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Abstract

Purpose: In this paper, we extend the concept of covering dimension of general topological spaces to L-topological
spaces using α-Q-covers and quasi-coincidence relation.

Methods: Dimension theory is a branch of topology devoted to the definition and study of the notion of dimension
in certain classes of topological spaces. The dimension of a general topological space X can be defined in three
different ways: the small inductive dimension indX, the large inductive dimension IndX, and the covering dimension
dimX. The covering dimension dim behaves somewhat better than the other two dimensions, i.e., that for the
dimension dim, a large number of theorems of the classical theory can be extended to general topological spaces.
Also, there is a substantial theory of covering dimension for normal spaces.

Results: A characterization of covering dimension in the weakly induced L-topological spaces is obtained. Moreover,
a characterization of covering dimension for fuzzy normal spaces is also obtained.

Conclusions: Finally, This paper provides some brief sketches regarding the topics covering dimension in
L-topological spaces and covering dimension for fuzzy normal spaces. The neighborhood structure used for the
investigations is the quasi-coincident neighborhood structure.
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Introduction
Adnadjevic [1,2] introduced the concept of generalized
fuzzy spaces (GF spaces ) and defined two dimension
functions, F-ind and F-Ind. Later, Cuchillo and Tarres [3]
extended them into fuzzy topological spaces in the case
of zero dimensionality. Ajmal and Kohli [4] have studied
the concept of covering dimension in fuzzy topological
spaces. however, all these studies have been done in the
[0,1] fuzzy topological spaces. In this paper, an attempt is
made to extend the notions of covering dimension (dim)
to L-topological spaces (L-ts) using quasi-coincidence
relation.

Let L be a complete lattice. Its universal bounds are
denoted by ⊥ and �. Thus, ⊥≤α ≤ � for all α ∈ L.
We set

∨
φ = ⊥ and

∧
φ = �. A unary operation

′ on L is a quasi-complementation. It is an involution
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(i.e., α” = α for all α ∈ L) that inverts the ordering (i.e.,
α ≤ β implies β ′ ≤ α′). In (L′), DeMorgan’s laws hold
(
∨

A)′= ∧{α′; α ∈ A} and (
∧

A)′= ∨{α′; α ∈ A} for
every A ⊂ L. Moreover, in particular, ⊥′ = � and
�′ = ⊥.

A molecule or co-prime element in a lattice L is a joined
irreducible element in L, and the set of all nonzero co-
prime elements of L is denoted by M(L). Also, we denote
A(α) = {x ∈ X : A(x) �≤ α} and A[α] = {x ∈ X : A(x) ≤ α}.

A complete lattice L is completely distributive if it satis-
fies either of the logically equivalent CD1 or CD2 as given
below:

CD1.
∧

i∈I(
∨

j∈Ji ai,j) = ∨
φ∈�i∈I Ji(

∧
i∈I ai,φ(i))

CD2.
∨

i∈I(
∧

j∈Ji aij) = ∧
φ∈�i∈I Ji(

∨
i∈I ai,φ(i))

for all {{ai,j : j ∈ Ji} : i ∈ I} ⊂ P(L) \ {φ}, I �= φ

If (L′) is a complete lattice, then for a set X, LX is the
complete lattice of all maps from X into L called L-sets or
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L-subsets of X. Under point wise ordering, a ≤ b in LX if
and only if a(x) ≤ b(x) in L for all x ∈ X. The constant
member of LX with value α is denoted by α itself.

Clearly, LX has a quasi-complementation ′ defined point
wisely α′(x) = α(x)′ for all α ∈ L and x ∈ X. Thus,
DeMorgan’s laws are inherited by (LX ,′ ).

Let (L,′ ) be a complete lattice and X be any nonempty
set. A subfamily τ ⊂ LX which is closed under the forma-
tion of sups and finite infs ( both formed in LX) is called
an L-topology on X, and its members are called open L-
sets. The pair (X, τ) is called an L-topological space (L-ts).
Quasi-complements of open L-sets are called closed L-
sets. This means that we are considering the category of
L-Top.

For each (X, T) ∈ Top, we can define an L-fuzzy space
(X, ωL(T)) with ωL(T) =	 C((X, T), (L, SUP(L))) 
,
that is, ωL(T) precisely consists of all continuous map-
pings from (X, T) to (L, SUP(L)), where SUP(L)is the
upper topology generated by the sub-basic sets. Again,
given (Y , S) ∈ L-Top, we can define a topological space
(Y , ıL(S)) with ıL(S) = ∨{V ←(SUP(L)); V ∈ S}.

