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Abstract

Purpose: This paper proposes the use of different analytical methods in obtaining approximate solutions for
nonlinear differential equations with oscillations.

Methods: Three methods are considered in this paper: Lindstedt-Poincare method, the Krylov-Bogoliubov first
approximate method, and the differential transform method.

Results: Figures that are given in this paper give a strong evidence that the proposed methods are effective in
handling nonlinear differential equations with oscillations.

Conclusions: This study reveals that the differential transform method provides a remarkable precision compared
with other perturbation methods.

Keywords: Lindstedt-Poincare method, Krylov-Bogoliubov method, Differential transform method, Nonlinear
oscillations

Introduction
When a mathematical model is formulated for a physical
problem, it is often represented by equations of a one-
mass system with two degrees of freedom that are mostly
described using a second-order differential equation, and
these equations are not solvable exactly by analytic tech-
niques. If in the differential equation, some small non-
linearities exist, they are introduced in the differential
equation of motion as small nonlinear terms, and so the
motion of the system is described by a second-order
strongly nonlinear differential equation in the form of

y′′(t) + y(t) + εf (y(t), y′(t)) = 0, y(0) = 1, y′(0) = 0,
(1.1)

where ε is a sufficiently small parameter, so the nonlin-
ear term εf (y(t), y′(t)) is relatively small. As mentioned
in [1], these terms arise because the physical process
has small effects. For example, in a fluid flow problem
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the viscosity may be small, or in the problem of the
motion of a projectile, the force due to air resistance
may be small. These low order effects are represented by
terms in the model equation that, when compared to the
other terms, are small and represented by a coefficient
parameter ε. Therefore, we must resort to approximation
and numerical methods. Foremost, among approximation
techniques are the so-called perturbation methods. Per-
turbation method [2-5] provides the most versatile tools
available in nonlinear analysis of physical problems. These
methods have their own limitations; for example, the solu-
tions are valid, in most cases, only for small values of
the parameter ε. Therefore, we cannot rely fully on the
approximations, since there is no criterion on how small
the parameters should be. In [6], the authors proved the
existence of an approximate solution in the mean for gen-
eral strongly nonlinear differential equations. They inves-
tigate the behavior of the class of solutions. In addition,
they implement the homotopy perturbation method and
find analytic solutions for strongly nonlinear differential
equations of the form

x′′(t) + ax′2(t) + bx(t) = F(t) (1.2)
© 2012 Alquran and Al-Khaled; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
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for some constants a, b. As mentioned in [6], numerous
methods are developed for analytic solution of strongly
nonlinear differential equations describing the vibrations
of the oscillator. For example, the harmonic balance
method [7-9] which leads to algebraic equations has been
used. An analytical approximate approach for determin-
ing periodic solutions of nonlinear jerk equations involv-
ing third-order time-derivative is presented in [10,11].
In [12], the authors used the Adomian decomposition
method to find the approximate solutions for general
form of the second-order ordinary differential equations.
In [13], a modified variational approach called global
error minimization method is developed for obtaining an
approximate closed-form analytical solution for nonlinear
oscillator differential equations. In this paper, we pro-
pose the use of Lindstedt-Poincare method, the Krylov-
Bogoliubov first approximate method, and the differential
transform method (DTM) in obtaining the approximate
solutions for nonlinear differential equations of the form
in Equation 1.1. In order to illustrate the efficiency of these
methods, we examine three numerical examples. Compar-
ison is made based on the obtained results. The paper is
concluded in the last section. In what follows, we survey
briefly the DTM steps while we use directly the other two
methods within the text.

Methods
The goal of this section is to recall notations, defini-
tions, and some theorems of the DTM that will be used
in this paper. These are discussed in [12,14,15]. Also, we
will highlight the main steps of implementing the DTM
in solving differential equations. The other two methods
(Lindstedt-Poincare and the Krylov-Bogoliubov) are given
within the section of Results and discussion.

Differential transform method
The differential transform of the kth derivative of a func-
tion u(x) is defined to be

U(k) = 1
k!

(
dk

dxk u(x)

) ∣∣∣
x=x0

(2.1)

and the inverse transform of U(k) is defined as

u(x) =
∞∑

k=0
U(k)(x − x0)

k (2.2)

Equation 2.2 is known as the Taylor series expansion of
u(x) around x = x0. Also, we need the following theo-
rems. If G(k) is the differential transform of g(x) then the
following theorems apply.

Theorem 1. If f(x)= dng(x)

dxn , then F(k)= (k+n)!
k! G(k + n).

Theorem 2. If f(x)=g2(x), then F(k)=
∑k

i=0G(i)G(k-i).

Theorem 3. If f(x)= g3(x), then
F(k)=

∑k
i=0

∑k−i
j=0G(i)G(j)G(k-i-j).

