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Abstract

Purpose: In this paper, we investigate a class of Sturm-Liouville operators with eigenparameter-dependent boundary
conditions and transmission conditions at finite interior points.

Methods: By modifying the inner product in a suitable Krein space K associated with the problem, we generate a
new self-adjoint operator A such that the eigenvalues of such a problem coincide with those of A.

Results: We construct its fundamental solutions, get the asymptotic formulae for its eigenvalues and fundamental
solutions, discuss some properties of its spectrum, and obtain its Green function and the resolvent operator.

Conclusions: Three important conclusions can be drawn: (1) the new operator A is self-adjoint in the Krein space K ;
(2) if θi > 0, i = 1, m, and ρj > 0, j = 1, 2, then, the eigenvalues of the problem (Equations 1 to 5) are analytically
simple; (3) the residual spectrum of the operator A is empty, i.e., σr(A) = ∅.
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Introduction
In recent years, more and more researchers are inter-
ested in the discontinuous Sturm-Liouville problem for
its application in physics (see [1,2]). Such problems are
connected with discontinuous material properties, such
as heat and mass transfer, varied assortment of phys-
ical transfer problems, vibrating string problems when
the string loaded additionally with point masses, and
diffraction problems [3,4]. Moreover, there has been
a growing interest in Sturm-Liouville problems with
eigenparameter-dependent boundary conditions, i.e., the
eigenparameter appears not only in the differential
equations, but also in the boundary conditions of the
problems (see [5-10]).

Here, we consider a class of Sturm-Liouville operators
with eigenparameter-dependent boundary conditions
and transmission conditions at finite points of discon-
tinuity. We extend and generalize some approaches and
results of the classic regular Sturm-Liouville problems to
similar problems with discontinuities. By modifying the
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inner product in the direct sum of the Krein spaces and
using the classical technics, we define a new self-adjoint
operator A such that the eigenvalues of such a problem
coincide with those of A. We construct its fundamental
solutions, get the asymptotic formulae for its eigenvalues,
discuss some properties of its spectrum, and obtain its
Green function and the resolvent operator. Especially, we
notice that the signs of θi(i = 1, m) and ρj (j = 1, 2) influ-
ence the spectrum properties of the operator A, promote
and deepen the previous conclusions (see [6]).

In this study, we consider a discontinuous eigenvalue
problem consisting of the Sturm-Liouville equation:

lu := −(a(x)u′(x))′ + q(x)u(x) = λu(x), x ∈ I, (1)

where I =[ a, ξ1) ∪ (ξ1, ξ2) ∪ · · · ∪ (ξm, b], a(x) = a2
1 for

x ∈[ a, ξ1), a(x) = a2
2 for x ∈ (ξ1, ξ2), · · · , a(x) = a2

m+1 for
x ∈ (ξm, b], a1, a2, · · · , am+1 are positive real constants;
λ ∈ C is a complex eigenparameter; q(x) is real-valued
and continuous in I, and has finite limits q(ξi ± 0) :=
limx→ξi±0 q(x), i = 1, m; boundary conditions at the
endpoints

l1u := λ(α′
1u(a)−α′

2u′(a))−(α1u(a)−α2u′(a)) = 0, (2)

l2u := λ(β ′
1u(b)−β ′

2u′(b))+ (β1u(b)−β2u′(b)) = 0 (3)
© 2012 Yang and Wang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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and transmission conditions at the points of discontinuity
x = ξi, i = 1, m,

l2i+1u := u(ξi+0)−αi1u(ξi−0)−αi2u′(ξi−0) = 0, (4)

l2i+2u := u′(ξi+0)−βi1u(ξi−0)−βi2u′(ξi−0) = 0, (5)

where αij, βij, αj, βj, α′
j , β ′

j (i = 1, m, j = 1, 2) are real
numbers. Here, we assume that

θi =
∣∣∣∣∣αi1 αi2

βi1 βi2

∣∣∣∣∣ �= 0 (i = 1, m),

ρ1 =
∣∣∣∣∣α1

′ α1

α2
′ α2

∣∣∣∣∣ �= 0, ρ2 =
∣∣∣∣∣ β ′

1 β1

β ′
2 β2

∣∣∣∣∣ �= 0.

In order to consider the problem (Equations 1 to 5), we
define the inner product in L2(I) as

[ f , g]1 = θ1θ2 · · · θm

a2
1

∫ ξ1

a
f1g1dx + θ2θ3 · · · θm

a2
2

×
∫ ξ2

ξ1
f2g2dx + · · · + 1

a2
m+1

∫ b

ξm
fm+1gm+1dx,

where f1(x) = f (x) �[a,ξ1), f2(x) = f (x) �(ξ1,ξ2), · · · ,
fm+1(x) = f (x) �(ξm,b]. Obviously, the linear space
(L2(I), [ ·, ·]1 ) is a modified Krein space.

Methods
The eigenparameter appears not only in the differential
equations, but also in the boundary conditions of the
problems. So by modifying the inner product in a suitable
space K and using the classical technics, we define a new
self-adjoint operator A such that the eigenvalues of such a
problem coincide with those of A.