We know that the set of all nonzero co-prime elements
in a completely distributive lattice is

∨
-generating. More-

over, for a continuous lattice L and a topological space
(X, T), T = ıLωL(T) is not true in general. By the propo-
sition of Kubiak (see Proposition 3.5 in [5]), we know that
one sufficient condition for T = ıLωL(T) is that L is
completely distributive.

In 1988, Wang extended the Lowen functor ω for com-
pletely distributive lattices as follows: for a topological
space (X, T), (X, ω(T)) is called the induced space of
(X, T), where ω(T) = {A ∈ LX : ∀a ∈ M(L), A(α′) ∈
T}. In 1992, Kubiak also extended the Lowen functor ωL
for a complete lattice L. In fact, when L is completely
distributive, ωL = ω.

An L-topological space (X, τ) is called a weakly induced
space if ∀α ∈ M(L), ∀A ∈ τ ; it is true that A(α′) ∈[ τ ],
where [ τ ] is the set of all crisp open sets in τ .

Based on these facts, in this paper, we use a complete,
completely distributive lattice L in LX . For a standardized
basic fixed-basis terminology, we follow Hoehle and Rod-
abaugh [6]. We take q to denote the quasi-coincidence
relation. Also, L − Pnt(X) denotes the collection of all
L-fuzzy points in the L-ts (X, τ).

Methods
In this work, the neighborhood structure used for
the investigations is the quasi-coincident neighborhood
structure(Q-nbd). Also, there are several definitions of
fuzzy compactness on fuzzy topological space introduced
by many authors. These notions are defined using vari-
ous tools such as fuzzy cover, Q-cover, etc. Among which,
only N-compactness and related tools are considered in
this work for the investigations.

Covering dimension
Definition 1. Let (X, τ ) be an L-ts. A fuzzy point xα is

quasi-coincident with A ∈ LX (and write xα ≺ A) if xα �≤
A′. Also, A quasi-coincides with B at x (AqB at x) if A(x) �≤
B′(x). We say that A is quasi-coincident with B and write
AqB if AqB at x for some x ∈ X. Further, A¬ qB means A
does not quasi-coincide with B. We say that U ∈ τ is a
quasi-coincident nbd of xα (Q-nbd) if xαqU . The family of
all Q-nbds of xα is denoted by Qτ (xα) or Q(xα) [7].

Definition 2. Let (X, τ ) be an L-ts, A ∈ LX . � ⊂ LX is
called a Q-cover of A if for every x ∈Supp(A), there exists
U ∈ � such that xA(x) ≺ U . � is a Q-cover of (X, τ) if �

is a Q-cover of �. If α ∈ M(L), then C ∈ τ is an α-Q-nbd
of A if C∈ Q(xα) for every xα ≤ A. � is called an α-Q-
cover of A if for every xα ≤ A, there exists U ∈ � such
that xα ≺ U . � is called an open α-Q-cover of A if � ⊂ δ

and � is an α-Q-cover of A. �0 ⊂ LX is called a sub α-
Q-cover of A if �0 ⊂ � and �0 is also an α-Q-cover of
A [7].

Definition 3. Let U = {Uλ : λ ∈ �}, not all zero, be a
family of L-subsets of an L-ts X. The order of a fuzzy point
xα in U is the number of elements of U which are quasi-
coincident with xα . We denote it by Ord(xα ,U). The order
of a collection U is defined as the largest integer n such
that for every xα with α ∈ M(L), xα quasi-coincides with
(n + 1) members of U ; that is, Ord(xα , U) = n + 1 for all
α ∈ M(L).

Definition 4. Let (X, τ ) be an L-ts, A ∈ LX . Then, α-
dimA is the least integer n such that every finite open α-
Q-cover of A has an open α-Q-cover refinement of order
not exceeding n. Also, dim A = n if α-dim A = n for every
α ∈ M(L). dim(X, τ) = n if dim � = n. Where a collection
A refines a collection B(A < B) if for every A ∈ A, there
exists B ∈ B such that A ≤ B.

Remarks 1. dim X = −1 if and only if X is void and
dimX = n if it is true that dimX ≤ n and dimX ≤ n − 1 is
not true. Also, dim X = ∞ if it is not true for any integer
n that dimX ≤ n.