Results and discussion
This section is divided into two parts: weakly and strongly
nonlinear oscillations.

Application I: weakly nonlinear oscillation
An example of a weak nonlinear oscillation is the Duff-
ing equation. It is a nonlinear second-order differential
equation used to model certain damped and driven oscil-
lators. The equation is given by

y′′(t) + δy′(t) + αy(t) + βy3(t) = 0 (3.1)

where the (unknown) function y = y(t) is the displace-
ment at time t; y′ is the first derivative of y with respect
to time, i.e., velocity; and y′′ is the second time-derivative
of y, i.e., acceleration. The number δ controls the size of
the damping (friction), α controls the size of the restor-
ing force, and β controls the amount of nonlinearity in the
restoring. The equation describes the motion of a damped
oscillator with a more complicated potential than in sim-
ple harmonic motion (which corresponds to the case
β = δ = 0); in physical terms, it models, for example, a
spring pendulum whose spring’s stiffness does not exactly
obey Hooke’s law. The Duffing equation is an example of
a dynamic system that exhibits chaotic behavior.

In this section, we are concerned about

y′′(t) + y(t) + εy3(t) = 0, y(0) = 1, y′(0) = 0. (3.2)

First, by means of Lindstedt-Poincare method [16-18]
we use the transformation τ = ωt which transforms
Equation 3.2 into

ω2u′′(τ ) + u(τ ) + εu3(τ ) = 0, (3.3)

where u(τ ) = y(t). Let

ω =1 + εω1,
u =u0 + εu1. (3.4)

If we substitute Equation 3.4 in Equation 3.3 and equate
the coefficients of various powers of ε to 0, then we obtain

O(1) : u′′
0 + u0 = 0; u0(0) = 1, u′

0(0) = 0,

O(ε) : 2ω1u′′
0 + u′′

1 + u1 + u3
0 = 0; u1(0) = 0, u′

1(0) = 0.
(3.5)
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Solving the equations in Equation 3.5 and avoiding the
occurrence of secular terms in the perturbation solutions
yield

u0(τ ) = cos(τ ),

u1(τ ) = 1
32

(cos(τ ) − cos(3τ)) . (3.6)

Therefore, the solution of Equation 3.2 is

y(t) = cos(
(

1 + 3ε

8

)
t) + ε

32

(
cos(

(
1 + 3ε

8

)
t)

− cos(3
(

1 + 3ε

8

)
t)

)
. (3.7)

Second, by applying the differential transform to
Equation 3.2, we get the recursive formula

F(k + 2) = − F(k)

(k + 1)(k + 2)

− ε

(k+1)(k+2)

k∑
i=0

k−i∑
j=0

F(i)F(j)F(k−i−j),

(3.8)

where F(k) is the differential transform of y(t). By the
given initial conditions, we have F(0)=1 and F(1) = 0.
Considering N = 8 in the DTM series solution, the
approximate solution is

yDTM(t) =
8∑

k=0
F(k)tk

= 1 − 1
2
(1 + ε)t2 + 1

24
(1 + ε)(1 − 3ε)t4 − ...

(3.9)

Third, by means of Krylov-Bogoliubov first approximate
method [19], the solution of

y′′(t) + y(t) + εf (y(t), y′(t)) = 0 (3.10)

is sought as

y(t) = a(t) sin(t + φ(t)), (3.11)

where a(t) and φ(t) are given by

a(t) = ε

2π

∫ 2π

0
f (c sin(θ), c cos(θ)) cos(θ)dθ ,

φ(t) = ε

2πc

∫ 2π

0
f (c sin(θ), c cos(θ)) sin(θ)dθ , (3.12)

(A)

(B)

Figure 1 The obtained solutions of the Duffing equation for (A)
ε=0.01 and (B) ε=0.1.

and where c is a free constant. Therefore, according to
Equation 3.2, the solution is

y(t) = A sin(

(
3εA2

8
+ 1

)
t + B), (3.13)

where A and B are constants. Applying the initial con-
ditions given in Equation 3.2 yields A = −1 and
B = −π

2 .
Figure 1 shows the plots of the obtained solutions

using the proposed methods compared with Mathematica
NDSolve tool.

Application II: strongly nonlinear oscillation
In this section, we apply the Lindstedt-Poincare method
and the differential transform method on two strongly
nonlinear oscillations.