An operator formulation in the adequate Krein space
In the following, for simplicity, we set θ = θ1θ2 · · · θm.
Define the special inner product in the direct sum of linear
spaces L2(I) ⊕ Cθρ1 ⊕ Cρ2 by

[ F , G] :=[ f , g]1 + θ

ρ1
〈h, k〉 + 1

ρ2
〈r, s〉

for F := (f , h, r), G := (g, k, s) ∈ L2(I) ⊕ Cθρ1 ⊕ Cρ2 .
Then, K := (L2(I)⊕Cθρ1 ⊕Cρ2 , [ ·, ·] ) is the direct sum of
modified Krein spaces.

A fundamental symmetry on the Krein space is given by

J :=
⎡⎢⎣ J0 0 0

0 sgnθ · sgnρ1 0
0 0 sgnρ2

⎤⎥⎦ ,

where sgnθ , sgnρj ∈ {−1, 1}(j = 1, 2) and J0 : L2(I) →
L2(I) is defined by

(J0f )(x)=

⎧⎪⎨⎪⎩
f (x)sgnθ , x ∈[ a, ξ1),
f (x)sgn(θiθi+1 · · · θm), x ∈ (ξi−1, ξi), i=2, m,
f (x), x ∈ (ξm, b] .

Let 〈·, ·〉 =[ J·, ·]. Then, 〈·, ·〉 is a positive definite inner
product which turns K into a Hilbert space H = (L2(I) ⊕
C|θρ1| ⊕ C|ρ2|, [ J·, ·] ).

We define the operator A in K as follows:

D(A) = {(f (x), h, r) ∈ K |f1, f ′
1 ∈ ACloc((a, ξ1)),

f2, f ′
2 ∈ ACloc((ξ1, ξ2)), · · · , fm+1,

f ′
m+1 ∈ ACloc((ξm, b)), lf ∈ L2(I), l2i+jf = 0,

i = 1, m, j = 1, 2, h = α′
1f (a) − α′

2f ′(a),
r = β ′

1f (b) − β ′
2f ′(b)},

AF = (lf , α1f (a) − α2f ′(a), −(β1f (b) − β2f ′(b)),

F = (f , α′
1f (a) − α′

2f ′(a), β ′
1f (b) − β ′

2f ′(b)) ∈ D(A).

Now, we can rewrite the considered problem (Equations 1
to 5) in the operator form as

AF = λF .

From the above, we can easily obtain the following
conclusion:

Theorem 1. The eigenvalues and eigenfunctions of
the problem (Equations 1 to 5) are defined as the
eigenvalues and the first components of the correspond-
ing eigenelements of the operator A, respectively.

Theorem 2. (cf. Theorem 2.2 of [6]). The operator A is
self-adjoint in the Krein space K.

Simplicity of eigenvalues
Lemma 1. Let the real valued function q(x) ∈ C[ a, b] be

continuous on [ a, b] and f (λ), g(λ) are given entire func-
tions. Then, for ∀λ ∈ C, Equation 1 has a unique solution
u = u(x, λ) satisfying the initial conditions

u(a)= f (λ), u′(a)=g(λ) (or u(b)= f (λ), u′(b)=g(λ)).

Let ϕ1(x, λ) be the solution of Equation 1 on the interval
[ a, ξ1), satisfying the initial conditions

ϕ1(a, λ) = λα′
2 − α2, ϕ′

1(a, λ) = λα′
1 − α1.

By virtue of Lemma 1, after defining this solution,
we can define the solutions ϕi+1(x, λ) (i = 1, m − 1)

of Equation 1 on the interval [ ξi, ξi+1) by the initial
conditions

ϕi+1(ξi + 0, λ) = αi1ϕi(ξi − 0, λ) + αi2ϕ
′
i(ξi − 0, λ),

ϕ′
i+1(ξi + 0, λ) = βi1ϕi(ξi − 0, λ) + βi2ϕ

′
i(ξi − 0, λ).

www.SID.ir
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After defining these solutions, we can define the final
solution ϕm+1(x, λ) of Equation 1 on the interval [ ξm, b]
by the initial conditions

ϕm+1(ξm+0, λ)=αm1ϕm(ξm−0, λ)+αm2ϕ
′
m(ξm−0, λ),

ϕ′
m+1(ξm+0, λ)=βm1ϕm(ξm−0, λ)+βm2ϕ

′
m(ξm−0, λ).

Analogously, we shall define the solutions χm+1(x, λ)

and χi(x, λ) (i = 1, m) by initial conditions

χm+1(b, λ) = λβ ′
2 + β2, χ ′

m+1(b, λ) = λβ ′
1 + β1

and

χi(ξi − 0, λ) = βi2χi+1(ξi + 0, λ) − αi2χ ′
i+1(ξi + 0, λ)

θi
,

χ ′
i (ξi − 0, λ) = βi1χi+1(ξi + 0, λ) − αi1χ ′

i+1(ξi + 0, λ)

−θi
.

Let us consider the Wronskians

ωi(λ) :=Wλ(ϕi, χi; x) :=ϕiχ
′
i −ϕ′

iχi, x ∈ �i, i=1, m + 1

which are independent of x and are entire functions,
where �1 =[ a, ξ1), �2 = (ξ1, ξ2), · · · , �m+1 = (ξm, b].
This sort of calculation gives ωi+1(λ) = θiωi(λ) (i = 1, m).
Now, we may introduce in consideration the characteristic
function ω(λ) as ω(λ) := ω1(λ).

Theorem 3. The eigenvalues of the problem
(Equations 1 to 5) consist of the zeros of function ω(λ).