Theorem 1. Let (X, τ ) be an L-ts. The following are then
equivalent:

(i) dim X ≤ n
(ii) For every α ∈ M(L), every finite α-Q-cover

{U1, U2, . . . . .Uk} of � by open L-subsets, there is
an open α-Q-cover {V1, V2, . . . . .Vk} of order not
exceeding n such that Vi < Ui for i = 1, 2, 3, . . . k.

(iii) If {U1, U2, . . . . .Un+2} is an open α-Q-cover of �,
then there exists an open α-Q- cover
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{V1, V2, . . . . .Vn+2} of � such that Vi < Ui and
InfVi

1≤i≤n+2
< α, where α ∈ M(L).

Proof.

(i) ⇒ (ii)

Let dimX ≤ n, α ∈ M(L) and U = {U1, U2, . . . . .Uk}
be a finite open α-Q-cover of �. Now, if U has a refine-
ment W with order not exceeding n and if W ∈ W ,
there exists some i such that Wi < Ui and suppose
that each W is associated with a unique Ui containing
it and take Vi = Sup{W : W < Ui}. Clearly, each Ui
is open and Wi < Ui for some i. Now, since order
of W is not exceeding n, it follows that each xα ∈
M(LX) quasi-coincides with at most n + 1 members of
W , and each W ∈ W is associated with a unique Ui.
Hence, xα quasi-coincides with at most n + 1 members
of {Vi}. Hence, {Vi} is an α-Q-cover of � with order not
exceeding n.

(i) ⇒ (iii) and (ii) ⇒ (i) are obvious.

(iii) ⇒ (ii)

Let U = {U1, U2, . . . . .Uk} be a finite open an α-Q-cover
of �. Assume that k > n + 1. Define the collection {Gi :
1 ≤ i ≤ n + 2} as follows: Gi = Ui if i ≤ n + 1 and
Gn+2 = Sup

n+2≤i≤k
Ui. Now, clearly, {Gi : 1 ≤ i ≤ n + 2} is

an open α-Q-cover of �, and by hypothesis of (iii), there
is an open α-Q-cover {H1, H2,......Hn+2} such that Hi < Gi
and Inf

1≤i≤n+2
Hi < α.

Now, take Wi = Ui. If i ≤ n + 1 and Wi = Ui ∧
Hn+2 if i > n + 1, then clearly, the collection W =
{W1, W2, . . . . .Wk} is an open α-Q-cover of � with the
property that Wi < Ui and Inf

1≤i≤n+2
Wi < α. Now,

if there exists a subset B of {1, 2, 3, . . . . .k} with n + 2
elements such that Inf

i∈B
Wi > α, we will renumber the

family W to give a family P = {P1, P2, . . . . .Pk} such that
Inf

1≤i≤n+2
Pi > α. Now, proceeding in a manner similar to

the construction above, we obtain an an α-Q-cover W ′ =
{W ′

1, W ′
2, . . . . .W ′

k} by open fuzzy sets with Wi < Pi and
Inf

1≤i≤n+2
Wi < α.

Now, again, if C is a subset of {1, 2, . . . .k} with n + 2
elements such that InfPi > α

i∈P
, then Inf

Wi∈W
W ′

i < α. By

repeating this process for a finite number of times, we will
end up with an open α-Q-cover {V1, V2, . . . . .Vk} of � with
order not exceeding n and Vi < Ui.

This completes the proof.

Theorem 2. In a weakly induced L-ts, the following are
equivalent:

(i) dim(X, τ) ≤ n.
(ii) There exists an α ∈ M(L) such that α–dim

(X, τ) ≤ n.
(iii) dim(X, [ τ ] ) ≤ n.

Proof.

(i) ⇒ (ii) is clear.

(ii) ⇒ (iii)

Let U = {U1, U2, . . . . .Uk} ⊂[ τ ] be a finite open cover of
X, then {χU : U ∈ U} is an open α-Q-cover of �. Since α–
dim(X, τ) ≤ n, it follows that {χU : U ∈ U} has an open
refinement V of order not exceeding n. Now, consider
W = {V(α′) : V ∈ V }, where V(α′) = {x ∈ X : V (x) �≤ α′}.
By the weakly induced property, W is an open cover of X.
Now, we will prove that W has an order not exceeding n.