Example 1. Consider the nonlinear oscillation

y′′(t) + y(t) = εy(t)(1 − y′2(t)), y(0) = 1, y′(0) = 0.
(4.1)

First, by means of Lindstedt-Poincare method, the trans-
formation τ = ωt converts Equation 4.1 to

ω2u′′(τ ) + u(τ ) − εu(τ ) + εω2u(τ )u′(τ ))2 = 0, (4.2)
www.SID.ir
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(A)

(B)

Figure 2 The obtained solutions of Equation 4.1 for (A) ε=0.01
and (B) ε=0.1.

where u(τ ) = y(t). Let

ω = 1 + εω1,
u = u0 + εu1. (4.3)

Through inserting Equation 4.3 in Equation 4.2 and
equating the coefficients of various powers of ε to 0, we
yield

O(1) : u′′
0 + u0 = 0; u0(0) = 1, u′

0(0) = 0,
O(ε) : 2ω1u′′

0 +u′′
1 +u1−u0+u0(u′

0)
2 = 0; u1(0) = 0,

u′
1(0) = 0.

(4.4)

Solving the equations in Equation 4.4 and avoiding the
occurrence of secular terms in the perturbation solutions
yield

u0(τ ) = cos(τ ),

u1(τ ) = − 1
32

(cos(τ ) − cos(3τ)) . (4.5)

Therefore, the solution of Equation 4.1 is

y(t) = cos(
(

1 − 3ε

8

)
t) − ε

32

(
cos(

(
1 + 3ε

8

)
t)

− cos(3
(

1 + 3ε

8

)
t)

)
. (4.6)

Second, by applying the differential transform to
Equation 4.1, we get the recursive formula

F(k + 2) = (ε − 1)F(k)

(k + 1)(k + 2)
− ε

(k + 1)(k + 2)

×
k∑

i=0

k−i∑
j=0

(i + 1)(j + 1)F(i)F(j)F(k − i − j),

(4.7)

where F(k) is the differential transform of y(t). By the
given initial conditions, we have F(0) = 1 and F(1) =
0. Considering N = 8 in the DTM series solution, the
approximate solution is

yDTM(t) =
8∑

k=0
F(k)tk

= 1− 1
2
(1−ε)t2+ 1

24
(1 − ε)2(1 − 2ε)t4 − ...

(4.8)

The solutions obtained by the proposed methods show
an excellent agreement with the one obtained by Math-
ematica NDSolve tool if we choose ε to be small (see
Figure 2).

(A)

(B)

Figure 3 Obtained solutions of Equation 4.9 for (A) ε=0.01 and
(B) ε=0.1.
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Example 2. Consider the nonlinear oscillation

y′′(t) + y(t) = εy(t)y′2(t), y(0) = 1, y′(0) = 0. (4.9)

First, by means of Lindstedt-Poincare method, the trans-
formation τ = ωt converts Equation 4.9 to

ω2u′′(τ ) + u(τ ) − εω2u(τ )u′(τ ))2 = 0, (4.10)

where u(τ ) = y(t). Let

ω = 1 + εω1,
u = u0 + εu1. (4.11)

Inserting Equation 4.11 in Equation 4.10 and equating
the coefficients of various powers of ε to 0 yield

O(1) : u′′
0 + u0 = 0; u0(0) = 1, u′

0(0) = 0,
O(ε) : 2ω1u′′

0 + u′′
1 + u1 − u0(u′

0)
2 = 0; u1(0) = 0,

u′
1(0) = 0.

(4.12)

Moreover, solving the equations in Equation 4.12 and
avoiding the occurrence of secular terms in the perturba-
tion solutions yield

u0(τ ) = cos(τ ),

u1(τ ) = − 1
32

(cos(τ ) − cos(3τ)) . (4.13)

Therefore, the solution of Equation 4.9 is

y(t) = cos(
(

1 − ε

8

)
t) − ε

32

(
cos(

(
1 − ε

8

)
t)

− cos(3
(

1 − ε

8

)
t)

)
. (4.14)

Second, by applying the differential transform to
Equation 4.9, we get the recursive formula

F(k + 2) = − F(k)

(k + 1)(k + 2)
+ ε

(k + 1)(k + 2)

×
k∑

i=0

k−i∑
j=0

(i+1)(j+1)F(i)F(j)F(k−i−j),

(4.15)

where F(k) is the differential transform of y(t). By the
given initial conditions, we have F(0)= 1 and F(1) = 0.
Considering N = 8 in the DTM series solution, the
approximate solution is

yDTM(t) =
8∑

k=0
F(k)tk

= 1 − 1
2

t2 + 1
24

(1 + 2ε)t4 − ... (4.16)

Figure 3 shows the plots of the obtained solutions
using the proposed methods compared with Mathematica
NDSolve tool.

Conclusions
In this paper, the nonlinear differential equations with
oscillator are considered to study the validity of DTM
compared with Lindstedt-Poincare method. The most sig-
nificant features of DTM are its simplicity and its excellent
accuracy for different values of the parameter ε. DTM is
very effective and convenient for solving truly nonlinear
oscillator equations.
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