Proof. Let ω(λ) = 0. Then, the functions ϕ1(x, λ) and
χ1(x, λ) linearly depended, i.e.,

ϕ1(x, λ) = kχ1(x, λ)

for k �= 0. Consequently, the function kχ1(x, λ) also
satisfied the boundary condition (Equation 2). So,⎧⎪⎨⎪⎩

kχ1(x, λ), x ∈[ a, ξ1),
kχi(x, λ), x ∈ (ξi−1, ξi), i = 2, m,
kχm+1(x, λ), x ∈ (ξm, b]

is an eigenfunction of the problem (Equations 1 to 5)
corresponding to eigenvalue λ.

Now, let u(x) be any eigenfunction corresponding to
eigenvalue λ, but ω(λ) �= 0. Then, the functions ϕ1, χ1
would be linearly independent on [ a, ξ1). Similarly, ϕi,
χi, i = 2, m, and ϕm+1, χm+1 would also be linearly inde-
pendent on (ξi−1, ξi) and (ξm, b], respectively. So, u(x) may
be represented in the following form:⎧⎪⎨⎪⎩

c11ϕ1(x, λ) + c12χ1(x, λ), x ∈[ a, ξ1),
ci1ϕi(x, λ) + ci2χi(x, λ), x ∈ (ξi−1, ξi), i = 2, m,
c(m+1)1ϕm+1(x, λ) + c(m+1)2χm+1(x, λ), x ∈ (ξm, b] .

According to transmission conditions at the points of
discontinuities x = ξi, we have c11 = c21 = · · · = c(m+1)1,

c12 = c22 = · · · = c(m+1)2. Thus,

u(x)=

⎧⎪⎨⎪⎩
c11ϕ1(x, λ) + c12χ1(x, λ), x ∈[ a, ξ1),
c11ϕi(x, λ) + c12χi(x, λ), x ∈ (ξi−1, ξi), i = 2, m,
c11ϕm+1(x, λ) + c12χm+1(x, λ), x ∈ (ξm, b] ,

where at least one of the constants c1k (k = 1, 2) is
not zero.

Consider the true function

lv(u(x)) = 0, v = 1, 2 (6)

as the homogenous system of linear equations in the vari-
ables c1k (k = 1, 2), and taking into account the above
initial conditions of the fundamental solutions, it follows
that the determinant of this system is∣∣∣∣ 0 ϕ1(a)χ ′

1(a)−ϕ′
1(a)χ1(a)

ϕm+1(b)χ ′
m+1(b)−ϕ′

m+1(b)χm+1(b) 0

∣∣∣∣
= −θω2(λ) �= 0.

Therefore, the system (Equation 6) has the only trivial
solution c1k = 0 (k = 1, 2). Thus, we get a contradiction,
which completes the proof.

Definition 1. The analytic multiplicity of an eigenvalue
λ of the problem (Equations 1 to 5) is its order as a root of
the characteristic equation ω(λ) = 0.

Theorem 4. Let θi > 0, i = 1, m, and ρj > 0, j = 1, 2.
Then, the eigenvalues of the problem (Equations 1 to 5)
are analytically simple.

Proof. Let λ = u + iv. For convenience, set ϕ = ϕ(x, λ),
ϕ1λ = ∂ϕ1

∂λ
, ϕ′

1λ = ∂ϕ′
1

∂λ
, etc. We differentiate the equation

lχ = λχ with respect to λ and have

lχλ = λχλ + χ . (7)

By integration by parts, we get

[lχλ, ϕ]1−[ χλ, lϕ]1 =θ(χ1λϕ
′
1−χ ′

1λϕ1)
∣∣∣ξ1

a

+θ2θ3 · · · θm(χ2λϕ
′
2−χ ′

2λϕ2)
∣∣∣ξ2

ξ1
+· · ·

+(χ(m+1)λϕ
′
m+1−χ ′

(m+1)λϕm+1)
∣∣∣b

ξm
.

(8)

Substituting Equation 7 and lϕ = λϕ into the left side of
Equation 8, we have

λ[ χλ, ϕ]1 +[ χ , ϕ]1 −[ χλ, λϕ]1 =[ χ , ϕ]1 +2iv[ χλ, ϕ]1 .
www.SID.ir
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Moreover,

θ(χ1λϕ
′
1 − χ ′

1λϕ1)
∣∣∣ξ1

a
+ θ2θ3 · · · θm(χ2λϕ

′
2 − χ ′

2λϕ2)
∣∣∣ξ2

ξ1

+ · · · + (χ(m+1)λϕ
′
m+1 − χ ′

(m+1)λϕm+1)
∣∣∣b

ξm

= θ((λα′
2 − α2)χ

′
1λ(a, λ) − (λα′

1 − α1)χ1λ(a, λ))

+ (β ′
2ϕ

′
m+1(b, λ) − β ′

1ϕm+1(b, λ)).

Note that

ω′(λ) = α′
2χ

′
1(a, λ) − α′

1χ1(a, λ) + (λα′
2 − α2)χ

′
1λ(a, λ)

− (λα′
1 − α1)χ1λ(a, λ).

