15t2 + 8t + 20
)

−
∫ t

−1
(2s−t)

[
vp−1(s)

]2 ds
)

+ 2
∫ t

−1
(2s − t)vp−1(s)vp(s)ds.

We employed the presented method for N = 4, m = 3,
and M = 4. We obtained the absolute values of the
errors for Equation (29), which are shown in Table 1
and Figure 1; these results verify the convergence of the
sequence {v̂p(t)} to the exact solution.

Example 2. The second example,

u(t) = √
t e

(−√
t
)
+ 1

2

∫ t

0

√
t
s

e(u(s)−√
t)ds,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Exact Solution

Lower Solutions

Figure 3 The convergence of the sequence {v̂p(t)} to the exact
solution of Example 3.
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has the exact solution u(t) = √
t and the lower solu-

tion v0(t) =
√

t
2 . The absolute values of the errors are

presented in Table 2 and Figure 2.

Example 3. The third example, is the following integral
equation:

u(t) = et sin(et) −
∫ t

0
es+t cos (u(s))ds, 0 ≤ t ≤ 0.74.

This equation has the exact solution u(t) = et and
the lower solution v0(t) = 1 + t. Table 2 shows the
absolute values of the errors, and the convergence of
the sequence {v̂p(t)} to the exact solution is shown in
Figure 3.

Conclusions
In this paper, we computed an error bound for the numer-
ical solution of nonlinear Volterra integral equations
that contain the quasilinearization, collocation, and the
numerical quadrature errors separately and showed the
effects of the collocation approximation and numerical
quadratures on the accuracy of the approximated solution.
The provided numerical examples confirm our results.
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