For, if possible, let order of W be greater than n. There-
fore, there exists x ∈ X which belongs to at least n + 2
members of W , that is

1. x ∈ {x ∈ X : V (x) �≤ α′} for at least n + 2 members of
V ,

2. V (x) �≤ α′ for at least n + 2 members of V or xα ≺V
for at least n + 2 members of V . This is a
contradiction to that order of V is not exceeding n.

(iii) ⇒ (i)

Let U ⊂[ τ ] be an open α-Q-cover of � where α ∈ M(L).
Since (X, τ ) is weakly induced, it follows that {U(α′) : U ∈
U} is an open cover of X, and it has an open refinement
of order not exceeding n say V . For every V ∈ V , let UV
be such that V < UV(α′) . Consider W = {χV ∧ UV :
V ∈ V , V < UV(α′)}. This is an open refinement of
U with order not exceeding n. For, if possible, let order
of W be greater than n, then there exists xα ∈ M(LX)

which quasi-coincides with at least n + 2 members of W ,
that is

1. xα �≤ (χV ∧ UV )′ for at least n + 2 members of W ,
2. xα �≤ χ

′
V ∨ U ′

V for at least n + 2 members of W ,
3. xα ≺ χV or xα ≺ UV for at least n + 2 members

of V .

In both cases, x∈V for at most n + 2 members of V , and
this is a contradiction.

This completes the proof.

Definition 5. A refinement {bt : t ∈ T} of {as : s ∈ S} is
said to be precise if T = S and bs ≤ as for each s ∈ S.
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Theorem 3. In a weakly induced L-ts, the following are
equivalent:

(i) dim (X, τ ) ≤ n.
(ii) For every α ∈ M(L), every finite α-Q-cover of � by

open L- sets has a precise open refinement of order
not exceeding n.

(iii) There exists an α ∈ M(L) such that every finite
α-Q-cover of � by open L- sets has a precise open
refinement of order not exceeding n.

(iv) If {U1, U2, . . . . .Un+2} is an open α-Q-cover of �,
then there exists an open α-Q- cover
{V1, V2, . . . . .Vn+2} of � such that Vi < Ui, where
α ∈ M(L).

(v) There exists an α ∈ M(L) such that α-dim(X,τ) ≤ n.
(vi) dim (X, [ τ ] ) ≤ n.

Proof. Equivalence of (i), (v), and (vi) follows from
Theorem 2. All other implications except (iii) ⇒ (i)
follows from Theorem 1.

(iii) ⇒ (i)

By Theorem 2, it is enough to prove that dim(X, [ τ ] ) ≤
n. Let U ⊂[ τ ] be a finite open cover of X. Then {χU : U ∈
U} is a finite open α-Q-cover of �, and it has a precise
open refinement of order not exceeding n. Let it be V =
{V1, V2,.....Vk}. Let W = {Vi(α′) : i = 1, 2, 3, . . . . . . .}. By
weakly induced property, W is an open cover of X. Also,
it is easy to show that order of W is not exceeding n, and
hence, dim (X, [ τ ] ) ≤ n.

This completes the proof.

Normal spaces
Definition 6. (X, τ) is called normal if for every closed

L-subset P and every open L-subset U in (X, τ) such that
P ≤ U , there exists an open L-subset V in (X, τ) such that
P ≤ V ≤ clV ≤ U [7].

Definition 7. Let (X, τ) be an L-ts. An α-Q-cover {Uλ :
λ ∈ ∧} of X is said to be shrinkable if there exists an open
α-Q-cover {Vλ : λ ∈ ∧} of X such that cl Vλ ≤ Uλ for each
λ ∈ ∧

Definition 8. Let A = {At : t ∈ T} ⊆ LX , D ∈ LX ,
α ∈ M(L). If ∀xα ≤ D, ∃P ∈ η(xα) and a finite subset T0
of T such that ∀t ∈ T − T0, At ≤ P, then A is called α-
locally finite in D. If there exists γ ∈ β∗(α) such that A is
γ -locally finite in D, then A is called α−-locally finite in D
[7].

Theorem 4. The following are equivalent in an L-ts
(X, τ ):

(i) X is normal.

(ii) For every α ∈ M(L) , every point finite α-Q-cover of
� by open L- sets is shrinkable.

(iii) For every α ∈ M(L), every open α-Q-cover of � has
a locally finite refinement by closed L- sets.

Proof.