So, Equation 8 becomes

θω′(λ)=[ χ , ϕ]1+2iv[ χλ, ϕ]1 +θ(α′
2χ

′
1(a, λ) − α′

1χ1(a, λ))

− (β ′
2ϕ

′
3(b, λ) − β ′

1ϕ3(b, λ)). (9)

Next, let μ be the arbitrary zero of ω(λ). Obviously, μ is
real since

ω(μ) =
∣∣∣∣∣ϕ1(x, μ) χ1(x, μ)

ϕ′
1(x, μ) χ ′

1(x, μ)

∣∣∣∣∣ = 0.

We have ϕi(x, μ) = ciχi(x, μ) (ci �= 0), where ci ∈ C,
i = 1, m + 1. From

ϕ2(ξ1, μ)=c1(α11χ1(ξ1, μ)+α12χ
′
1(ξ1, μ)) = c1χ2(ξ1, μ),

we get c1 = c2 �= 0. Similarly, we can obtain c1 = c2 =
· · · = cm+1 �= 0. Thus, with a short calculation, Equation 9
becomes

θω′(μ) = c1

(
θ

a2
1

∫ ξ1

a
|χ1(x, μ)|2dx + θ2 · · · θm

a2
2

×
∫ ξ2

ξ1
|χ2(x, μ)|2dx + · · · + 1

a2
m+1

×
∫ b

ξm
|χm+1(x, μ)|2dx + θρ1 + ρ2

)
.

Here, θi > 0, i = 1, m, ρj > 0, j = 1, 2, and c1 �= 0. So,
ω′(μ) �= 0. Hence, the analytic multiplicity of μ is one. By
Definition 1, the proof is completed.

Results and discussion
Asymptotic formulae for fundamental solutions and
eigenvalues

Lemma 2. Let λ = s2, s = σ + it. Then, the following
integral equations hold for k = 0, 1,

dk

dxk ϕ1(x, λ) = (−α2 + s2α′
2)

dk

dxk cos
s(x − a)

a1

+ a1
s

(−α1 + s2α′
1)

dk

dxk sin
s(x − a)

a1

+ 1
a1s

∫ x

a

dk

dxk sin
s(x − y)

a1
q(y)ϕ1(y, λ)dy,

(10)

dk

dxk ϕi+1(x, λ) = (αi1ϕi(ξi) + αi2ϕ
′
i(ξi)

× dk

dxk cos
s(x − ξi)

ai+1
+ ai+1

s
(βi1ϕi(ξi)

+ βi2ϕ
′
i(ξi))

dk

dxk sin
s(x − ξi)

ai+1
+ 1

ai+1s

×
∫ x

ξi

dk

dxk sin
s(x − y)

ai+1
q(y)ϕi+1(y, λ)dy,

i = 1, m.
(11)

Proof. Regard ϕ1(x, λ) as the solution of the following
non-homogeneous Cauchy problem:

{
a2

1u′′(x) + s2u(x) = q(x)ϕ1(x, λ),
ϕ1(a, λ) = −α2 + s2α′

2, ϕ′
1(a, λ) = −α1 + s2α′

1.

Using the method of constant changing, ϕ1(x, λ) satisfies

ϕ1(x, λ) = (−α2 + s2α′
2) cos

s(x − a)

a1
+ a1

s
(−α1 + s2α′

1)

× sin
s(x − a)

a1
+ 1

a1s

∫ x

a
sin

s(x − y)
a1

(y)ϕ1(x, λ)dy.

Then, differentiating it with respect to x, we have
Equation 10. The proof for Equation 11 is similar.

Lemma 3. Let λ = s2, Ims = t. Then, for α′
2 �= 0,

dk

dxk ϕ1(x, λ) = α′
2s2 dk

dxk cos
s(x − a)

a1

+ O(|s|k+1e|t| x−a
a1 ) (|λ| → ∞), (12)

dk

dxk ϕi+1(x, λ) = (−1)i α12 · · ·αi2α′
2si+2

a1 · · · ai
sin

s(ξ1 − a)

a1
· · ·

× sin
s(ξi − ξi−1)

ai

dk

dxk cos
s(x − ξi)

ai+1

+O(|s|k+i+1e|t|( ξ1−a
a1

+···+ x−ξi
ai+1

)
) (|λ|→∞),

i = 1, m, (13)

while if α′
2 = 0,

dk

dxk ϕ1(x, λ) = α′
1s

dk

dxk sin
s(x − a)

a1

+ O(|s|ke|t| x−a
a1 ) (|λ| → ∞), (14)
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dk

dxk ϕi+1(x, λ) = (−1)i−1 α12 · · ·αi2α′
1si+1

a1 · · · ai
cos

s(ξ1 − a)

a1

× sin
s(ξ2 − ξ1)

a2
· · · sin

s(ξi − ξi−1)

ai

dk

dxk

× cos
s(x − ξi)

ai+1
+ O(|s|k+ie|t|( ξ1−a

a1
+···+ x−ξi

ai+1
)
)

(|λ| → ∞), i = 1, m,
(15)

k = 0, 1. Each of these asymptotic equalities holds uni-
formly for x.

Proof. The asymptotic formulas for ϕ1(x, λ) are found
in the same way as those of [6]. Therefore, we shall
formulate them without proof.

Let α′
2 �= 0, substituting Equation 12 into Equation 11

(for k = 0), we have

ϕ2(x, λ) = (α11α
′
2s2 cos

s(ξ1 − a)

a1
− α12α′

2s3

a1
sin

s(ξ1 − a)

a1
)

× cos
s(x − ξ1)

a2
+ a2

s
(β11α

′
2s2 cos

s(ξ1 − a)

a1

− β12α′
2s3

a1
sin

s(ξ1 − a)

a1
) sin

s(x − ξ1)

a2

+ 1
a2s

∫ x

ξ1
sin

s(x − y)
a2

q(y)ϕ2(y, λ)dy

+ O(|s|2e|t|( ξ1−a
a1

+ x−ξ1
a2

)
).

(16)

It is easy to show that ϕ2(x, λ) = O(|s|3e|t|( ξ1−a
a1

+ x−ξ1
a2

)
).

Substituting it into Equation 16 gives Equation 13 for i = 1
and k = 0. The other cases follow by applying the same
procedure as in the case i = 1 and k = 0.

The proof of Equation 15 is similar to that of
Equation 13, hence omitted.

Theorem 5. Let λ = s2, Ims = t. Then, the char-
acteristic function ω(λ) has the following asymptotic
representations:

Case 1 β ′
2 �= 0, α′

2 �= 0,

ω(λ) = (−1)m α12α22 · · ·αm2α′
2β

′
2sm+5

a1a2 · · · am+1θ
sin

s(ξ1 − a)

a1

×sin
s(ξ2 − ξ1)

a2
· · · sin

s(ξm−ξm−1)

am
sin

s(b−ξm)

am+1

+ O(|s|m+4e|t|( ξ1−a
a1

+ ξ2−ξ1
a2

+···+ b−ξm
am+1

)
).

Case 2 β ′
2 �= 0, α′

2 = 0,

ω(λ) = (−1)m α12α22 · · ·αm2α′
1β

′
2sm+4

a1a2 · · · amθ
cos

s(ξ1 − a)

a1

× sin
s(ξ2−ξ1)

a2
· · · sin

s(ξm−ξm−1)

am
sin

s(b−ξm)

am+1

+ O(|s|m+3e|t|( ξ1−a
a1

+ ξ2−ξ1
a2

+···+ b−ξm
am+1

)
).

Case 3 β ′
2 = 0, α′

2 �= 0,

ω(λ) = (−1)m+1 α12α22 · · ·αm2α′
2β

′
1sm+4

a1a2 · · · am+1θ
sin

s(ξ1 − a)

a1

× sin
s(ξ2−ξ1)

a2
· · · sin

s(ξm−ξm−1)

am
cos

s(b−ξm)

am+1

+ O(|s|m+3e|t|( ξ1−a
a1

+ ξ2−ξ1
a2

+···+ b−ξm
am+1

)
).

Case 4 β ′
2 = 0, α′

2 = 0,

ω(λ) = (−1)m+1 α12α22 · · ·αm2α′
1β

′
1sm+3

a1a2 · · · amθ
cos

s(ξ1 − a)

a1

× sin
s(ξ2−ξ1)

a2
· · · sin

s(ξm−ξm−1)

am
cos

s(b−ξm)

am+1

+ O(|s|m+2e|t|( ξ1−a
a1

+ ξ2−ξ1
a2

+···+ b−ξm
am+1

)
).

Proof. The proof is obtained by substituting the asymp-
totic equalities dk

dxk ϕm+1(x, λ) into the representation

θω(λ) = (β1 +λβ ′
1)ϕm+1(b, λ)−(β2 +λβ ′

2)ϕ
′
m+1(b, λ).

Theorem 6. The following asymptotic formulas hold
for the real eigenvalues of the boundary value transmis-
sion problem (Equations 1 to 5):

Case 1 β ′
2 �= 0, α′

2 �= 0,√
λ

(1)
n = a1(n − 1)π

ξ1 − a
+ O(

1
n

),
√

λ
(i)
n = ai(n − 1)π

ξi − ξi−1

+ O(
1
n

),
√

λ
(m+1)
n = am+1(n − 1)π

b − ξm
+ O(

1
n

).

Case 2 β ′
2 �= 0, α′

2 = 0,√
λ

(1)
n = a1(n − 1

2 )π

ξ1 − a
+ O(

1
n

),
√

λ
(i)
n = ai(n − 1)π

ξi − ξi−1

+ O(
1
n

),
√

λ
(m+1)
n = am+1(n − 1)π

b − ξm
+ O(

1
n

).
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Case 3 β ′
2 = 0, α′

2 �= 0,√
λ

(1)
n = a1(n − 1)π

ξ1 − a
+ O(

1
n

),
√

λ
(i)
n = ai(n − 1)π

ξi − ξi−1

+ O(
1
n

),
√

λ
(m+1)
n = am+1(n − 1

2 )π

b − ξm
+ O(

1
n

).

Case 4 β ′
2 = 0, α′

2 = 0,√
λ

(1)
n = a1(n − 1

2 )π

ξ1 − a
+ O(

1
n

),
√

λ
(i)
n = ai(n − 1)π

ξi − ξi−1

+ O(
1
n

),
√

λ
(m+1)
n = am+1(n − 1

2 )π

b − ξm
+ O(

1
n

).

Here, i = 2, m.

Proof. By applying the known Rouche theorem, we can
obtain these conclusions (cf. Theorem 2.3 of [11]).

Corollary 1. The real eigenvalues of the problem
(Equations 1 to 5) are bounded below.