(i) ⇒ (ii).

Let α ∈ M(L) and {Uλ : λ ∈ �} be a point finite α-Q-
cover of a normal L-ts X. Also, let � be well ordered. We
will construct a shrinking of {Uλ : λ ∈ �} by induction.
Let μ ∈ � and for each λ ≤ μ suppose that there is an
open L-set Vλ such that clVλ ≤ Uλ and for each ν ≤ μ,
{ ∨

λ≤ν

Vλ} ∨ { ∨

λ>ν

Uλ} is an α-Q-cover of X.

Let xα ∈ M(LX). Now, since {Uλ : λ ∈ �} is point finite
and � is well ordered, there exists a largest element ξ ∈ �

such that xαqUξ . Now if ξ ≥ μ then xαq
∨

λ≥μ

Uλ and if

ξ < μ then xαq
∨

λ<μ

Vλ. Thus, { ∨

λ≥μ

Uλ

∨ ∨

λ<μ

Vλ} is an α-

Q-cover of X. Therefore, we have { ∨

λ≥μ

Uλ

∨ ∨

λ<μ

Vλ}′ ≤
Uμ, and since X is normal, there exists an open L-set Vμ

such that { ∨

λ>μ

Uλ

∨ ∨

λ≤μ

Vλ}′ ≤ Vμ ≤ clVμ ≤ Uμ.

Thus, we have clVμ ≤ Uμ and { ∨

λ≤μ

Uλ

∨ ∨

λ<μ

Vλ} is an

α-Q-cover of X. Thus, the construction of a shrinking of
{Uλ : λ ∈ �} is complete by induction.

(ii) ⇒ (iii) is clear.

(iii) ⇒ (i)

Let X be a space in which for any α ∈ M(L), every point
finite α-Q-cover has a locally finite refinement by closed
L-sets. Let A, B be such that A¬qB. Now clearly {A′, B′} is
an open α-Q-cover of X. Thus, by assumption, {A′, B′} has
a locally finite refinement by closed L-sets say F. Let E be
the union of members of F which are not quasi-coincident
with A and F be the union of members of F which are not
quasi-coincident with B. Clearly, E and F are closed and
take U = E′ and V = F ′. Now, clearly, U is not quasi-
coincident with V and A ≤ U and B ≤ V . Then, Theorem
9.2.11 of [7] X is normal.

This completes the proof.

Definition 9. {Aλ : λ ∈ ∧}, {Bλ : λ ∈ ∧} are said to be
similar if for each finite subset μ of ∧, the sets ∧λ∈μAλ and
∧λ∈∧Bλ are either both zero or both non zero.

Proposition 1. Let {Uλ : λ ∈ ∧} be a locally finite col-
lection of open L-sets of a normal space X and {Fλ : λ ∈ ∧}
be a family of closed L-sets such that Fλ < Uλ for λ ∈ ∧}.
Then there exists a family {Gλ : λ ∈ ∧} of open L-sets such
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that Fλ < Gλ < ClGλ < Uλ and the families {Fλ : λ ∈ ∧}
and {clGλ : λ ∈ ∧} are similar.

Proof. Let
∧

be well ordered with a least element. Now,
by induction, we will construct a family {Gλ : λ ∈ ∧} of
open L-sets such that Fλ < Gλ < clGλ < Uλ and for each
ν of

∧
, the family {Kν

λ : λ ∈ ∧} given by Kν
λ = clGλ if

λ ≤ ν and Kν
λ = Fλ if λ > ν is similar to {Fλ : λ ∈ ∧}. Let

μ ∈ ∧
and Gλ has been defined for λ < μ such for each

ν < μ, the family {Kν
λ : λ ∈ ∧

is similar to {Fλ : λ ∈ ∧}.
Let {Lλ : λ ∈ ∧} be the family defined as Lλ = clGλ

if λ ≤ μ and Lλ = Fλ if λ > μ. Now {Lλ : λ ∈ ∧} is
similar to {Fλ : λ ∈ ∧}. For, suppose that λ1, λ2, . . . .λν ∈∧

and λ1 < λ2 < . . . < λj < μ < λj+1 < . . . . < λν .
Then

∧

i
{Lλi : 1 ≤ i ≤ ν} = ∧

i
{Kλj

λi
: 1 ≤ j ≤ ν} so

that ∧Lλi = 0 if and only if ∧Fλi = 0. Since Lλ < Uλ

for each λ, the family {Lλ : λ ∈ ∧} is locally finite. Thus,
if � is the set of finite subsets of