Proof. Let s = it, i.e., λ = −t2. In the above formulas,
it follows that ω(−t2) → ∞ as t → ∞. Consequently,
ω(−t2) �= 0 for λ negative and sufficiently large in
modulus.

Green function and resolvent operator
Let us consider the following differential equation:

−(a(x)u′(x))′ +q(x)u(x)−λu(x) = −f (x), x ∈ I, (17)

where I =[ a, ξ1) ∪ (ξ1, ξ2) ∪ · · · ∪ (ξm, b], a(x) = a2
1 for

x ∈[ a, ξ1), a(x) = a2
2 for x ∈ (ξ1, ξ2), · · · , a(x) = a2

m+1
for x ∈ (ξm, b], a1, a2, · · · am+1 are positive real constants,
together with the eigenparameter-dependent boundary
and transmission conditions (Equations 2 to 5).

We can represent the general solution of homogeneous
differential equation (Equation 1), appropriate to Equation
17. By applying the standard method of variation of con-
stants, we shall search the general solution of the non-
homogeneous differential equation (Equation 17) in the
form

U(x)=

⎧⎪⎨⎪⎩
C11(x, λ)ϕ1(x, λ) + C12(x, λ)χ1(x, λ), x ∈[ a, ξ1),

Ci1(x, λ)ϕi(x, λ) + Ci2(x, λ)χi(x, λ), x ∈ (ξi−1, ξi), i = 2, m,

C(m+1)1(x, λ)ϕm+1(x, λ) + C(m+1)2(x, λ)χm+1(x, λ] , x ∈ (ξm, b),

(18)

where the functions Ckj(x, λ) (k = 1, m + 1, j = 1, 2)

satisfy the linear system of equation{
C′

11(x, λ)ϕ1(x, λ) + C′
12(x, λ)χ1(x, λ) = 0,

C′
11(x, λ)ϕ′

1(x, λ) + C′
12(x, λ)χ ′

1(x, λ) = f (x)

for x ∈[ a, ξ1),

{ C′
i1(x, λ)ϕi(x, λ) + C′

i2(x, λ)χi(x, λ) = 0,

C′
i1(x, λ)ϕ′

i(x, λ) + C′
i2(x, λ)χ ′

i (x, λ) = f (x)

for x ∈ (ξi−1, ξi), and

⎧⎨⎩C′
(m+1)1(x, λ)ϕm+1(x, λ)+C′

(m+1)2(x, λ)χm+1(x, λ)=0,

C′
(m+1)1(x, λ)ϕ′

m+1(x, λ)+C′
(m+1)2(x, λ)χ ′

m+1(x, λ)= f (x)

for x ∈ (ξm+1, b]. Because the characteristic function
ω(λ) �= 0, the following relations can be easily obtained:

C11(x, λ) = 1
ω1(λ)

∫ ξ1

x
f χ1dy + C11,

C12(x, λ) = 1
ω1(λ)

∫ x

a
f ϕ1dy + C12, x ∈[ a, ξ1),

Ci1(x, λ) = 1
ωi(λ)

∫ ξi

x
f χidy + Ci1,

Ci2(x, λ) = 1
ωi(λ)

∫ x

ξi−1
f ϕidy + Ci2, x ∈ (ξi−1, ξi),

C(m+1)1(x, λ) = 1
ωm+1(λ)

∫ b

x
f χm+1dy

+ C(m+1)1,

C(m+1)2(x, λ) = 1
ωm+1(λ)

∫ x

ξm
f ϕm+1dy

+ C(m+1)2, x ∈ (ξm, b] .

Here, Ckj (k = 1, m + 1, j = 1, 2) are arbitrary constants.
In the following, for simplicity, set ϕ(x) = ϕ(x, λ), etc.

Substituting the above equations into Equation 18, the
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general solution U(x, λ) of the non-homogeneous differ-
ential equation (Equation 17) is obtained as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ1(x)

ω1(λ)

∫ ξ1

x
f χ1dy + χ1(x)

ω1(λ)

∫ x

a
f ϕ1dy

+ C11ϕ1(x) + C12χ1(x), x ∈[ a, ξ1),

ϕi(x)

ωi(λ)

∫ ξi

x
f χidy + χi(x)

ωi(λ)

∫ x

ξi−1
f ϕidy + Ci1ϕi(x)

+ Ci2χi(x), x ∈ (ξi−1, ξi), i = 2, m,

ϕm+1(x)

ωm+1(λ)

∫ b

x
f χm+1dy + χm+1(x)

ωm+1(λ)

∫ x

ξm
f ϕm+1dy

+ C(m+1)1ϕm+1(x) + C(m+1)2χm+1(x), x ∈ (ξm, b],

(19)

where Ckj (k = 1, m + 1, j = 1, 2) are arbitrary constants.
By differentiating Equation 19, we have the representation
of U ′(x, λ), i.e.,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ′
1(x)

ω1(λ)

∫ ξ1

x
f χ1dy + χ ′

1(x)

ω1(λ)

∫ x

a
f ϕ1dy

+ C11ϕ
′
1(x) + C12χ

′
1(x), x ∈[ a, ξ1),

ϕ′
i(x)

ωi(λ)

∫ ξi

x
f χidy + χ ′

i (x)

ωi(λ)

∫ x

ξi−1
f ϕidy

+ Ci1ϕ
′
2(x) + Ci2χ

′
i (x), x ∈ (ξi−1, ξi), i = 2, m,

ϕ′
m+1(x)

ωm+1(λ)

∫ b

x
f χm+1dy + χ ′

m+1(x)

ωm+1(λ)

∫ x

ξm
f ϕm+1dy

+ C(m+1)1ϕ
′
m+1(x) + C(m+1)2χm+1(x), x ∈ (ξm, b] .

(20)

By using the system of Equation 19 and the proof pro-
cess of Theorem 3, the following equalities are obtained
for lv(U), v = 1, 2m + 2:

l1(U) = −C12ω1(λ), + (21)

l2(U) = C(m+1)1ωm+1(λ), (22)

l2i+1(U) = ϕi+1(ξi)

ωi+1(λ)

∫ ξi+1

ξi
f χi+1dy − χi+1(ξi)

ωi(λ)

×
∫ ξi

ξi−1
f ϕidy − Ci1ϕi+1(ξi)

−Ci2χi+1(ξi)+C(i+1)1ϕi+1(ξi)+C(i+1)2χi+1(ξi+1), i=1, m,
(23)

l2i+2(U) = ϕ′
i+1(ξi)

ωi+1(λ)

∫ ξi+1

ξi
f χi+1dy − χ ′

i+1(ξi)

ωi(λ)

×
∫ ξi

ξi−1
f ϕidy − Ci1ϕ

′
i+1(ξi) − Ci2χ

′
i+1(ξi)

+ C(i+1)1ϕ
′
i+1(ξi) + C(i+1)2χ

′
i+1(ξi+1),

i = 1, m.
(24)

Because U(x, λ) is a solution and ω(λ) �= 0, from
the boundary condition (Equation 2) and equality
(Equation 21), we have C12 = 0. Similarly, from the
equality (Equation 22) and boundary condition
(Equation 3), we have C(m+1)1 = 0.

On the other hand, by taking into account Equations 23
and 24 and transmission conditions, the following linear
equation system according to the variables Cij (i = 2, m,
j = 1, 2) is obtained:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ci1ϕi+1(ξi) + Ci2χi+1(ξi) − C(i+1)1ϕi+1(ξi) − C(i+1)2χi+1(ξi)

= ϕi+1(ξi)

ωi+1(λ)

∫ ξi+1

ξi
f χi+1dy − χi+1(ξi)

ωi(λ)

∫ ξi

ξi−1
f ϕidy,

Ci1ϕi+1(ξi) + Ci2χi+1(ξi) − C(i+1)1ϕi+1(ξi) − C(i+1)2χi+1(ξi)

= ϕi+1(ξi)

ωi+1(λ)

∫ ξi+1

ξi
f χi+1dy − χi+1(ξi)

ωi(λ)

∫ ξi

ξi−1
f ϕidy.

(25)

By using the definitions of solutions ϕi(x, λ) and χi(x, λ)

(i = 2, m + 1), the following relation is obtained for the
determinant of this linear equation system:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ2(ξ1) −ϕ2(ξ1) −χ2(ξ1) 0 · · · 0 0 0 0
ϕ′

2(ξ1) −ϕ′
2(ξ1) −χ ′

2(ξ1) 0 · · · 0 0 0 0
0 ϕ3(ξ2) −χ3(ξ2) ϕ3(ξ2) · · · 0 0 0 0
0 −ϕ′

3(ξ2) −χ ′
3(ξ2) ϕ′

3(ξ2) · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · −χm(ξm−1) ϕm(ξm−1) χm(ξm−1) 0
0 0 0 0 · · · −χ ′

m(ξm−1) ϕ′
m(ξm−1) χ ′

m(ξm−1) 0
0 0 0 0 · · · 0 −ϕm+1(ξm) −χm+1(ξm) χm+1(ξm)

0 0 0 0 · · · 0 −ϕ′
m+1(ξm) −χ ′

m+1(ξm) χ ′
m+1(ξm)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
www.SID.ir
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=
m+1∏
i=2

ωi(λ).

Since this determinant is different from zero, the solu-
tion of Equation 25 is unique. If we solve the system
(Equation 25), we get the following equalities:

Ci1 = 1
ωi+1(λ)

∫ ξi+1

ξi
f χi+1dy + · · · + 1

ωm+1(λ)

×
∫ b

ξm
f χm+1dy, i = 1, m,

C(i+1)2 = 1
ω1(λ)

∫ ξ1

a
f ϕ1dy + · · · + 1

ωi(λ)

×
∫ ξi

ξi−1
f ϕidy, i = 1, m.

Finally, by substituting the coefficients Ckj ( k =
1, m + 1, j = 1, 2 ) in Equation 24, we can get the formulas
of the resolvent U(x, λ). Further, let

ϕ(x) =

⎧⎪⎨⎪⎩
ϕ1(x), x ∈[ a, ξ1),
ϕi(x), x ∈ (ξi−1, ξi), i = 2, m,
ϕm+1(x), x ∈ (ξm, b] ,

χ(x) =

⎧⎪⎨⎪⎩
χ1(x), x ∈[ a, ξ1),
χi(x), x ∈ (ξi−1, ξi), i = 2, m,
χm+1(x), x ∈ (ξm, b] .

Then,

U(x, λ)= ϕ(x)

ωi(λ)

∫ b

x
f χidy + χ(x)

ωi(λ)

∫ x

a
f ϕidy, i=1, m + 1.