∧
and for each γ ∈ �,

{Eγ : γ ∈ �} is a locally finite family of closed L-sets.
Hence, E = ∨{Eν : Eν ∧ Fμ = 0} is a closed set which is
disjoint from Fμ. Therefore, there exists an open L-set Gμ

such that Fμ < Gμ < clGμ < Uμ and clGμ ∧ E = 0.
Now, the open L-sets are defined for λ ≤ μ, and it

remains to show that the collection {Kν
λ : λ ∈ ∧} is sim-

ilar to {Fλ : λ ∈ ∧}. For that, it is sufficient to show that
the collections {Kν

λ : λ ∈ ∧} and {Lλ : λ ∈ ∧} are simi-
lar. Suppose that λ1, λ2, . . . .λν ∈ ∧

and that ∧
1≤i≤ν

Lλi = 0.

It must be shown that ∧
1≤i≤ν

Kμ
λi

= 0. Suppose that λ1 <

λ2 < . . . < λj ≤ μ < λj+1 < . . . . < λν . If λj �= μ, there is
nothing to prove. If λj = μ then Lλ1 ∧ . . . . ∧ Lλj−1 ∧ Fμ ∧
. . . . . ∧ Lλj+1 ∧ . . . . ∧ Lλν = 0, and hence, by construction
Lλ1 ∧ . . . . ∧ Lλj−1 ∧ clGμ ∧ . . . . . ∧ Lλj+1 ∧ . . . . ∧ Lλν = 0.
Thus, we have ∧

1≤i≤ν
Kμ

λi
= 0 as required.

This completes the proof.

Theorem 5. Let (X, τ )be an L − ts. Then (X, τ) is nor-
mal if and only if for every two L-closed subsets P and
Q in (X, τ) such that P does not quasi-coincide with Q,
there exists open subsets U and V in (X, τ) such that
P ≤ U , Q ≤ V and U does not quasi-coincide with V [7].

Result. If dimX = 0, then X is a fuzzy normal space

Proof. Let P, Q ∈ τ ′ be such that P¬qQ. Now, {P′, Q′} is
an open α-Q-cover of X. For every xα ∈ M(LX), if xα ≤ P′
then xαqP′ and if xα �≤ P′, then xαqQ′. Since dimX = 0,
by Theorem 1, there exists a refinement {U , V } of {P′, Q′}
with order zero such that U ≤ P′ and V ≤ Q′. There-
fore, we have P ≤ V and Q ≤ U with U¬qV . Hence, X is
normal.

This completes the proof.

Theorem 6. For every closed subspace A of an L-ts
(X, τ), dimA ≤ dimX

Proof. Suppose dimX ≤ n. Let {U1, U2, . . .Uk} be an
open α-Q-cover of A. Now clearly Ui = A ∧ Vi for some
Vi ∈ τ . Now, {V1, V2, . . .Vk , A′} is a finite open α-Q-cover
of X. Since dimX ≤ n, it has an open refinement W of
order not exceeding n. Take V = {W ∧ A : W ∈ W}. This
is an open refinement of {U1, U2, . . .Uk}.

This completes the proof.

Definition 10. Let (X, τ) be an L − ts. (X, τ) is called T1
if for every two distinguished molecules e and d in (X, τ)

such that e �≤ d, there exists U ∈ Qδ(e) such that d �	 U
[7].

Theorem 7. Let (X, τ) be an L − ts. Then (X, τ) is T1 if
and only if every molecule in (X, τ) is a closed subset [7].

Definition 11. Let (X, τ) be an L − ts, A, B ∈ LX . A and
B are called separated if clA ∩ B = A ∩ clB =⊥. A is called
connected, if there does not exist separated C, D ∈ LX−{⊥
} such that A = C∪D.(X, τ) is connected if � is connected
[7].

Definition 12. (X, τ) is totally disconnected if it con-
tains no connected subspace that consists more than one
molecule.

Theorem 8. If (X, τ) is a T1 space with dimX = 0, then
X has a basis consisting of open and closed L-sets.

Proof. Let (X, τ) be a T1 space with dimX = 0. Let U ∈
τ and xα ∈ M(LX) such that xαqU . Now xα is a closed
set, and hence, {U , (xα)′} is an open α-Q-cover of �. By
Theorem 1, there exists an open α-Q-cover {V , W } such
that V < U , W < (xα)′ and U ∧ W < α. Thus, V is an
open and closed L-set such that xα ∈ V ⊂ U .

This completes the proof.

Theorem 9. If (X, τ) is a normal space, then the follow-
ing are equivalent:

(i) dim X ≤ n
(ii) For every α ∈ M(L), every finite α-Q-cover

{U1, U2, . . . ..Uk} of � by open L-subsets , there is
an open α-Q-cover {V1, V2, . . . ..Vk} of order not
exceeding n such that clVi < Ui for i = 1,2,3,. . .k.

(iii) For every α ∈ M(L) , every finite α-Q-cover
{U1, U2, . . . ..Uk} of � , there exists a closed
α-Q-cover {F1, F2, . . . ..Fk} of order not exceeding
n such that Fi < Ui for i = 1,2,3,. . .k.
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(iv) For every α ∈ M(L) , every finite α-Q-cover of �
by open L-subsets has a finite refinement by closed
sets of order not exceeding n.

(v) If U1, U2, . . . ..Uk} is an open α-Q-cover of X, there
exists an α-Q-cover {F1, F2, . . . ..Fk} by closed
L-subsets such that Fi < Ui and InfFi

1≤i≤n+2
< α.

Proof.

(i) ⇒ (ii)

Suppose that dim X ≤ n , α ∈ M(L) and
{U1, U2, . . . ..Uk} be an α-Q-cover of � by open L-sets.
Then by Theorem 4, there exists an open open α-Q-cover
{W1, W2, . . . ..Wk} of order not exceeding n such that
Wi < Ui. Given that X is normal, therefore, by Theorem 4,
there exists an open α-Q-cover {V1, V2, . . . ..Vk} such that
clVi < Wi for each i. Then {V1, V2, . . . ..Vk} is an α-Q-
cover by open L-sets with the required properties.

(ii) ⇒ (iii) ⇒ (iv) is clear.

(iv) ⇒ (v)

Let U = {U1, U2, . . . ..Un+2} be an α-Q-cover of �.
Then, by hypothesis, U has a finite closed α-Q-cover
refinement E of order not exceeding n. If E ∈ E, then
E ≤ Ui for some i. Associate the set Ei with sets Ui con-
taining it and let Fi = ∨{Ei : Ei < Ui}. Clearly, Fi is
closed, and Fi < Ui and {F1, F2, . . . ..Fn+2} is an α-Q-cover
of � such that

∧
F(i) < α.

(v) ⇒ (i)

Let {U1, U2, . . . ..Un+2} be an α-Q-cover of � by
open L-sets. By hypothesis, there exists an α-Q-cover
{F1, F2, . . . ..Fn+2} by closed L-sets such that Fi < Ui and
∧Fi < α. Now, by Proposition 1, there exist open L-sets
{V1, V2, . . . ...Vn+2} such that Fi < Vi < Ui for each i and
{Vi} are similar to {Fi}. Thus, {V1, V2, . . . . . . Vn+2} is an
open α-Q-cover of � with Vi < Ui and ∧Vi < α. Then, by
Theorem 1, dimX ≤ n.

This completes the proof.

Results and discussion
In this paper, the notions of covering dimension dim is
extended to L-topological spaces using the order of an
α-Q-cover in terms of quasi-coincident neighborhood.
A characterization of covering dimension in the weakly
induced L-topological spaces is also obtained. Moreover,
a characterization of covering dimension for fuzzy normal
spaces is also obtained.

Conclusions
This paper provides some brief sketches regarding the
topics covering dimension in L-topological spaces and

covering dimension for fuzzy normal spaces. In this paper,
the neighborhood structure used for the investigations
is the quasi-coincident neighborhood structure (Q-nbd).
There are also other types of neighborhood structures,
for example, the remote neighborhood (R-nbd), in fuzzy
topology. All the investigations, which have been done in
this paper, can be carried out using these neighborhood
structures and related tools. Also, there are several defi-
nitions of fuzzy compactness on fuzzy topological space
introduced by many authors. These notions are defined
using various tools such as fuzzy cover, Q-cover, α-Q-
cover, etc. Among which, only N-compactness and related
tools are considered in this work for the investigations.
It is also possible to extend these discussions in terms of
other notions of compactness, and it can obtain various
notions in different ways.
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