(26)

Thus, the resolvent of the boundary-value transmission
problem is obtained. We can find the Green function from
the resolvent (Equation 31). Namely, denoting

G(x, y; λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕi(y, λ)χ(x, λ)

ωi(λ)
, a ≤ y ≤ x ≤ b, x �= ξ1, ξ2,

· · · , ξm, y �= ξ1, ξ2, · · · , ξm,

ϕ(x, λ)χi(y, λ)

ωi(λ)
, a ≤ x ≤ y ≤ b, x �= ξ1, ξ2,

· · · , ξm, y �= ξ1, ξ2, · · · , ξm,

i = 1, m + 1.

(27)

We can rewrite the resolvent (Equation 26) in the next
form

U(x, λ) =
∫ b

a
G(x, y; λ)f (y)dy.

Let λ not be an eigenvalue of A. It is obvious that the
operator equation

(λI − A)U = F , F = (f (x), f1, f2) ∈ K

is equal to the following problem:

lu := −(a(x)u′(x))′ + q(x)u(x) = λu(x) − f (x) (28)

to hold in I =[ a, ξ1)∪ (ξ1, ξ2)∪ · · ·∪ (ξm, b], subject to the
eigenparameter-dependent boundary conditions

λ(α′
1u(a) − α′

2u′(a)) − (α1u(a) − α2u′(a)) = f1, (29)

λ(β ′
1u(b) − β ′

2u′(b)) + (β1u(b) − β2u′(b)) = f2 (30)
and transmission conditions (Equations 4 and 5). The
general solution V (x, λ) of Equation 28 can be represented
as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ1(x)

ω1(λ)

∫ ξ1

x
f χ1dy + χ1(x)

ω1(λ)

∫ x

a
f ϕ1dy

+ D11ϕ1(x) + D12χ1(x), x ∈[ a, ξ1),
ϕi(x)

ωi(λ)

∫ ξi

x
f χidy + χi(x)

ωi(λ)

∫ x

ξi−1
f ϕidy

+ Di1ϕi(x) + Di2χi(x), x ∈ (ξi−1, ξi), i = 2, m,

ϕm+1(x)

ωm+1(λ)

∫ b

x
f χm+1dy + χm+1(x)

ωm+1(λ)

∫ x

ξm
f ϕm+1dy

+ D(m+1)1ϕm+1(x) + D(m+1)2χm+1(x), x ∈ (ξm, b] ,
(31)

where, Dkj (k = 1, m + 1, j = 1, 2) are arbitrary constants.
Substituting Equation 31 into Equations 29 and 30 as well
as Equations 4 and 5, we obtain

D12 = − f1
ω1(λ)

, D(m+1)1 = f2
ωm+1(λ)

,

Di1 = 1
ωi+1(λ)

∫ ξi+1

ξi
f χi+1dy + · · · + 1

ωm+1(λ)

×
∫ b

ξm
f χm+1dy + f2

ωm+1(λ)
, i = 1, m,

D(i+1)2 = 1
ω1(λ)

∫ ξ1

a
f ϕ1dy + · · · + 1

ωi(λ)

×
∫ ξi

ξi−1
f ϕidy − f1

ω1(λ)
, i = 1, m.

Substitution of these equivalents into Equation 31, we
get

V (x, λ) = U(x, λ) − χ(x)

ω1(λ)
f1 + ϕ(x)

ωm+1(λ)
f2. (32)

Let

N1(f ) = α1f (a) − α2f ′(a), N ′
1(f ) = α′

1f (a) − α′
2f ′(a),

N2(f ) = β1f (b) − β2f ′(b), N ′
2(f ) = β ′

1f (b) − β ′
2f ′(b).
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Then, the formula (Equation 32) can also be written as

V (x, λ) =
∫ b

a
f (y)G(x, y, λ)dy + 1

ρ1
N ′

1(G(x, ·, λ))f1

+ 1
ρ2

N ′
2(G(x, ·, λ))f2, (33)

where G(x, y, λ) is the same with Equation 27.
Now, denoting

G̃x,λ =
⎛⎜⎝ G(x, ·, λ)

N ′
1(G(x, ·, λ))

N ′
2(G(x, ·, λ))

⎞⎟⎠ ,

Fp =
⎛⎜⎝ f (x)

f1
f2

⎞⎟⎠ , Fp =

⎛⎜⎜⎝
f (x)

f1
f2

⎞⎟⎟⎠ .

The formula (Equation 33) takes the form

V (x, λ) =[ G̃x,λ, Fp] .

So, the resolvent of the operator R(λ, A) = (λI − A)−1

can be represented in the form

R(λ, A)F =
⎛⎜⎝ [ G̃x,λ, Fp]

N ′
1[ G̃x,λ, Fp]

N ′
2[ G̃x,λ, Fp]

⎞⎟⎠ .

Conclusions
Three important conclusions can be really drawn: (1) the
residual spectrum of the operator A is empty, i.e., σr(A) =
∅; (2) if θi > 0 (i = 1, m) and ρj > 0 (j = 1, 2), a.e., then
the operator A has only real point spectrum, i.e., σ(A) =
σp(A) ⊂ R; (3) if B = JA > 0, then the point spectrum of
the operator A is all real, i.e., σp(A) ⊂ R.
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